def create_mtcnn_net(p_model_path=None, r_model_path=None, o_model_path=None, use_cuda=True): pnet, rnet, onet = None, None, None if p_model_path is not None: pnet = PNet(use_cuda=use_cuda) if (use_cuda): print('p_model_path:{0}'.format(p_model_path)) pnet.load_state_dict(torch.load(p_model_path)) pnet.cuda() else: # forcing all GPU tensors to be in CPU while loading pnet.load_state_dict( torch.load(p_model_path, map_location=lambda storage, loc: storage)) pnet.eval() if r_model_path is not None: rnet = RNet(use_cuda=use_cuda) if (use_cuda): print('r_model_path:{0}'.format(r_model_path)) rnet.load_state_dict(torch.load(r_model_path)) rnet.cuda() else: rnet.load_state_dict( torch.load(r_model_path, map_location=lambda storage, loc: storage)) rnet.eval() if o_model_path is not None: onet = ONet(use_cuda=use_cuda) if (use_cuda): print('o_model_path:{0}'.format(o_model_path)) onet.load_state_dict(torch.load(o_model_path)) onet.cuda() else: onet.load_state_dict( torch.load(o_model_path, map_location=lambda storage, loc: storage)) onet.eval() return pnet, rnet, onet
def create_mtcnn_net(self): ''' Create the mtcnn model ''' pnet, rnet, onet = None, None, None if len(self.args.pnet_file) > 0: pnet = PNet(use_cuda=self.args.use_cuda) if self.args.use_cuda: pnet.load_state_dict(torch.load(self.args.pnet_file)) pnet = torch.nn.DataParallel( pnet, device_ids=self.args.gpu_ids).cuda() else: pnet.load_state_dict(torch.load(self.args.pnet_file,\ map_location=lambda storage, loc: storage)) pnet.eval() if len(self.args.rnet_file) > 0: rnet = RNet(use_cuda=self.args.use_cuda) if self.args.use_cuda: rnet.load_state_dict(torch.load(self.args.rnet_file)) rnet = torch.nn.DataParallel( rnet, device_ids=self.args.gpu_ids).cuda() else: rnet.load_state_dict(torch.load(self.args.rnet_file,\ map_location=lambda storage, loc: storage)) rnet.eval() if len(self.args.onet_file) > 0: onet = ONet(use_cuda=self.args.use_cuda) if self.args.use_cuda: onet.load_state_dict(torch.load(self.args.onet_file)) onet = torch.nn.DataParallel( onet, device_ids=self.args.gpu_ids).cuda() else: onet.load_state_dict(torch.load(self.args.onet_file, \ map_location=lambda storage, loc: storage)) onet.eval() self.pnet_detector = pnet self.rnet_detector = rnet self.onet_detector = onet
def train_rnet(model_store_path, end_epoch, imdb, batch_size, frequent=50, base_lr=0.01, lr_epoch_decay=[9], use_cuda=True, load=''): #create lr_list lr_epoch_decay.append(end_epoch + 1) lr_list = np.zeros(end_epoch) lr_t = base_lr for i in range(len(lr_epoch_decay)): if i == 0: lr_list[0:lr_epoch_decay[i] - 1] = lr_t else: lr_list[lr_epoch_decay[i - 1] - 1:lr_epoch_decay[i] - 1] = lr_t lr_t *= 0.1 print(lr_list) if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = RNet(is_train=True, use_cuda=use_cuda) net.train() if load != '': net.load_state_dict(torch.load(load)) print('model loaded', load) if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data = TrainImageReader(imdb, 24, batch_size, shuffle=True) for cur_epoch in range(1, end_epoch + 1): train_data.reset() for param in optimizer.param_groups: param['lr'] = lr_list[cur_epoch - 1] for batch_idx, (image, (gt_label, gt_bbox, gt_landmark)) in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i, :, :, :]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label, cls_pred) box_offset_loss = lossfn.box_loss(gt_label, gt_bbox, box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 if batch_idx % frequent == 0: accuracy = compute_accuracy(cls_pred, gt_label) show1 = accuracy.data.cpu().numpy() show2 = cls_loss.data.cpu().numpy() show3 = box_offset_loss.data.cpu().numpy() # show4 = landmark_loss.data.cpu().numpy() show5 = all_loss.data.cpu().numpy() print( "%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s " % (datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, lr_list[cur_epoch - 1])) optimizer.zero_grad() all_loss.backward() optimizer.step() torch.save( net.state_dict(), os.path.join(model_store_path, "rnet_epoch_%d.pt" % cur_epoch)) torch.save( net, os.path.join(model_store_path, "rnet_epoch_model_%d.pkl" % cur_epoch))
def train_rnet(model_store_path, end_epoch, imdb, batch_size, frequent=50, base_lr=0.01, use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = RNet(is_train=True, use_cuda=use_cuda) checkpoint = torch.load('model_store/rnet_epoch.pt') net.load_state_dict(checkpoint) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data = TrainImageReader(imdb, 24, batch_size, shuffle=True) for cur_epoch in range(1, end_epoch + 1): train_data.reset() accuracy_list = [] cls_loss_list = [] bbox_loss_list = [] landmark_loss_list = [] for batch_idx, (image, (gt_label, gt_bbox, gt_landmark)) in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i, :, :, :]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor).float() im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label, cls_pred) box_offset_loss = lossfn.box_loss(gt_label, gt_bbox, box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 if batch_idx % frequent == 0: accuracy = compute_accuracy(cls_pred, gt_label) # show1 = accuracy.data.tolist()[0] # show2 = cls_loss.data.tolist()[0] # show3 = box_offset_loss.data.tolist()[0] # # show4 = landmark_loss.data.tolist()[0] # show5 = all_loss.data.tolist()[0] show1 = accuracy.item() show2 = cls_loss.item() show3 = box_offset_loss.item() show5 = all_loss.item() print( "%s : Epoch: %d, Step: %d, accuracy: %.4f, det loss: %.4f, bbox loss: %.4f, all_loss: %.4f, lr:%s " % (datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr)) accuracy_list.append(accuracy) cls_loss_list.append(cls_loss) bbox_loss_list.append(box_offset_loss) # landmark_loss_list.append(landmark_loss) optimizer.zero_grad() all_loss.backward() optimizer.step() # accuracy_avg = torch.mean(torch.cat(accuracy_list)) # cls_loss_avg = torch.mean(torch.cat(cls_loss_list)) # bbox_loss_avg = torch.mean(torch.cat(bbox_loss_list)) # landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list)) accuracy_avg = torch.mean(torch.tensor(accuracy_list)) cls_loss_avg = torch.mean(torch.tensor(cls_loss_list)) bbox_loss_avg = torch.mean(torch.tensor(bbox_loss_list)) # show6 = accuracy_avg.data.tolist()[0] # show7 = cls_loss_avg.data.tolist()[0] # show8 = bbox_loss_avg.data.tolist()[0] # show9 = landmark_loss_avg.data.tolist()[0] show6 = accuracy_avg.item() show7 = cls_loss_avg.item() show8 = bbox_loss_avg.item() print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s" % (cur_epoch, show6, show7, show8)) torch.save( net.state_dict(), os.path.join(model_store_path, "rnet_epoch_%d.pt" % cur_epoch)) torch.save( net, os.path.join(model_store_path, "rnet_epoch_model_%d.pkl" % cur_epoch))