Esempio n. 1
0
def test_plot_roc_curve_error_non_binary(pyplot, data):
    X, y = data
    clf = DecisionTreeClassifier()
    clf.fit(X, y)

    msg = "Estimator should solve a binary classification problem"
    with pytest.raises(ValueError, match=msg):
        plot_roc_curve(clf, X, y)
Esempio n. 2
0
def test_ovr_pipeline():
    # Test with pipeline of length one
    # This test is needed because the multiclass estimators may fail to detect
    # the presence of predict_proba or decision_function.
    clf = Pipeline([("tree", DecisionTreeClassifier())])
    ovr_pipe = OneVsRestClassifier(clf)
    ovr_pipe.fit(iris.data, iris.target)
    ovr = OneVsRestClassifier(DecisionTreeClassifier())
    ovr.fit(iris.data, iris.target)
    assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data))
Esempio n. 3
0
def test_pickle_version_warning_is_not_raised_with_matching_version():
    iris = datasets.load_iris()
    tree = DecisionTreeClassifier().fit(iris.data, iris.target)
    tree_pickle = pickle.dumps(tree)
    assert b"version" in tree_pickle
    tree_restored = assert_no_warnings(pickle.loads, tree_pickle)

    # test that we can predict with the restored decision tree classifier
    score_of_original = tree.score(iris.data, iris.target)
    score_of_restored = tree_restored.score(iris.data, iris.target)
    assert score_of_original == score_of_restored
Esempio n. 4
0
def test_thresholded_scorers():
    # Test scorers that take thresholds.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression(random_state=0)
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)
    assert_almost_equal(score1, score3)

    logscore = get_scorer('neg_log_loss')(clf, X_test, y_test)
    logloss = log_loss(y_test, clf.predict_proba(X_test))
    assert_almost_equal(-logscore, logloss)

    # same for an estimator without decision_function
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)

    # test with a regressor (no decision_function)
    reg = DecisionTreeRegressor()
    reg.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(reg, X_test, y_test)
    score2 = roc_auc_score(y_test, reg.predict(X_test))
    assert_almost_equal(score1, score2)

    # Test that an exception is raised on more than two classes
    X, y = make_blobs(random_state=0, centers=3)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf.fit(X_train, y_train)
    with pytest.raises(ValueError, match="multiclass format is not supported"):
        get_scorer('roc_auc')(clf, X_test, y_test)

    # test error is raised with a single class present in model
    # (predict_proba shape is not suitable for binary auc)
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = DecisionTreeClassifier()
    clf.fit(X_train, np.zeros_like(y_train))
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer('roc_auc')(clf, X_test, y_test)

    # for proba scorers
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer('neg_log_loss')(clf, X_test, y_test)
Esempio n. 5
0
def test_set_random_state():
    lda = LinearDiscriminantAnalysis()
    tree = DecisionTreeClassifier()
    # Linear Discriminant Analysis doesn't have random state: smoke test
    set_random_state(lda, 3)
    set_random_state(tree, 3)
    assert tree.random_state == 3
Esempio n. 6
0
def test_export_text_errors():
    clf = DecisionTreeClassifier(max_depth=2, random_state=0)
    clf.fit(X, y)

    err_msg = "max_depth bust be >= 0, given -1"
    with pytest.raises(ValueError, match=err_msg):
        export_text(clf, max_depth=-1)
    err_msg = "feature_names must contain 2 elements, got 1"
    with pytest.raises(ValueError, match=err_msg):
        export_text(clf, feature_names=['a'])
    err_msg = "decimals must be >= 0, given -1"
    with pytest.raises(ValueError, match=err_msg):
        export_text(clf, decimals=-1)
    err_msg = "spacing must be > 0, given 0"
    with pytest.raises(ValueError, match=err_msg):
        export_text(clf, spacing=0)
Esempio n. 7
0
def bench_scikit_tree_classifier(X, Y):
    """Benchmark with scikit-learn decision tree classifier"""

    from mrex.tree import DecisionTreeClassifier

    gc.collect()

    # start time
    tstart = datetime.now()
    clf = DecisionTreeClassifier()
    clf.fit(X, Y).predict(X)
    delta = (datetime.now() - tstart)
    # stop time

    scikit_classifier_results.append(delta.seconds +
                                     delta.microseconds / mu_second)
Esempio n. 8
0
def test_plot_tree_gini(pyplot):
    # mostly smoke tests
    # Check correctness of export_graphviz for criterion = gini
    clf = DecisionTreeClassifier(max_depth=3,
                                 min_samples_split=2,
                                 criterion="gini",
                                 random_state=2)
    clf.fit(X, y)

    # Test export code
    feature_names = ['first feat', 'sepal_width']
    nodes = plot_tree(clf, feature_names=feature_names)
    assert len(nodes) == 3
    assert nodes[0].get_text() == ("first feat <= 0.0\ngini = 0.5\n"
                                   "samples = 6\nvalue = [3, 3]")
    assert nodes[1].get_text() == "gini = 0.0\nsamples = 3\nvalue = [3, 0]"
    assert nodes[2].get_text() == "gini = 0.0\nsamples = 3\nvalue = [0, 3]"
Esempio n. 9
0
def test_ovr_coef_exceptions():
    # Not fitted exception!
    ovr = OneVsRestClassifier(LinearSVC(random_state=0))
    # lambda is needed because we don't want coef_ to be evaluated right away
    assert_raises(ValueError, lambda x: ovr.coef_, None)

    # Doesn't have coef_ exception!
    ovr = OneVsRestClassifier(DecisionTreeClassifier())
    ovr.fit(iris.data, iris.target)
    assert_raises(AttributeError, lambda x: ovr.coef_, None)
Esempio n. 10
0
def _make_estimators(X_train, y_train, y_ml_train):
    # Make estimators that make sense to test various scoring methods
    sensible_regr = DecisionTreeRegressor(random_state=0)
    # some of the regressions scorers require strictly positive input.
    sensible_regr.fit(X_train, y_train + 1)
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    return dict([(name, sensible_regr) for name in REGRESSION_SCORERS] +
                [(name, sensible_clf)
                 for name in CLF_SCORERS] + [(name, sensible_clf)
                                             for name in CLUSTER_SCORERS] +
                [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS])
Esempio n. 11
0
def test_graphviz_errors():
    # Check for errors of export_graphviz
    clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)

    # Check not-fitted decision tree error
    out = StringIO()
    with pytest.raises(NotFittedError):
        export_graphviz(clf, out)

    clf.fit(X, y)

    # Check if it errors when length of feature_names
    # mismatches with number of features
    message = ("Length of feature_names, "
               "1 does not match number of features, 2")
    with pytest.raises(ValueError, match=message):
        export_graphviz(clf, None, feature_names=["a"])

    message = ("Length of feature_names, "
               "3 does not match number of features, 2")
    with pytest.raises(ValueError, match=message):
        export_graphviz(clf, None, feature_names=["a", "b", "c"])

    # Check error when argument is not an estimator
    message = "is not an estimator instance"
    with pytest.raises(TypeError, match=message):
        export_graphviz(clf.fit(X, y).tree_)

    # Check class_names error
    out = StringIO()
    with pytest.raises(IndexError):
        export_graphviz(clf, out, class_names=[])

    # Check precision error
    out = StringIO()
    with pytest.raises(ValueError, match="should be greater or equal"):
        export_graphviz(clf, out, precision=-1)
    with pytest.raises(ValueError, match="should be an integer"):
        export_graphviz(clf, out, precision="1")
Esempio n. 12
0
def test_raises_on_score_list():
    # Test that when a list of scores is returned, we raise proper errors.
    X, y = make_blobs(random_state=0)
    f1_scorer_no_average = make_scorer(f1_score, average=None)
    clf = DecisionTreeClassifier()
    assert_raises(ValueError,
                  cross_val_score,
                  clf,
                  X,
                  y,
                  scoring=f1_scorer_no_average)
    grid_search = GridSearchCV(clf,
                               scoring=f1_scorer_no_average,
                               param_grid={'max_depth': [1, 2]})
    assert_raises(ValueError, grid_search.fit, X, y)
Esempio n. 13
0
def test_gridsearch():
    # Check that base trees can be grid-searched.
    # AdaBoost classification
    boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())
    parameters = {
        'n_estimators': (1, 2),
        'base_estimator__max_depth': (1, 2),
        'algorithm': ('SAMME', 'SAMME.R')
    }
    clf = GridSearchCV(boost, parameters)
    clf.fit(iris.data, iris.target)

    # AdaBoost regression
    boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(),
                              random_state=0)
    parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)}
    clf = GridSearchCV(boost, parameters)
    clf.fit(boston.data, boston.target)
Esempio n. 14
0
def test_precision():

    rng_reg = RandomState(2)
    rng_clf = RandomState(8)
    for X, y, clf in zip(
            (rng_reg.random_sample((5, 2)),
             rng_clf.random_sample((1000, 4))),
            (rng_reg.random_sample((5, )),
             rng_clf.randint(2, size=(1000, ))),
            (DecisionTreeRegressor(criterion="friedman_mse", random_state=0,
                                   max_depth=1),
             DecisionTreeClassifier(max_depth=1, random_state=0))):

        clf.fit(X, y)
        for precision in (4, 3):
            dot_data = export_graphviz(clf, out_file=None, precision=precision,
                                       proportion=True)

            # With the current random state, the impurity and the threshold
            # will have the number of precision set in the export_graphviz
            # function. We will check the number of precision with a strict
            # equality. The value reported will have only 2 precision and
            # therefore, only a less equal comparison will be done.

            # check value
            for finding in finditer(r"value = \d+\.\d+", dot_data):
                assert (
                    len(search(r"\.\d+", finding.group()).group()) <=
                    precision + 1)
            # check impurity
            if is_classifier(clf):
                pattern = r"gini = \d+\.\d+"
            else:
                pattern = r"friedman_mse = \d+\.\d+"

            # check impurity
            for finding in finditer(pattern, dot_data):
                assert (len(search(r"\.\d+", finding.group()).group()) ==
                             precision + 1)
            # check threshold
            for finding in finditer(r"<= \d+\.\d+", dot_data):
                assert (len(search(r"\.\d+", finding.group()).group()) ==
                             precision + 1)
Esempio n. 15
0
def test_score_sample_weight():

    rng = np.random.RandomState(0)

    # test both ClassifierMixin and RegressorMixin
    estimators = [
        DecisionTreeClassifier(max_depth=2),
        DecisionTreeRegressor(max_depth=2)
    ]
    sets = [datasets.load_iris(), datasets.load_boston()]

    for est, ds in zip(estimators, sets):
        est.fit(ds.data, ds.target)
        # generate random sample weights
        sample_weight = rng.randint(1, 10, size=len(ds.target))
        # check that the score with and without sample weights are different
        assert (est.score(ds.data, ds.target) != est.score(
            ds.data, ds.target,
            sample_weight=sample_weight)), ("Unweighted and weighted scores "
                                            "are unexpectedly equal")
Esempio n. 16
0
    X = X / 255

    # Create train-test split (as [Joachims, 2006])
    print("Creating train-test split...")
    n_train = 60000
    X_train = X[:n_train]
    y_train = y[:n_train]
    X_test = X[n_train:]
    y_test = y[n_train:]

    return X_train, X_test, y_train, y_test


ESTIMATORS = {
    "dummy": DummyClassifier(),
    'CART': DecisionTreeClassifier(),
    'ExtraTrees': ExtraTreesClassifier(),
    'RandomForest': RandomForestClassifier(),
    'Nystroem-SVM': make_pipeline(
        Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)),
    'SampledRBF-SVM': make_pipeline(
        RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)),
    'LogisticRegression-SAG': LogisticRegression(solver='sag', tol=1e-1,
                                                 C=1e4),
    'LogisticRegression-SAGA': LogisticRegression(solver='saga', tol=1e-1,
                                                  C=1e4),
    'MultilayerPerceptron': MLPClassifier(
        hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4,
        solver='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1,
        tol=1e-4, random_state=1),
    'MLP-adam': MLPClassifier(
Esempio n. 17
0
# Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02

# Load data
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2,
                                                                         3]]):
    # We only take the two corresponding features
    X = iris.data[:, pair]
    y = iris.target

    # Train
    clf = DecisionTreeClassifier().fit(X, y)

    # Plot the decision boundary
    plt.subplot(2, 3, pairidx + 1)

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
                         np.arange(y_min, y_max, plot_step))
    plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)

    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)

    plt.xlabel(iris.feature_names[pair[0]])
Esempio n. 18
0
    # Standardize first 10 features (the numerical ones)
    mean = X_train.mean(axis=0)
    std = X_train.std(axis=0)
    mean[10:] = 0.0
    std[10:] = 1.0
    X_train = (X_train - mean) / std
    X_test = (X_test - mean) / std
    return X_train, X_test, y_train, y_test


ESTIMATORS = {
    'GBRT': GradientBoostingClassifier(n_estimators=250),
    'ExtraTrees': ExtraTreesClassifier(n_estimators=20),
    'RandomForest': RandomForestClassifier(n_estimators=20),
    'CART': DecisionTreeClassifier(min_samples_split=5),
    'SGD': SGDClassifier(alpha=0.001),
    'GaussianNB': GaussianNB(),
    'liblinear': LinearSVC(loss="l2",
                           penalty="l2",
                           C=1000,
                           dual=False,
                           tol=1e-3),
    'SAG': LogisticRegression(solver='sag', max_iter=2, C=1000)
}

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--classifiers',
                        nargs="+",
                        choices=ESTIMATORS,
Esempio n. 19
0
from mrex.discriminant_analysis import QuadraticDiscriminantAnalysis

h = .02  # step size in the mesh

names = [
    "Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
    "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes",
    "QDA"
]

classifiers = [
    KNeighborsClassifier(3),
    SVC(kernel="linear", C=0.025),
    SVC(gamma=2, C=1),
    GaussianProcessClassifier(1.0 * RBF(1.0)),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
    MLPClassifier(alpha=1, max_iter=1000),
    AdaBoostClassifier(),
    GaussianNB(),
    QuadraticDiscriminantAnalysis()
]

X, y = make_classification(n_features=2,
                           n_redundant=0,
                           n_informative=2,
                           random_state=1,
                           n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
Esempio n. 20
0
###############################################################################
# Total impurity of leaves vs effective alphas of pruned tree
# ---------------------------------------------------------------
# Minimal cost complexity pruning recursively finds the node with the "weakest
# link". The weakest link is characterized by an effective alpha, where the
# nodes with the smallest effective alpha are pruned first. To get an idea of
# what values of ``ccp_alpha`` could be appropriate, scikit-learn provides
# :func:`DecisionTreeClassifier.cost_complexity_pruning_path` that returns the
# effective alphas and the corresponding total leaf impurities at each step of
# the pruning process. As alpha increases, more of the tree is pruned, which
# increases the total impurity of its leaves.
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

clf = DecisionTreeClassifier(random_state=0)
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

###############################################################################
# In the following plot, the maximum effective alpha value is removed, because
# it is the trivial tree with only one node.
fig, ax = plt.subplots()
ax.plot(ccp_alphas[:-1], impurities[:-1], marker='o', drawstyle="steps-post")
ax.set_xlabel("effective alpha")
ax.set_ylabel("total impurity of leaves")
ax.set_title("Total Impurity vs effective alpha for training set")

###############################################################################
# Next, we train a decision tree using the effective alphas. The last value
# in ``ccp_alphas`` is the alpha value that prunes the whole tree,
Esempio n. 21
0
import numpy as np
import matplotlib.pyplot as plt

from mrex import datasets
from mrex.tree import DecisionTreeClassifier
from mrex.neighbors import KNeighborsClassifier
from mrex.svm import SVC
from mrex.ensemble import VotingClassifier

# Loading some example data
iris = datasets.load_iris()
X = iris.data[:, [0, 2]]
y = iris.target

# Training classifiers
clf1 = DecisionTreeClassifier(max_depth=4)
clf2 = KNeighborsClassifier(n_neighbors=7)
clf3 = SVC(gamma=.1, kernel='rbf', probability=True)
eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2),
                                    ('svc', clf3)],
                        voting='soft',
                        weights=[2, 1, 2])

clf1.fit(X, y)
clf2.fit(X, y)
clf3.fit(X, y)
eclf.fit(X, y)

# Plotting decision regions
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
Esempio n. 22
0
def test_thresholded_scorers_multilabel_indicator_data():
    # Test that the scorer work with multilabel-indicator format
    # for multilabel and multi-output multi-class classifier
    X, y = make_multilabel_classification(allow_unlabeled=False,
                                          random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    # Multi-output multi-class predict_proba
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    y_proba = clf.predict_proba(X_test)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p[:, -1] for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multi-output multi-class decision_function
    # TODO Is there any yet?
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    clf._predict_proba = clf.predict_proba
    clf.predict_proba = None
    clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)]

    y_proba = clf.decision_function(X_test)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multilabel predict_proba
    clf = OneVsRestClassifier(DecisionTreeClassifier())
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test))
    assert_almost_equal(score1, score2)

    # Multilabel decision function
    clf = OneVsRestClassifier(LinearSVC(random_state=0))
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    assert_almost_equal(score1, score2)
Esempio n. 23
0
# Running ``GridSearchCV`` using multiple evaluation metrics
# ----------------------------------------------------------
#

X, y = make_hastie_10_2(n_samples=8000, random_state=42)

# The scorers can be either be one of the predefined metric strings or a scorer
# callable, like the one returned by make_scorer
scoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}

# Setting refit='AUC', refits an estimator on the whole dataset with the
# parameter setting that has the best cross-validated AUC score.
# That estimator is made available at ``gs.best_estimator_`` along with
# parameters like ``gs.best_score_``, ``gs.best_params_`` and
# ``gs.best_index_``
gs = GridSearchCV(DecisionTreeClassifier(random_state=42),
                  param_grid={'min_samples_split': range(2, 403, 10)},
                  scoring=scoring,
                  refit='AUC',
                  return_train_score=True)
gs.fit(X, y)
results = gs.cv_results_

###############################################################################
# Plotting the result
# -------------------

plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
          fontsize=16)
Esempio n. 24
0
X1, y1 = make_gaussian_quantiles(cov=2.,
                                 n_samples=200,
                                 n_features=2,
                                 n_classes=2,
                                 random_state=1)
X2, y2 = make_gaussian_quantiles(mean=(3, 3),
                                 cov=1.5,
                                 n_samples=300,
                                 n_features=2,
                                 n_classes=2,
                                 random_state=1)
X = np.concatenate((X1, X2))
y = np.concatenate((y1, -y2 + 1))

# Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
                         algorithm="SAMME",
                         n_estimators=200)

bdt.fit(X, y)

plot_colors = "br"
plot_step = 0.02
class_names = "AB"

plt.figure(figsize=(10, 5))

# Plot the decision boundaries
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
Esempio n. 25
0
from mrex.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
n_estimators = 30
cmap = plt.cm.RdYlBu
plot_step = 0.02  # fine step width for decision surface contours
plot_step_coarser = 0.5  # step widths for coarse classifier guesses
RANDOM_SEED = 13  # fix the seed on each iteration

# Load data
iris = load_iris()

plot_idx = 1

models = [DecisionTreeClassifier(max_depth=None),
          RandomForestClassifier(n_estimators=n_estimators),
          ExtraTreesClassifier(n_estimators=n_estimators),
          AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),
                             n_estimators=n_estimators)]

for pair in ([0, 1], [0, 2], [2, 3]):
    for model in models:
        # We only take the two corresponding features
        X = iris.data[:, pair]
        y = iris.target

        # Shuffle
        idx = np.arange(X.shape[0])
        np.random.seed(RANDOM_SEED)
        np.random.shuffle(idx)
Esempio n. 26
0
def test_set_params_updates_valid_params():
    # Check that set_params tries to set SVC().C, not
    # DecisionTreeClassifier().C
    gscv = GridSearchCV(DecisionTreeClassifier(), {})
    gscv.set_params(estimator=SVC(), estimator__C=42.0)
    assert gscv.estimator.C == 42.0
Esempio n. 27
0
from mrex import datasets
from mrex.tree import DecisionTreeClassifier
from mrex.metrics import zero_one_loss
from mrex.ensemble import AdaBoostClassifier

n_estimators = 400
# A learning rate of 1. may not be optimal for both SAMME and SAMME.R
learning_rate = 1.

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

X_test, y_test = X[2000:], y[2000:]
X_train, y_train = X[:2000], y[:2000]

dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(X_train, y_train)
dt_stump_err = 1.0 - dt_stump.score(X_test, y_test)

dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1)
dt.fit(X_train, y_train)
dt_err = 1.0 - dt.score(X_test, y_test)

ada_discrete = AdaBoostClassifier(base_estimator=dt_stump,
                                  learning_rate=learning_rate,
                                  n_estimators=n_estimators,
                                  algorithm="SAMME")
ada_discrete.fit(X_train, y_train)

ada_real = AdaBoostClassifier(base_estimator=dt_stump,
                              learning_rate=learning_rate,
Esempio n. 28
0
         [('lr', LinearRegression()),
          ('rf', RandomForestRegressor(n_estimators=5))]))]
)
@pytest.mark.parametrize("drop", [None, 'drop'])
def test_none_estimator_with_weights(X, y, voter, drop):
    # check that an estimator can be set to None and passing some weight
    # regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/13777
    voter.fit(X, y, sample_weight=np.ones(y.shape))
    voter.set_params(lr=drop)
    voter.fit(X, y, sample_weight=np.ones(y.shape))
    y_pred = voter.predict(X)
    assert y_pred.shape == y.shape


@pytest.mark.parametrize(
    "estimator",
    [VotingRegressor(
        estimators=[('lr', LinearRegression()),
                    ('tree', DecisionTreeRegressor(random_state=0))]),
     VotingClassifier(
         estimators=[('lr', LogisticRegression(random_state=0)),
                     ('tree', DecisionTreeClassifier(random_state=0))])],
    ids=['VotingRegressor', 'VotingClassifier']
)
def test_check_estimators_voting_estimator(estimator):
    # FIXME: to be removed when meta-estimators can be specified themselves
    # their testing parameters (for required parameters).
    check_estimator(estimator)
    check_no_attributes_set_in_init(estimator.__class__.__name__, estimator)
Esempio n. 29
0
from mrex.datasets import make_gaussian_quantiles
from mrex.ensemble import AdaBoostClassifier
from mrex.metrics import accuracy_score
from mrex.tree import DecisionTreeClassifier

X, y = make_gaussian_quantiles(n_samples=13000,
                               n_features=10,
                               n_classes=3,
                               random_state=1)

n_split = 3000

X_train, X_test = X[:n_split], X[n_split:]
y_train, y_test = y[:n_split], y[n_split:]

bdt_real = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2),
                              n_estimators=600,
                              learning_rate=1)

bdt_discrete = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2),
                                  n_estimators=600,
                                  learning_rate=1.5,
                                  algorithm="SAMME")

bdt_real.fit(X_train, y_train)
bdt_discrete.fit(X_train, y_train)

real_test_errors = []
discrete_test_errors = []

for real_test_predict, discrete_train_predict in zip(
Esempio n. 30
0
- the rules that were used to predict a sample;
- the decision path shared by a group of samples.

"""
import numpy as np

from mrex.model_selection import train_test_split
from mrex.datasets import load_iris
from mrex.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)
estimator.fit(X_train, y_train)

# The decision estimator has an attribute called tree_  which stores the entire
# tree structure and allows access to low level attributes. The binary tree
# tree_ is represented as a number of parallel arrays. The i-th element of each
# array holds information about the node `i`. Node 0 is the tree's root. NOTE:
# Some of the arrays only apply to either leaves or split nodes, resp. In this
# case the values of nodes of the other type are arbitrary!
#
# Among those arrays, we have:
#   - left_child, id of the left child of the node
#   - right_child, id of the right child of the node
#   - feature, feature used for splitting the node
#   - threshold, threshold value at the node
#