Esempio n. 1
0
    def test_flatfield_correction_differing_integration_times(self):
        MSI_INTEGRATION_TIME = 3.0
        FLATFIELD_INTEGRATION_TIME = 2.0
        desired_image_data = np.ones_like(self.specialmsi.get_image()) * \
             FLATFIELD_INTEGRATION_TIME / MSI_INTEGRATION_TIME
        desired_image_data[2, 2, 0] = np.nan
        self.specialmsi.add_property({"integration times":
                                      np.ones_like(
                                        self.specialmsi.get_image()[0, 0, :])
                                        * MSI_INTEGRATION_TIME})
        flatfield = copy.deepcopy(self.specialmsi)
        flatfield.add_property({"integration times":
                                np.ones_like(
                                    flatfield.get_image()[0, 0, :])
                                    * FLATFIELD_INTEGRATION_TIME})
        # for testing if flatfield does not changed by correction we copy it
        flatfield_copy = copy.deepcopy(flatfield)

        mani.flatfield_correction(self.specialmsi, flatfield_copy)

        np.testing.assert_almost_equal(self.specialmsi.get_image(),
                                       desired_image_data, 15,
                       "corrected image is a division of integration times")
        np.testing.assert_equal(flatfield.get_image(),
                                flatfield_copy.get_image(),
                                "flatfield doesn't change by correction")
Esempio n. 2
0
    def test_flatfield_correction_differing_integration_times(self):
        MSI_INTEGRATION_TIME = 3.0
        FLATFIELD_INTEGRATION_TIME = 2.0
        desired_image_data = np.ones_like(self.specialmsi.get_image()) * \
             FLATFIELD_INTEGRATION_TIME / MSI_INTEGRATION_TIME
        desired_image_data[2, 2, 0] = np.nan
        self.specialmsi.add_property({"integration times":
                                      np.ones_like(
                                        self.specialmsi.get_image()[0, 0, :])
                                        * MSI_INTEGRATION_TIME})
        flatfield = copy.deepcopy(self.specialmsi)
        flatfield.add_property({"integration times":
                                np.ones_like(
                                    flatfield.get_image()[0, 0, :])
                                    * FLATFIELD_INTEGRATION_TIME})
        # for testing if flatfield does not changed by correction we copy it
        flatfield_copy = copy.deepcopy(flatfield)

        mani.flatfield_correction(self.specialmsi, flatfield_copy)

        np.testing.assert_almost_equal(self.specialmsi.get_image(),
                                       desired_image_data, 15,
                       "corrected image is a division of integration times")
        np.testing.assert_equal(flatfield.get_image(),
                                flatfield_copy.get_image(),
                                "flatfield doesn't change by correction")
Esempio n. 3
0
    def test_flatfield_correction(self):
        desired_image_data = np.ones_like(self.specialmsi.get_image())
        desired_image_data[2, 2, 0] = np.nan

        mani.flatfield_correction(self.specialmsi, self.specialmsi)

        np.testing.assert_equal(self.specialmsi.get_image(),
                                       desired_image_data,
                       "correct image by itself should lead to only 1s ")
Esempio n. 4
0
    def test_flatfield_correction(self):
        desired_image_data = np.ones_like(self.specialmsi.get_image())
        desired_image_data[2, 2, 0] = np.nan

        mani.flatfield_correction(self.specialmsi, self.specialmsi)

        np.testing.assert_equal(self.specialmsi.get_image(),
                                       desired_image_data,
                       "correct image by itself should lead to only 1s ")
Esempio n. 5
0
    def test_flatfield_correction_with_single_value(self):
        desired_image_data = np.ones_like(self.msi.get_image())
        flatfield = copy.copy(self.msi)
        mani.calculate_mean_spectrum(flatfield)
        unchanged_flatfield = copy.deepcopy(flatfield)

        mani.flatfield_correction(self.msi, flatfield)

        np.testing.assert_equal(self.msi.get_image(),
                                       desired_image_data,
                "flatfield correctly accounted for from singular reference value")
        np.testing.assert_equal(flatfield, unchanged_flatfield,
                "flatfield not changed by algorithm")
Esempio n. 6
0
    def test_flatfield_correction_with_single_value(self):
        desired_image_data = np.ones_like(self.msi.get_image())
        flatfield = copy.copy(self.msi)
        mani.calculate_mean_spectrum(flatfield)
        unchanged_flatfield = copy.deepcopy(flatfield)

        mani.flatfield_correction(self.msi, flatfield)

        np.testing.assert_equal(self.msi.get_image(),
                                       desired_image_data,
                "flatfield correctly accounted for from singular reference value")
        np.testing.assert_equal(flatfield, unchanged_flatfield,
                "flatfield not changed by algorithm")