def test_set_params_nested_pipeline(): estimator = Pipeline([ ('a', Pipeline([ ('b', DummyRegressor()) ])) ]) estimator.set_params(a__b__alpha=0.001, a__b=Lasso()) estimator.set_params(a__steps=[('b', LogisticRegression())], a__b__C=5)
def test_pipeline_init_tuple(): # Pipeline accepts steps as tuple X = np.array([[1, 2]]) pipe = Pipeline((('transf', Transf()), ('clf', FitParamT()))) pipe.fit(X, y=None) pipe.score(X) pipe.set_params(transf='passthrough') pipe.fit(X, y=None) pipe.score(X)
def test_set_pipeline_steps(): transf1 = Transf() transf2 = Transf() pipeline = Pipeline([('mock', transf1)]) assert pipeline.named_steps['mock'] is transf1 # Directly setting attr pipeline.steps = [('mock2', transf2)] assert 'mock' not in pipeline.named_steps assert pipeline.named_steps['mock2'] is transf2 assert [('mock2', transf2)] == pipeline.steps # Using set_params pipeline.set_params(steps=[('mock', transf1)]) assert [('mock', transf1)] == pipeline.steps # Using set_params to replace single step pipeline.set_params(mock=transf2) assert [('mock', transf2)] == pipeline.steps # With invalid data pipeline.set_params(steps=[('junk', ())]) assert_raises(TypeError, pipeline.fit, [[1]], [1]) assert_raises(TypeError, pipeline.fit_transform, [[1]], [1])
def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method assert_raises_regex(TypeError, 'Last step of Pipeline should implement fit ' 'or be the string \'passthrough\'' '.*NoFit.*', Pipeline, [('clf', NoFit())]) # Smoke test with only an estimator clf = NoTrans() pipe = Pipeline([('svc', clf)]) assert (pipe.get_params(deep=True) == dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False))) # Check that params are set pipe.set_params(svc__a=0.1) assert clf.a == 0.1 assert clf.b is None # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that estimators are not cloned on pipeline construction assert pipe.named_steps['anova'] is filter1 assert pipe.named_steps['svc'] is clf # Check that we can't instantiate with non-transformers on the way # Note that NoTrans implements fit, but not transform assert_raises_regex(TypeError, 'All intermediate steps should be transformers' '.*\\bNoTrans\\b.*', Pipeline, [('t', NoTrans()), ('svc', clf)]) # Check that params are set pipe.set_params(svc__C=0.1) assert clf.C == 0.1 # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = assert_no_warnings(clone, pipe) assert not pipe.named_steps['svc'] is pipe2.named_steps['svc'] # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert params == params2
# Add non-informative features np.random.seed(0) X = np.hstack((X, 2 * np.random.random((X.shape[0], 36)))) # ############################################################################# # Create a feature-selection transform, a scaler and an instance of SVM that we # combine together to have an full-blown estimator clf = Pipeline([('anova', SelectPercentile(chi2)), ('scaler', StandardScaler()), ('svc', SVC(gamma="auto"))]) # ############################################################################# # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) this_scores = cross_val_score(clf, X, y) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xticks(np.linspace(0, 100, 11, endpoint=True)) plt.xlabel('Percentile') plt.ylabel('Accuracy Score') plt.axis('tight') plt.show()