Esempio n. 1
0
def test_MAF_lineshape_kernel():
    for dim in anisotropic_dims:
        ns_obj = ShieldingPALineshape(
            anisotropic_dimension=dim,
            inverse_dimension=inverse_dimension,
            channel="29Si",
            magnetic_flux_density="9.4 T",
            rotor_angle="90 deg",
            rotor_frequency="14 kHz",
            number_of_sidebands=1,
        )
        zeta, eta = ns_obj._get_zeta_eta(supersampling=1)
        K = ns_obj.kernel(supersampling=1)
        sim_lineshape = generate_shielding_kernel(zeta, eta, np.pi / 2, 14000,
                                                  1).T
        assert np.allclose(K, sim_lineshape, rtol=1.0e-3, atol=1e-3)

        ns_obj = MAF(
            anisotropic_dimension=dim,
            inverse_dimension=inverse_dimension,
            channel="29Si",
            magnetic_flux_density="9.4 T",
        )
        zeta, eta = ns_obj._get_zeta_eta(supersampling=1)
        K = ns_obj.kernel(supersampling=1)
        sim_lineshape = generate_shielding_kernel(zeta, eta, np.pi / 2, 14000,
                                                  1).T

        assert np.allclose(K, sim_lineshape, rtol=1.0e-3, atol=1e-3)

        _ = TSVDCompression(K, s=np.arange(96))
        assert _.truncation_index == 15
Esempio n. 2
0
def test_spinning_sidebands_kernel():
    # 1
    for dim in anisotropic_dims:
        ns_obj = ShieldingPALineshape(
            anisotropic_dimension=dim,
            inverse_dimension=inverse_dimension,
            channel="29Si",
            magnetic_flux_density="9.4 T",
            rotor_angle="54.735 deg",
            rotor_frequency="100 Hz",
            number_of_sidebands=96,
        )
        zeta, eta = ns_obj._get_zeta_eta(supersampling=1)
        K = ns_obj.kernel(supersampling=1)
        sim_lineshape = generate_shielding_kernel(zeta, eta,
                                                  0.9553059660790962, 100,
                                                  96).T

        assert np.allclose(K, sim_lineshape, rtol=1.0e-3, atol=1e-3)

        # 2
        ns_obj = ShieldingPALineshape(
            anisotropic_dimension=dim,
            inverse_dimension=inverse_dimension_ppm,
            channel="29Si",
            magnetic_flux_density="9.4 T",
            rotor_angle="54.735 deg",
            rotor_frequency="100 Hz",
            number_of_sidebands=96,
        )
        zeta, eta = ns_obj._get_zeta_eta(supersampling=1)
        K = ns_obj.kernel(supersampling=1)
        sim_lineshape = generate_shielding_kernel(zeta,
                                                  eta,
                                                  0.9553059660790962,
                                                  100,
                                                  96,
                                                  to_ppm=False).T

        assert np.allclose(K, sim_lineshape, rtol=1.0e-3, atol=1e-3)

        # 3
        ns_obj = SpinningSidebands(
            anisotropic_dimension=dim,
            inverse_dimension=inverse_dimension,
            channel="29Si",
            magnetic_flux_density="9.4 T",
        )
        zeta, eta = ns_obj._get_zeta_eta(supersampling=1)
        K = ns_obj.kernel(supersampling=1)
        sim_lineshape = generate_shielding_kernel(zeta, eta,
                                                  0.9553059660790962, 208.33,
                                                  96).T

        assert np.allclose(K, sim_lineshape, rtol=1.0e-3, atol=1e-3)

        _ = TSVDCompression(K, s=np.arange(96))
        assert _.truncation_index == 15
Esempio n. 3
0
def test_inversion():
    domain = "https://www.ssnmr.org/sites/default/files/mrsimulator"
    filename = f"{domain}/MAS_SE_PIETA_5%25Li2O_FT.csdf"
    data_object = cp.load(filename)

    # Inversion only requires the real part of the complex dataset.
    data_object = data_object.real
    sigma = 1110.521  # data standard deviation

    # Convert the MAS dimension from Hz to ppm.
    data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

    data_object = data_object.T
    data_object_truncated = data_object[:, 1220:-1220]

    data_object_truncated.dimensions[0].to("s")  # set coordinates to 's'
    kernel_dimension = data_object_truncated.dimensions[0]

    relaxT2 = relaxation.T2(
        kernel_dimension=kernel_dimension,
        inverse_dimension=dict(
            count=32,
            minimum="1e-3 s",
            maximum="1e4 s",
            scale="log",
            label="log (T2 / s)",
        ),
    )
    inverse_dimension = relaxT2.inverse_dimension
    K = relaxT2.kernel(supersampling=20)

    new_system = TSVDCompression(K, data_object_truncated)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    assert new_system.truncation_index == 18

    # setup the pre-defined range of alpha and lambda values
    lambdas = 10 ** (-4 + 5 * (np.arange(32) / 31))

    # setup the smooth lasso cross-validation class
    s_lasso = LassoFistaCV(
        lambdas=lambdas,  # A numpy array of lambda values.
        sigma=sigma,  # data standard deviation
        folds=5,  # The number of folds in n-folds cross-validation.
        inverse_dimension=inverse_dimension,  # previously defined inverse dimensions.
    )

    # run the fit method on the compressed kernel and compressed data.
    s_lasso.fit(K=compressed_K, s=compressed_s)
    np.testing.assert_almost_equal(s_lasso.hyperparameters["lambda"], 0.116, decimal=1)

    s_lasso.cv_plot()

    residuals = s_lasso.residuals(K=K, s=data_object_truncated)
    np.testing.assert_almost_equal(residuals.std().value, 1538.48, decimal=1)
Esempio n. 4
0
def generate_kernel(n, data, count0, inc0, count1, inc1, channel, B0, theta,
                    n_su, d_range, k_typ):
    if data is None:
        raise PreventUpdate

    if d_range is None:
        d_range = [[0, -1], [0, -1]]

    data = cp.parse_dict(data)

    anisotropic_dimension = data.dimensions[0]
    inverse_dimensions = [
        cp.LinearDimension(count=count0, increment=f"{inc0} Hz", label="x"),
        cp.LinearDimension(count=count1, increment=f"{inc1} Hz", label="y"),
    ]

    vr = 0
    ns = 1

    if k_typ == "sideband-correlation":
        vr = anisotropic_dimension.increment.to("Hz")
        ns = anisotropic_dimension.count

    if k_typ == "MAF":
        vr = "1 GHz"
        ns = 1

    K = ShieldingPALineshape(
        anisotropic_dimension=anisotropic_dimension,
        inverse_dimension=inverse_dimensions,
        channel=channel,
        magnetic_flux_density=f"{B0} T",
        rotor_angle=f"{theta} °",
        rotor_frequency=f"{vr}",
        number_of_sidebands=ns,
    ).kernel(supersampling=int(n_su))

    ranges = slice(d_range[1][0], d_range[1][1], None)
    data_truncated = data[:, ranges]

    new_system = TSVDCompression(K, data_truncated)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    return {
        "kernel": compressed_K,
        "signal": compressed_s.dict(),
        "inverse_dimensions": [item.dict() for item in inverse_dimensions],
    }
Esempio n. 5
0
def test_fista():
    domain = "https://sandbox.zenodo.org/record/1065394/files"
    filename = f"{domain}/test1_signal.csdf"
    signal = cp.load(filename)
    sigma = 0.0008

    datafile = f"{domain}/test1_t2.csdf"
    true_dist = cp.load(datafile)

    kernel_dimension = signal.dimensions[0]
    relaxT2 = relaxation.T2(
        kernel_dimension=kernel_dimension,
        inverse_dimension=dict(
            count=64,
            minimum="1e-2 s",
            maximum="1e3 s",
            scale="log",
            label="log (T2 / s)",
        ),
    )
    inverse_dimension = relaxT2.inverse_dimension
    K = relaxT2.kernel(supersampling=1)

    new_system = TSVDCompression(K, signal)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    assert new_system.truncation_index == 29

    lambdas = 10 ** (-5 + 4 * (np.arange(16) / 15))

    f_lasso_cv = LassoFistaCV(
        lambdas=lambdas,  # A numpy array of lambda values.
        folds=5,  # The number of folds in n-folds cross-validation.
        sigma=sigma,  # noise standard deviation
        inverse_dimension=inverse_dimension,  # previously defined inverse dimensions.
    )

    f_lasso_cv.fit(K=compressed_K, s=compressed_s)

    sol = f_lasso_cv.f
    assert np.argmax(sol.y[0].components[0]) == np.argmax(true_dist.y[0].components[0])

    residuals = f_lasso_cv.residuals(K=K, s=signal)
    std = residuals.std()
    np.testing.assert_almost_equal(std.value, sigma, decimal=3)
Esempio n. 6
0
# instance to generate the MAF line-shape kernel.
K = lineshape.kernel(supersampling=1)
print(K.shape)

# %%
# The kernel ``K`` is a NumPy array of shape (128, 625), where the axes with 128 and
# 625 points are the anisotropic dimension and the features (x-y coordinates)
# corresponding to the :math:`25\times 25` `x`-`y` grid, respectively.

# %%
# Data Compression
# ''''''''''''''''
#
# Data compression is optional but recommended. It may reduce the size of the
# inverse problem and, thus, further computation time.
new_system = TSVDCompression(K, data_object_truncated)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

# %%
# Solving the inverse problem
# ---------------------------
#
# Smooth LASSO cross-validation
# '''''''''''''''''''''''''''''
#
# Solve the smooth-lasso problem. Ordinarily, one should use the statistical learning
# method to solve the inverse problem over a range of α and λ values and then determine
# the best nuclear shielding tensor parameter distribution for the given 2D MAF
relaxT2 = relaxation.T2(
    kernel_dimension=kernel_dimension,
    inverse_dimension=dict(count=64,
                           minimum="1e-2 s",
                           maximum="1e3 s",
                           scale="log",
                           label="log (T2 / s)"),
)
inverse_dimension = relaxT2.inverse_dimension
K = relaxT2.kernel(supersampling=1)

# %%
# Data Compression
# ''''''''''''''''
new_system = TSVDCompression(K, signal)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

# %%
# Fista LASSO cross-validation
# '''''''''''''''''''''''''''''
# Create a guess range of values for the :math:`\lambda` hyperparameters.
lambdas = 10**(-5 + 4 * (np.arange(64) / 63))

# setup the smooth lasso cross-validation class
f_lasso_cv = LassoFistaCV(
    lambdas=lambdas,  # A numpy array of lambda values.
    folds=5,  # The number of folds in n-folds cross-validation.
Esempio n. 8
0
def test_01():
    domain = "https://sandbox.zenodo.org/record/1065347/files"
    filename = f"{domain}/8lnwmg0dr7y6egk40c2orpkmmugh9j7c.csdf"
    data_object = cp.load(filename)
    data_object = data_object.real
    _ = [item.to("ppm", "nmr_frequency_ratio") for item in data_object.dimensions]

    data_object = data_object.T
    data_object_truncated = data_object[:, 155:180]

    anisotropic_dimension = data_object_truncated.dimensions[0]
    inverse_dimensions = [
        cp.LinearDimension(count=25, increment="400 Hz", label="x"),
        cp.LinearDimension(count=25, increment="400 Hz", label="y"),
    ]

    lineshape = ShieldingPALineshape(
        anisotropic_dimension=anisotropic_dimension,
        inverse_dimension=inverse_dimensions,
        channel="29Si",
        magnetic_flux_density="9.4 T",
        rotor_angle="87.14°",
        rotor_frequency="14 kHz",
        number_of_sidebands=4,
    )
    K = lineshape.kernel(supersampling=2)

    new_system = TSVDCompression(K, data_object_truncated)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    assert new_system.truncation_index == 87

    s_lasso = SmoothLasso(
        alpha=2.07e-7, lambda1=7.85e-6, inverse_dimension=inverse_dimensions
    )
    s_lasso.fit(K=compressed_K, s=compressed_s)
    f_sol = s_lasso.f

    residuals = s_lasso.residuals(K=K, s=data_object_truncated)

    # assert np.allclose(residuals.mean().value, 0.00048751)
    np.testing.assert_almost_equal(residuals.std().value, 0.00336372, decimal=2)

    f_sol /= f_sol.max()
    [item.to("ppm", "nmr_frequency_ratio") for item in f_sol.dimensions]

    Q4_region = f_sol[0:8, 0:8, 3:18]
    Q4_region.description = "Q4 region"

    Q3_region = f_sol[0:8, 11:22, 8:20]
    Q3_region.description = "Q3 region"

    # Analysis
    int_Q4 = stats.integral(Q4_region)  # volume of the Q4 distribution
    mean_Q4 = stats.mean(Q4_region)  # mean of the Q4 distribution
    std_Q4 = stats.std(Q4_region)  # standard deviation of the Q4 distribution

    int_Q3 = stats.integral(Q3_region)  # volume of the Q3 distribution
    mean_Q3 = stats.mean(Q3_region)  # mean of the Q3 distribution
    std_Q3 = stats.std(Q3_region)  # standard deviation of the Q3 distribution

    np.testing.assert_almost_equal(
        (100 * int_Q4 / (int_Q4 + int_Q3)).value, 60.45388973909665, decimal=1
    )

    np.testing.assert_almost_equal(
        np.asarray([mean_Q4[0].value, mean_Q4[1].value, mean_Q4[2].value]),
        np.asarray([8.604842824865958, 9.05845796147297, -103.6976331077773]),
        decimal=0,
    )

    np.testing.assert_almost_equal(
        np.asarray([mean_Q3[0].value, mean_Q3[1].value, mean_Q3[2].value]),
        np.asarray([10.35036818411856, 79.02481579085152, -90.58326773441284]),
        decimal=0,
    )

    np.testing.assert_almost_equal(
        np.asarray([std_Q4[0].value, std_Q4[1].value, std_Q4[2].value]),
        np.asarray([4.525457744683861, 4.686253809896416, 5.369228151035292]),
        decimal=0,
    )

    np.testing.assert_almost_equal(
        np.asarray([std_Q3[0].value, std_Q3[1].value, std_Q3[2].value]),
        np.asarray([6.138761032132587, 7.837190479891721, 4.210912435356488]),
        decimal=0,
    )
Esempio n. 9
0
# and `rotor_frequency`, are set to match the conditions under which the spectrum
# was acquired. The value of the `number_of_sidebands` argument is the number of
# sidebands calculated for each line-shape within the kernel.
#
# Once the ShieldingPALineshape instance is created, use the
# :meth:`~mrinversion.kernel.nmr.ShieldingPALineshape.kernel` method of the
# instance to generate the MAF line-shape kernel.
K = lineshape.kernel(supersampling=1)

# %%
# Data Compression
# ''''''''''''''''
#
# Data compression is optional but recommended. It may reduce the size of the
# inverse problem and, thus, further computation time.
new_system = TSVDCompression(K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

# %%
# Solving the inverse problem
# ---------------------------
#
# Smooth-LASSO problem
# ''''''''''''''''''''
#
# Solve the smooth-lasso problem. You may choose to skip this step and proceed to the
# statistical learning method. Usually, the statistical learning method is a
# time-consuming process that solves the smooth-lasso problem over a range of