Esempio n. 1
0
def plot_labels(all_labels, gt_times, est_file, algo_ids=None, title=None,
                output_file=None):
    """Plots all the labels.

    Parameters
    ----------
    all_labels: list
        A list of np.arrays containing the labels of the boundaries, one array
        for each algorithm.
    gt_times: np.array
        Array with the ground truth boundaries.
    est_file: str
        Path to the estimated file (JSON file)
    algo_ids : list
        List of algorithm ids to to read boundaries from.
        If None, all algorithm ids are read.
    title : str
        Title of the plot. If None, the name of the file is printed instead.
    """
    import matplotlib.pyplot as plt
    N = len(all_labels)  # Number of lists of labels
    if algo_ids is None:
        algo_ids = io.get_algo_ids(est_file)

    # Translate ids
    for i, algo_id in enumerate(algo_ids):
        algo_ids[i] = translate_ids[algo_id]
    algo_ids = ["GT"] + algo_ids

    # Index the labels to normalize them
    for i, labels in enumerate(all_labels):
        all_labels[i] = mir_eval.util.index_labels(labels)[0]

    # Get color map
    cm = plt.get_cmap('gist_rainbow')
    max_label = max(max(labels) for labels in all_labels)

    # To intervals
    gt_inters = utils.times_to_intervals(gt_times)

    # Plot labels
    figsize = (6, 4)
    plt.figure(1, figsize=figsize, dpi=120, facecolor='w', edgecolor='k')
    for i, labels in enumerate(all_labels):
        for label, inter in zip(labels, gt_inters):
            plt.axvspan(inter[0], inter[1], ymin=i / float(N),
                        ymax=(i + 1) / float(N), alpha=0.6,
                        color=cm(label / float(max_label)))
        plt.axhline(i / float(N), color="k", linewidth=1)

    # Draw the boundary lines
    for bound in gt_times:
        plt.axvline(bound, color="g")

    # Format plot
    _plot_formatting(title, est_file, algo_ids, gt_times[-1], N,
                     output_file)
Esempio n. 2
0
def plot_labels(all_labels, gt_times, est_file, algo_ids=None, title=None,
                output_file=None):
    """Plots all the labels.

    Parameters
    ----------
    all_labels: list
        A list of np.arrays containing the labels of the boundaries, one array
        for each algorithm.
    gt_times: np.array
        Array with the ground truth boundaries.
    est_file: str
        Path to the estimated file (JSON file)
    algo_ids : list
        List of algorithm ids to to read boundaries from.
        If None, all algorithm ids are read.
    title : str
        Title of the plot. If None, the name of the file is printed instead.
    """
    import matplotlib.pyplot as plt
    N = len(all_labels)  # Number of lists of labels
    if algo_ids is None:
        algo_ids = io.get_algo_ids(est_file)

    # Translate ids
    for i, algo_id in enumerate(algo_ids):
        algo_ids[i] = translate_ids[algo_id]
    algo_ids = ["GT"] + algo_ids

    # Index the labels to normalize them
    for i, labels in enumerate(all_labels):
        all_labels[i] = mir_eval.util.index_labels(labels)[0]

    # Get color map
    cm = plt.get_cmap('gist_rainbow')
    max_label = max(max(labels) for labels in all_labels)

    # To intervals
    gt_inters = utils.times_to_intervals(gt_times)

    # Plot labels
    figsize = (6, 4)
    plt.figure(1, figsize=figsize, dpi=120, facecolor='w', edgecolor='k')
    for i, labels in enumerate(all_labels):
        for label, inter in zip(labels, gt_inters):
            plt.axvspan(inter[0], inter[1], ymin=i / float(N),
                        ymax=(i + 1) / float(N), alpha=0.6,
                        color=cm(label / float(max_label)))
        plt.axhline(i / float(N), color="k", linewidth=1)

    # Draw the boundary lines
    for bound in gt_times:
        plt.axvline(bound, color="g")

    # Format plot
    _plot_formatting(title, est_file, algo_ids, gt_times[-1], N,
                     output_file)
Esempio n. 3
0
def plot_boundaries(all_boundaries,
                    est_file,
                    algo_ids=None,
                    title=None,
                    output_file=None):
    """Plots all the boundaries.

    Parameters
    ----------
    all_boundaries: list
        A list of np.arrays containing the times of the boundaries, one array
        for each algorithm.
    est_file: str
        Path to the estimated file (JSON file)
    algo_ids : list
        List of algorithm ids to to read boundaries from.
        If None, all algorithm ids are read.
    title : str
        Title of the plot. If None, the name of the file is printed instead.
    """
    import matplotlib.pyplot as plt
    N = len(all_boundaries)  # Number of lists of boundaries
    if algo_ids is None:
        algo_ids = io.get_algo_ids(est_file)

    # Translate ids
    for i, algo_id in enumerate(algo_ids):
        algo_ids[i] = translate_ids[algo_id]
    algo_ids = ["GT"] + algo_ids

    figsize = (6, 4)
    plt.figure(1, figsize=figsize, dpi=120, facecolor='w', edgecolor='k')
    for i, boundaries in enumerate(all_boundaries):
        color = "b"
        if i == 0:
            color = "g"
        for b in boundaries:
            plt.axvline(b, i / float(N), (i + 1) / float(N), color=color)
        plt.axhline(i / float(N), color="k", linewidth=1)

    # Format plot
    _plot_formatting(title, est_file, algo_ids, all_boundaries[0][-1], N,
                     output_file)
Esempio n. 4
0
def plot_boundaries(all_boundaries, est_file, algo_ids=None, title=None,
                    output_file=None):
    """Plots all the boundaries.

    Parameters
    ----------
    all_boundaries: list
        A list of np.arrays containing the times of the boundaries, one array
        for each algorithm.
    est_file: str
        Path to the estimated file (JSON file)
    algo_ids : list
        List of algorithm ids to to read boundaries from.
        If None, all algorithm ids are read.
    title : str
        Title of the plot. If None, the name of the file is printed instead.
    """
    import matplotlib.pyplot as plt
    N = len(all_boundaries)  # Number of lists of boundaries
    if algo_ids is None:
        algo_ids = io.get_algo_ids(est_file)

    # Translate ids
    for i, algo_id in enumerate(algo_ids):
        algo_ids[i] = translate_ids[algo_id]
    algo_ids = ["GT"] + algo_ids

    figsize = (6, 4)
    plt.figure(1, figsize=figsize, dpi=120, facecolor='w', edgecolor='k')
    for i, boundaries in enumerate(all_boundaries):
        color = "b"
        if i == 0:
            color = "g"
        for b in boundaries:
            plt.axvline(b, i / float(N), (i + 1) / float(N), color=color)
        plt.axhline(i / float(N), color="k", linewidth=1)

    # Format plot
    _plot_formatting(title, est_file, algo_ids, all_boundaries[0][-1], N,
                     output_file)