Esempio n. 1
0
def test_gnb_prior():
    # Test whether class priors are properly set.
    clf = GaussianNB().fit(X, y)
    assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8)
    clf.fit(X1, y1)
    # Check that the class priors sum to 1
    assert_array_almost_equal(clf.class_prior_.sum(), 1)
Esempio n. 2
0
def test_gnb_pfit_wrong_nb_features():
    """Test whether an error is raised when the number of feature changes
    between two partial fit"""
    clf = GaussianNB()
    # Fit for the first time the GNB
    clf.fit(X, y)
    # Partial fit a second time with an incoherent X
    assert_raises(ValueError, clf.partial_fit, np.hstack((X, X)), y)
Esempio n. 3
0
def test_gnb_priors_sum_isclose():
    # test whether the class prior sum is properly tested"""
    X = np.array([[-1, -1], [-2, -1], [-3, -2], [-4, -5], [-5, -4], [1, 1],
                  [2, 1], [3, 2], [4, 4], [5, 5]])
    priors = np.array(
        [0.08, 0.14, 0.03, 0.16, 0.11, 0.16, 0.07, 0.14, 0.11, 0.0])
    Y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    clf = GaussianNB(priors)
    # smoke test for issue #9633
    clf.fit(X, Y)
Esempio n. 4
0
def test_predict_on_toy_problem():
    """Manually check predicted class labels for toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()

    X = np.array([[-1.1, -1.5],
                  [-1.2, -1.4],
                  [-3.4, -2.2],
                  [1.1, 1.2],
                  [2.1, 1.4],
                  [3.1, 2.3]])

    y = np.array([1, 1, 1, 2, 2, 2])

    assert all(clf1.fit(X, y).predict(X)) == all([1, 1, 1, 2, 2, 2])
    assert all(clf2.fit(X, y).predict(X)) == all([1, 1, 1, 2, 2, 2])
    assert all(clf3.fit(X, y).predict(X)) == all([1, 1, 1, 2, 2, 2])

    eclf = VotingClassifier(estimators=[
                            ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                            voting='hard',
                            weights=[1, 1, 1])
    assert all(eclf.fit(X, y).predict(X)) == all([1, 1, 1, 2, 2, 2])

    eclf = VotingClassifier(estimators=[
                            ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 1, 1])
    assert all(eclf.fit(X, y).predict(X)) == all([1, 1, 1, 2, 2, 2])
Esempio n. 5
0
def test_gnb():
    # Gaussian Naive Bayes classification.
    # This checks that GaussianNB implements fit and predict and returns
    # correct values for a simple toy dataset.

    clf = GaussianNB()
    y_pred = clf.fit(X, y).predict(X)
    assert_array_equal(y_pred, y)

    y_pred_proba = clf.predict_proba(X)
    y_pred_log_proba = clf.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)

    # Test whether label mismatch between target y and classes raises
    # an Error
    # FIXME Remove this test once the more general partial_fit tests are merged
    assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1])
Esempio n. 6
0
def test_gnb_prior_large_bias():
    """Test if good prediction when class prior favor largely one class"""
    clf = GaussianNB(priors=np.array([0.01, 0.99]))
    clf.fit(X, y)
    assert clf.predict([[-0.1, -0.1]]) == np.array([2])
Esempio n. 7
0
                  cluster_std=1.0,
                  centers=centers,
                  shuffle=False,
                  random_state=42)

y[:n_samples // 2] = 0
y[n_samples // 2:] = 1
sample_weight = np.random.RandomState(42).rand(y.shape[0])

# split train, test for calibration
X_train, X_test, y_train, y_test, sw_train, sw_test = \
    train_test_split(X, y, sample_weight, test_size=0.9, random_state=42)

# Gaussian Naive-Bayes with no calibration
clf = GaussianNB()
clf.fit(X_train, y_train)  # GaussianNB itself does not support sample-weights
prob_pos_clf = clf.predict_proba(X_test)[:, 1]

# Gaussian Naive-Bayes with isotonic calibration
clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic')
clf_isotonic.fit(X_train, y_train, sw_train)
prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1]

# Gaussian Naive-Bayes with sigmoid calibration
clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid')
clf_sigmoid.fit(X_train, y_train, sw_train)
prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1]

print("Brier scores: (the smaller the better)")

clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test)