Esempio n. 1
0
def main(args):
    frozen_model = args.frozen_model
    svc_model = args.svc_model
    mtcnn_model = args.mtcnn_model

    with open(svc_model, 'rb') as infile:
        (model, class_names) = pickle.load(infile)

    class_names_print = ['Lai Ngoc Thang Long', 'Luong Trong Tri', \
        'Ngo Song Viet Hoang', 'Nguyen Ba Đuc', 'Nguyen Hoang Son',\
            'Nguyen Dinh Dung', 'Nguyen Dinh Hung', 'Tran Quang Ha', 'Vu Minh Thanh']

    detector = MTCNN(mtcnn_model)
    cap = cv2.VideoCapture(0)
    while (True):
        # Capture frame-by-frame
        ret, frame = cap.read()

        # Our operations on the frame come here
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        faces, bboxs = cut_face(gray, detector)
        if faces:
            for i in range(len(faces)):
                face = faces[i]
                bounding_box = bboxs[i]
                index, score = facenet_svc(frozen_model, model, class_names,
                                           face)
                if score >= 0.5:
                    cv2.rectangle(frame, (bounding_box[0], bounding_box[1]),
                                  (bounding_box[2], bounding_box[3]),
                                  (0, 155, 255), 2)
                    cv2.putText(frame,
                                class_names_print[index] + " : " + str(score),
                                (bounding_box[0], bounding_box[1]),
                                cv2.FONT_ITALIC, 0.8, (0, 255, 0), 1,
                                cv2.LINE_AA)
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Esempio n. 2
0
File: camera.py Progetto: zyg11/PFLD
def main():
    meta_file = './models/model8/model.meta'
    ckpt_file = './models/model8/model.ckpt-63234'
    image_size = 112
    with tf.Graph().as_default():
        with tf.Session() as sess:
            print('Loading feature extraction model.')
            saver = tf.train.import_meta_graph(meta_file)
            saver.restore(tf.get_default_session(), ckpt_file)

            graph = tf.get_default_graph()
            images_placeholder = graph.get_tensor_by_name('image_batch:0')
            phase_train_placeholder = graph.get_tensor_by_name('phase_train:0')

            landmark_L1 = graph.get_tensor_by_name('landmark_L1:0')
            landmark_L2 = graph.get_tensor_by_name('landmark_L2:0')
            landmark_L3 = graph.get_tensor_by_name('landmark_L3:0')
            landmark_L4 = graph.get_tensor_by_name('landmark_L4:0')
            landmark_L5 = graph.get_tensor_by_name('landmark_L5:0')
            landmark_total = [
                landmark_L1, landmark_L2, landmark_L3, landmark_L4, landmark_L5
            ]

            cap = cv2.VideoCapture(0)
            mtcnn = MTCNN()
            while True:
                ret, image = cap.read()
                height, width, _ = image.shape
                if not ret: break
                boxes = mtcnn.predict(image)
                for box in boxes:
                    score = box[4]
                    x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
                    w = x2 - x1 + 1
                    h = y2 - y1 + 1

                    size = int(max([w, h]) * 1.1)
                    cx = x1 + w // 2
                    cy = y1 + h // 2
                    x1 = cx - size // 2
                    x2 = x1 + size
                    y1 = cy - size // 2
                    y2 = y1 + size

                    dx = max(0, -x1)
                    dy = max(0, -y1)
                    x1 = max(0, x1)
                    y1 = max(0, y1)

                    edx = max(0, x2 - width)
                    edy = max(0, y2 - height)
                    x2 = min(width, x2)
                    y2 = min(height, y2)

                    cropped = image[y1:y2, x1:x2]
                    if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
                        cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                                     cv2.BORDER_CONSTANT, 0)
                    cropped = cv2.resize(cropped, (image_size, image_size))

                    input = cv2.resize(cropped, (image_size, image_size))
                    input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
                    input = input.astype(np.float32) / 256.0
                    input = np.expand_dims(input, 0)

                    feed_dict = {
                        images_placeholder: input,
                        phase_train_placeholder: False
                    }
                    cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0))
                    pre_landmarks = sess.run(landmark_total,
                                             feed_dict=feed_dict)
                    pre_landmark = pre_landmarks[0]

                    pre_landmark = pre_landmark.reshape(-1, 2) * [size, size]
                    for (x, y) in pre_landmark.astype(np.int32):
                        cv2.circle(image, (x1 + x, y1 + y), 1, (0, 0, 255))
                cv2.imshow('0', image)
                if cv2.waitKey(10) == 27:
                    break
Esempio n. 3
0
def getLandMarks(img_path):
    image_size = 112
    lite_filename = 'deploy/landmarks68/pfld_landmarks.tflite'
    # load TFLite model and allocate tensors
    interpreter = tf.lite.Interpreter(model_path=lite_filename)
    interpreter.allocate_tensors()

    # get input and output tensors.
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    with tf.Graph().as_default():
        with tf.Session() as sess:
            mtcnn = MTCNN()
            image = cv2.imread(img_path)
            height, width, _ = image.shape
            boxes, landmarks_mtcnn = mtcnn.predict(image)

    if len(landmarks_mtcnn) > 0:
        landmarks_mtcnn = np.asarray(landmarks_mtcnn).reshape(len(boxes), 10)

    for box in boxes:
        score = box[4]
        x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)

        # mtcnn boundding box fine adjustment
        dta_y = (min(landmarks_mtcnn[0][5], landmarks_mtcnn[0][6]) - y1) / 2.6
        y1 = int(y1 + dta_y)
        y2 = int(y2 + dta_y / 2)

        w = x2 - x1 + 1
        h = y2 - y1 + 1

        size = int(max([w, h]) * 1.05)
        cx = x1 + w // 2
        cy = y1 + h // 2
        x1 = cx - size // 2
        x2 = x1 + size
        y1 = cy - size // 2
        y2 = y1 + size

        dx = max(0, -x1)
        dy = max(0, -y1)
        x1 = max(0, x1)
        y1 = max(0, y1)

        edx = max(0, x2 - width)
        edy = max(0, y2 - height)
        x2 = min(width, x2)
        y2 = min(height, y2)

        cropped = image[y1:y2, x1:x2]
        if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
            cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                         cv2.BORDER_CONSTANT, 0)
        cropped = cv2.resize(cropped, (image_size, image_size))

        input = cv2.resize(cropped, (image_size, image_size))
        input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
        input = input.astype(np.float32) / 256.0
        input = np.expand_dims(input, 0)

        interpreter.set_tensor(input_details[0]['index'], input)

        interpreter.invoke()
        pre_landmarks = interpreter.get_tensor(output_details[0]['index'])
        pre_landmark = pre_landmarks[0]
        pre_landmark = pre_landmark.reshape(-1, 2) * [size, size]
        return pre_landmark, x1, y1
Esempio n. 4
0
def main():
    #meta_file = './models2/model4/model.meta'
    #ckpt_file = './models2/model4/model.ckpt-61'
    meta_file = './models1/model_test/model.meta'
    ckpt_file = './models1/model_test/model.ckpt-13'
    image_size = 112
    with tf.Graph().as_default():
        with tf.compat.v1.Session() as sess:
            print('Loading feature extraction model.')
            saver = tf.compat.v1.train.import_meta_graph(meta_file)
            saver.restore(tf.compat.v1.get_default_session(), ckpt_file)

            graph = tf.compat.v1.get_default_graph()
            images_placeholder = graph.get_tensor_by_name('image_batch:0')
            phase_train_placeholder = graph.get_tensor_by_name('phase_train:0')

            landmarks = graph.get_tensor_by_name('pfld_inference/fc/BiasAdd:0')
            # landmark_L1 = graph.get_tensor_by_name('landmark_L1:0')
            # landmark_L2 = graph.get_tensor_by_name('landmark_L2:0')
            # landmark_L3 = graph.get_tensor_by_name('landmark_L3:0')
            # landmark_L4 = graph.get_tensor_by_name('landmark_L4:0')
            # landmark_L5 = graph.get_tensor_by_name('landmark_L5:0')
            # landmark_total = [landmark_L1, landmark_L2, landmark_L3, landmark_L4, landmark_L5]

            cap = cv2.VideoCapture(0)
            cap_width = 640
            cap_height = 480
            cap.set(3, cap_width)
            cap.set(4, cap_height)
            mtcnn = MTCNN()
            while True:
                ret, image = cap.read()
                height, width, _ = image.shape
                if not ret:
                    break
                boxes = mtcnn.predict(image)
                for box in boxes:
                    # score = box[4]
                    x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
                    w = x2 - x1 + 1
                    h = y2 - y1 + 1

                    size = int(max([w, h]) * 1.1)

                    # center point
                    cx = x1 + w // 2
                    cy = y1 + h // 2

                    # square
                    x1 = cx - size // 2  #可能为负值
                    y1 = cy - size // 2  #可能为负值
                    x2 = x1 + size  # 可能大于宽度
                    y2 = y1 + size  # 可能大于宽度

                    dx = max(0, -x1)
                    dy = max(0, -y1)

                    x1 = max(0, x1)
                    y1 = max(0, y1)

                    edx = max(0, x2 - width)
                    edy = max(0, y2 - height)

                    x2 = min(width, x2)
                    y2 = min(height, y2)

                    # print('box->', 'x1:', x1, 'y1:', y1, 'x2:', x2, 'y2:', y2,
                    #       'in', 'w:', width, 'h:', height)

                    # print('box->', 'top:', dy, 'bottom:', edy, 'left:', dx,
                    #       'right:', edx, 'in', 'w:', width, 'h:', height)

                    cropped = image[y1:y2, x1:x2]
                    if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
                        # 当裁区域越出原图时,进行必要的黑边填充
                        # print('padding', dy, edy, dx, edx)
                        cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx,
                                                     cv2.BORDER_CONSTANT, 0)
                    # 缩放到112 size
                    cropped = cv2.resize(cropped, (image_size, image_size))
                    cv2.imshow('cropped', cropped)

                    input = cv2.resize(cropped, (image_size, image_size))
                    input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
                    input = input.astype(np.float32) / 256.0
                    input = np.expand_dims(input, 0)

                    feed_dict = {
                        images_placeholder: input,
                        phase_train_placeholder: False
                    }
                    cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0))
                    pre_landmarks = sess.run(landmarks, feed_dict=feed_dict)
                    pre_landmark = pre_landmarks[0]

                    pre_landmark = pre_landmark.reshape(-1, 2) * [size, size]
                    for (x, y) in pre_landmark.astype(np.int32):
                        cv2.circle(image, (x1 + x, y1 + y), 1, (0, 0, 255))
                cv2.imshow('0', image)
                if cv2.waitKey(10) == 27:
                    break
Esempio n. 5
0
def read_images():
    meta_file = './test_models2/model.meta'
    ckpt_file = './test_models2/model.ckpt-59'
    main_dir = './test_models2/DSM_lina/Lina15'
    landmark_file = '%s/landmarks1.txt' % main_dir
    result_image_path = '%s/result_image' % main_dir
    if not os.path.exists(result_image_path):
        os.mkdir(result_image_path)
    image_size = 112

    with tf.Graph().as_default():
        with tf.Session(config=tf.ConfigProto(
                log_device_placement=True)) as sess:
            print('Loading feature extraction model.')
            saver = tf.train.import_meta_graph(meta_file)
            saver.restore(tf.get_default_session(), ckpt_file)

            graph = tf.get_default_graph()
            images_placeholder = graph.get_tensor_by_name('image_batch:0')
            phase_train_placeholder = graph.get_tensor_by_name('phase_train:0')
            landmark_total = graph.get_tensor_by_name(
                'pfld_inference/fc/BiasAdd:0')
            mtcnn = MTCNN()
            sum_time = 0.
            num_face_box = 0
            with open(landmark_file, 'r') as fr:
                lines = fr.readlines()
                for index, line in enumerate(lines):
                    line_split = line.strip('\t\n').split(' ', 1)
                    image_path = '%s/%s' % (main_dir, line_split[0])
                    image = cv2.imread(image_path)
                    if image is None:
                        continue
                    height, width, _ = image.shape
                    boxes = mtcnn.predict(image)
                    # boxes, _ = predict(image)
                    for box in boxes:
                        start_time = time.time()
                        x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
                        w = x2 - x1 + 1
                        h = y2 - y1 + 1

                        size = int(max([w, h]) * 1.1)
                        cx = x1 + w // 2
                        cy = y1 + h // 2
                        x1 = cx - size // 2
                        x2 = x1 + size
                        y1 = cy - size // 2
                        y2 = y1 + size

                        dx = max(0, -x1)
                        dy = max(0, -y1)
                        x1 = max(0, x1)
                        y1 = max(0, y1)

                        edx = max(0, x2 - width)
                        edy = max(0, y2 - height)
                        x2 = min(width, x2)
                        y2 = min(height, y2)

                        cropped = image[y1:y2, x1:x2]
                        if dx > 0 or dy > 0 or edx > 0 or edy > 0:
                            cropped = cv2.copyMakeBorder(
                                cropped, dy, edy, dx, edx, cv2.BORDER_CONSTANT,
                                0)
                        cropped = cv2.resize(cropped, (image_size, image_size))

                        input = cv2.resize(cropped, (image_size, image_size))
                        input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
                        input = input.astype(np.float32) / 256.0
                        input = np.expand_dims(input, 0)

                        feed_dict = {
                            images_placeholder: input,
                            phase_train_placeholder: False
                        }

                        pre_landmarks = sess.run(landmark_total,
                                                 feed_dict=feed_dict)
                        pre_landmark = pre_landmarks[0]
                        pre_landmark = pre_landmark.reshape(-1,
                                                            2) * [size, size]

                        sum_time += (time.time() - start_time)
                        num_face_box += 1

                        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0))
                        for (x, y) in pre_landmark.astype(np.int32):
                            cv2.circle(image, (x1 + x, y1 + y), 1, (0, 0, 255),
                                       2)

                    # points = line_split[1].split(',')
                    #
                    # for i in range(68):
                    #     cv2.circle(image, (int(float(points[i*2])), int(float(points[i*2+1]))), 1, (255, 0, 0), 2)

                    # for i in range(68):
                    #     cv2.circle(image, (int(float(points[i*2]) * width), int(float(points[i*2+1])*height)),
                    #                1, (255, 0, 0), 2)
                    # cv2.imwrite('%s/%s' % (result_image_path, line_split[0].rsplit('/', 1)[1]), image)
                    cv2.imshow('0', image)
                    if cv2.waitKey(10) == 27:
                        break
    # img_path = './test_models2/DSM_lina/01.bmp'
    #
    # image_size = 112
    # with tf.Graph().as_default():
    #     with tf.Session() as sess:
    #         print('Loading feature extraction model.')
    #         saver = tf.train.import_meta_graph(meta_file)
    #         saver.restore(tf.get_default_session(), ckpt_file)
    #
    #         graph = tf.get_default_graph()
    #         images_placeholder = graph.get_tensor_by_name('image_batch:0')
    #         phase_train_placeholder = graph.get_tensor_by_name('phase_train:0')
    #         landmark_total = graph.get_tensor_by_name('pfld_inference/fc/BiasAdd:0')
    #
    #
    #         image = cv2.imread(img_path)
    #         if image is None:
    #             print('Error:image is None!')
    #         height, width, _ = image.shape
    #         boxes, _ = predict(image)
    #         for box in boxes:
    #             x1, y1, x2, y2 = (box[:4] + 0.5).astype(np.int32)
    #             w = x2 - x1 + 1
    #             h = y2 - y1 + 1
    #
    #             size = int(max([w, h]) * 1.1)
    #             cx = x1 + w // 2
    #             cy = y1 + h // 2
    #             x1 = cx - size // 2
    #             x2 = x1 + size
    #             y1 = cy - size // 2
    #             y2 = y1 + size
    #
    #             dx = max(0, -x1)
    #             dy = max(0, -y1)
    #             x1 = max(0, x1)
    #             y1 = max(0, y1)
    #
    #             edx = max(0, x2 - width)
    #             edy = max(0, y2 - height)
    #             x2 = min(width, x2)
    #             y2 = min(height, y2)
    #
    #             cropped = image[y1:y2, x1:x2]
    #             if dx > 0 or dy > 0 or edx > 0 or edy > 0:
    #                 cropped = cv2.copyMakeBorder(cropped, dy, edy, dx, edx, cv2.BORDER_CONSTANT, 0)
    #             cropped = cv2.resize(cropped, (image_size, image_size))
    #
    #             input = cv2.resize(cropped, (image_size, image_size))
    #             input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
    #             input = input.astype(np.float32) / 256.0
    #             input = np.expand_dims(input, 0)
    #
    #             feed_dict = {
    #                 images_placeholder: input,
    #                 phase_train_placeholder: False
    #             }
    #             cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0))
    #             pre_landmarks = sess.run(landmark_total, feed_dict=feed_dict)
    #             pre_landmark = pre_landmarks[0]
    #
    #             pre_landmark = pre_landmark.reshape(-1, 2) * [size, size]
    #             for (x, y) in pre_landmark.astype(np.int32):
    #                 cv2.circle(image, (x1 + x, y1 + y), 1, (0, 0, 255), 2)
    #
    #         cv2.imshow('0', image)
    #         cv2.waitKey(0)
            average_time = sum_time * 1000.0 / num_face_box
            print("nums:{}, sum time:{:.3f}s, avg time:{:.3f}ms\n".format(
                num_face_box, sum_time, average_time))