Esempio n. 1
0
    def __init__(self,
                 model_path,
                 gpu_id=0,
                 minsize=40,
                 factor=0.5,
                 threshold=[0.8, 0.8, 0.9]):
        rnet_model_path = os.path.join(model_path, "rnet/rnet-3000000")
        pnet_model_path = os.path.join(model_path, "pnet/pnet-3000000")
        onet_model_path = os.path.join(model_path, "onet/onet-500000")
        if not os.path.exists(model_path) or \
            not os.path.exists(os.path.join(model_path,"rnet")) or \
            not os.path.exists(os.path.join(model_path,"pnet")) or \
            not os.path.exists(os.path.join(model_path,"onet")):
            raise Exception("Error when loading {}".format(model_path))
        # default detection parameters
        self.minsize = minsize
        self.factor = factor
        self.threshold = threshold
        # load models
        with tf.device('/gpu:{}'.format(gpu_id)):
            with tf.Graph().as_default() as p:
                config = tf.ConfigProto(allow_soft_placement=True)
                self.sess = tf.Session(config=config)
                self.pnet_input = tf.placeholder(tf.float32,
                                                 [None, None, None, 3])
                self.pnet = PNet({'data': self.pnet_input}, mode='test')
                self.pnet_output = self.pnet.get_all_output()

                self.rnet_input = tf.placeholder(tf.float32, [None, 24, 24, 3])
                self.rnet = RNet({'data': self.rnet_input}, mode='test')
                self.rnet_output = self.rnet.get_all_output()

                self.onet_input = tf.placeholder(tf.float32, [None, 48, 48, 3])
                self.onet = ONet({'data': self.onet_input}, mode='test')
                self.onet_output = self.onet.get_all_output()

                saver_pnet = tf.train.Saver([
                    v for v in tf.global_variables() if v.name[0:5] == "pnet/"
                ])
                saver_rnet = tf.train.Saver([
                    v for v in tf.global_variables() if v.name[0:5] == "rnet/"
                ])
                saver_onet = tf.train.Saver([
                    v for v in tf.global_variables() if v.name[0:5] == "onet/"
                ])

                saver_pnet.restore(self.sess, pnet_model_path)
                self.pnet_func = lambda img: self.sess.run(
                    self.pnet_output, feed_dict={self.pnet_input: img})
                saver_rnet.restore(self.sess, rnet_model_path)
                self.rnet_func = lambda img: self.sess.run(
                    self.rnet_output, feed_dict={self.rnet_input: img})
                saver_onet.restore(self.sess, onet_model_path)
                self.onet_func = lambda img: self.sess.run(
                    self.onet_output, feed_dict={self.onet_input: img})
Esempio n. 2
0
    def __init__(
        self, image_size=160, margin=0, min_face_size=20,
        thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True,
        select_largest=True, keep_all=False, device=None
    ):
        super().__init__()

        self.image_size = image_size
        self.margin = margin
        self.min_face_size = min_face_size
        self.thresholds = thresholds
        self.factor = factor
        self.post_process = post_process
        self.select_largest = select_largest
        self.keep_all = keep_all

        self.pnet = PNet()
        self.rnet = RNet()
        self.onet = ONet()

        self.device = torch.device('cpu')
        if device is not None:
            self.device = device
            self.to(device)
Esempio n. 3
0
# Copyright 2019 smarsu. All Rights Reserved.
# --------------------------------------------------------

import os.path as osp

import cv2
import numpy as np

from mtcnn import PNet, RNet, ONet
from square import square_boxes
from broad import broad_boxes
from crop import crop

pnet = PNet(scale_factor=0.89,
            conf_thrs=0.8,
            nms_thrs=0.5,
            min_face=60,
            nms_topk=32)
pnet.sess.restore(
    osp.join(pnet.model_root, '3.2153504_cycle_7_0.01_pnet_v2.npz'))

rnet = RNet(conf_thrs=0.5)
rnet.sess.restore(osp.join(rnet.model_root, '0.022445953_53_0.001_rnet.npz'))

onet = ONet(conf_thrs=0.5)
onet.sess.restore(osp.join(onet.model_root, '0.012311436_69_0.01_onet.npz'))


def detect(img, top_k=-1):
    """Do face detection with the input img.
    
def main(args):

    image_size = 24
    save_dir = str(image_size)
    anno_file = 'wider_face_train.txt'
    im_dir = 'WIDER_train/images/'

    neg_save_dir = save_dir + '/negative'
    pos_save_dir = save_dir + '/positive'
    part_save_dir = save_dir + '/part'
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
    if not os.path.exists(pos_save_dir):
        os.mkdir(pos_save_dir)
    if not os.path.exists(part_save_dir):
        os.mkdir(part_save_dir)
    if not os.path.exists(neg_save_dir):
        os.mkdir(neg_save_dir)

    f1 = open(save_dir + '/pos_24.txt', 'w')
    f2 = open(save_dir + '/neg_24.txt', 'w')
    f3 = open(save_dir + '/part_24.txt', 'w')
    threshold = 0.6
    with open(anno_file, 'r') as f:
        annotations = f.readlines()
    num = len(annotations)
    print('%d pics in total' % num)

    p_idx = 0  # positive
    n_idx = 0  # negative
    d_idx = 0  # dont care
    image_idx = 0
    with tf.device('/gpu:0'):
        minsize = 20
        factor = 0.709
        model_file = args.pnet_model
        with tf.Graph().as_default():
            config = tf.ConfigProto(allow_soft_placement=True)
            config.gpu_options.per_process_gpu_memory_fraction = 0.5
            with tf.Session(config=config) as sess:
                image = tf.placeholder(tf.float32, [None, None, None, 3])
                pnet = PNet({'data': image}, mode='test')
                out_tensor = pnet.get_all_output()
                init_op = tf.global_variables_initializer()
                sess.run(init_op)
                saver = tf.train.Saver()
                saver.restore(sess, model_file)

                def pnet_fun(img):
                    return sess.run(out_tensor, feed_dict={image: img})

                for annotation in annotations:
                    annotation = annotation.strip().split(' ')
                    bbox = list(map(float, annotation[1:]))
                    gts = np.array(bbox, dtype=np.float32).reshape(-1, 4)
                    img_path = im_dir + annotation[0] + '.jpg'
                    img = cv2.imread(img_path)
                    rectangles = detect_face_12net(img, minsize, pnet_fun,
                                                   threshold, factor)
                    image_idx += 1

                    view_bar(image_idx, num)
                    for box in rectangles:
                        lis = box.astype(np.int32)
                        mask = lis < 0
                        lis[mask] = 0
                        x_left, y_top, x_right, y_bottom, _ = lis
                        crop_w = x_right - x_left + 1
                        crop_h = y_bottom - y_top + 1
                        # ignore box that is too small or beyond image border
                        if crop_w < image_size or crop_h < image_size:
                            continue

                        Iou = IoU(box, gts)
                        cropped_im = img[y_top:y_bottom + 1,
                                         x_left:x_right + 1]
                        resized_im = cv2.resize(cropped_im,
                                                (image_size, image_size),
                                                interpolation=cv2.INTER_LINEAR)

                        # save negative images and write label
                        if np.max(Iou) < 0.3:
                            # Iou with all gts must below 0.3
                            save_file = os.path.join(neg_save_dir,
                                                     '%s.jpg' % n_idx)
                            f2.write('%s/negative/%s' % (save_dir, n_idx) +
                                     ' 0\n')
                            cv2.imwrite(save_file, resized_im)
                            n_idx += 1
                        else:
                            # find gt_box with the highest iou
                            idx = np.argmax(Iou)
                            assigned_gt = gts[idx]
                            x1, y1, x2, y2 = assigned_gt

                            # compute bbox reg label
                            offset_x1 = (x1 - x_left) / float(crop_w)
                            offset_y1 = (y1 - y_top) / float(crop_h)
                            offset_x2 = (x2 - x_right) / float(crop_w)
                            offset_y2 = (y2 - y_bottom) / float(crop_h)

                            if np.max(Iou) >= 0.65:
                                save_file = os.path.join(
                                    pos_save_dir, '%s.jpg' % p_idx)
                                f1.write('%s/positive/%s' % (save_dir, p_idx) +
                                         ' 1 %.2f %.2f %.2f %.2f\n' %
                                         (offset_x1, offset_y1, offset_x2,
                                          offset_y2))
                                cv2.imwrite(save_file, resized_im)
                                p_idx += 1

                            elif np.max(Iou) >= 0.4:
                                save_file = os.path.join(
                                    part_save_dir, '%s.jpg' % d_idx)
                                f3.write('%s/part/%s' % (save_dir, d_idx) +
                                         ' -1 %.2f %.2f %.2f %.2f\n' %
                                         (offset_x1, offset_y1, offset_x2,
                                          offset_y2))
                                cv2.imwrite(save_file, resized_im)
                                d_idx += 1

    f1.close()
    f2.close()
    f3.close()
Esempio n. 5
0
        layer = model.get_layer(layer_name)
        if "conv" in layer_name:
            layer.set_weights([
                weights_dict[layer_name]["weights"],
                weights_dict[layer_name]["biases"]
            ])
        else:
            prelu_weight = weights_dict[layer_name]['alpha']
            try:
                layer.set_weights([prelu_weight])
            except:
                layer.set_weights([prelu_weight[np.newaxis, np.newaxis, :]])
    return True


pnet, rnet, onet = PNet(), RNet(), ONet()
pnet(tf.ones(shape=[1, 12, 12, 3]))
rnet(tf.ones(shape=[1, 24, 24, 3]))
onet(tf.ones(shape=[1, 48, 48, 3]))
load_weights(pnet, "./det1.npy"), load_weights(rnet,
                                               "./det2.npy"), load_weights(
                                                   onet, "./det3.npy")

pnet.predict(tf.ones(shape=[1, 12, 12, 3]))
pnet_converter = tf.lite.TFLiteConverter.from_keras_model(pnet)
pnet_converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
with open("pnet.tflite", "wb") as f:
    pnet_tflite_model = pnet_converter.convert()
    f.write(pnet_tflite_model)

rnet.predict(tf.ones(shape=[1, 24, 24, 3]))
Esempio n. 6
0
        layer = model.get_layer(layer_name)
        if "conv" in layer_name:
            layer.set_weights([
                weights_dict[layer_name]["weights"],
                weights_dict[layer_name]["biases"]
            ])
        else:
            prelu_weight = weights_dict[layer_name]['alpha']
            try:
                layer.set_weights([prelu_weight])
            except:
                layer.set_weights([prelu_weight[np.newaxis, np.newaxis, :]])
    return True


pnet, rnet, onet = PNet(), RNet(), ONet()
pnet(tf.ones(shape=[1, 12, 12, 3]))
rnet(tf.ones(shape=[1, 24, 24, 3]))
onet(tf.ones(shape=[1, 48, 48, 3]))
load_weights(pnet, "./det1.npy"), load_weights(rnet,
                                               "./det2.npy"), load_weights(
                                                   onet, "./det3.npy")

image = cv2.cvtColor(cv2.imread("./multiface.jpg"), cv2.COLOR_BGR2RGB)
total_boxes, points = detect_face(image, 20, pnet, rnet, onet, [0.6, 0.7, 0.7],
                                  0.709)

for bounding_box, keypoints in zip(total_boxes, points.T):
    bounding_boxes = {
        'box': [
            int(bounding_box[0]),
Esempio n. 7
0
dataset_root = '/datasets/wider'

if __name__ == '__main__':
    parse = sys.argv[1]  #  'train'
    net = sys.argv[2]
    #net = 'pnet'

    if parse == 'train':
        widerface = WiderFace(
            '/datasets/wider/images',
            '/datasets/wider/wider_face_split/wider_face_train_bbx_gt.txt')

        if net == 'pnet':
            pnet = PNet(batch_size=32,
                        no_mask=False,
                        rd_size=False,
                        min_face=60,
                        scale_factor=0.89)
            # 0.8780253_1_0.1_pnet.npz the last size of step 1 for lr 0.1.
            pnet.sess.restore(
                osp.join(pnet.model_root, '3.2153504_cycle_7_0.01_pnet.npz'))
            pnet.train(widerface.train_datas, 100, lr=0.001)
            # pnet.train(widerface.train_datas_debug, 100, lr=0.1)
            #conf, box = pnet.test(widerface.train_datas_debug(1)[0][0][0])
            #print(conf)
            #print(box)
            #conf, box = pnet._check_model_capable(widerface.train_datas_debug)
            #print(conf)
            #print(box)
        elif net == 'rnet':
            widerfacepnet = WiderFace(
Esempio n. 8
0
class MTCNN_detector:
    def __init__(self,
                 model_path,
                 gpu_id=0,
                 minsize=40,
                 factor=0.5,
                 threshold=[0.8, 0.8, 0.9]):
        rnet_model_path = os.path.join(model_path, "rnet/rnet-3000000")
        pnet_model_path = os.path.join(model_path, "pnet/pnet-3000000")
        onet_model_path = os.path.join(model_path, "onet/onet-500000")
        if not os.path.exists(model_path) or \
            not os.path.exists(os.path.join(model_path,"rnet")) or \
            not os.path.exists(os.path.join(model_path,"pnet")) or \
            not os.path.exists(os.path.join(model_path,"onet")):
            raise Exception("Error when loading {}".format(model_path))
        # default detection parameters
        self.minsize = minsize
        self.factor = factor
        self.threshold = threshold
        # load models
        with tf.device('/gpu:{}'.format(gpu_id)):
            with tf.Graph().as_default() as p:
                config = tf.ConfigProto(allow_soft_placement=True)
                self.sess = tf.Session(config=config)
                self.pnet_input = tf.placeholder(tf.float32,
                                                 [None, None, None, 3])
                self.pnet = PNet({'data': self.pnet_input}, mode='test')
                self.pnet_output = self.pnet.get_all_output()

                self.rnet_input = tf.placeholder(tf.float32, [None, 24, 24, 3])
                self.rnet = RNet({'data': self.rnet_input}, mode='test')
                self.rnet_output = self.rnet.get_all_output()

                self.onet_input = tf.placeholder(tf.float32, [None, 48, 48, 3])
                self.onet = ONet({'data': self.onet_input}, mode='test')
                self.onet_output = self.onet.get_all_output()

                saver_pnet = tf.train.Saver([
                    v for v in tf.global_variables() if v.name[0:5] == "pnet/"
                ])
                saver_rnet = tf.train.Saver([
                    v for v in tf.global_variables() if v.name[0:5] == "rnet/"
                ])
                saver_onet = tf.train.Saver([
                    v for v in tf.global_variables() if v.name[0:5] == "onet/"
                ])

                saver_pnet.restore(self.sess, pnet_model_path)
                self.pnet_func = lambda img: self.sess.run(
                    self.pnet_output, feed_dict={self.pnet_input: img})
                saver_rnet.restore(self.sess, rnet_model_path)
                self.rnet_func = lambda img: self.sess.run(
                    self.rnet_output, feed_dict={self.rnet_input: img})
                saver_onet.restore(self.sess, onet_model_path)
                self.onet_func = lambda img: self.sess.run(
                    self.onet_output, feed_dict={self.onet_input: img})

    def destroy(self):
        self.sess.close()

    # Returns:
    #     rects: a numpy array of shape [num_face, 5].
    #            Denote of each row:
    #            [left_top_x, left_top_y, right_bottom_x, right_bottom_y, confidence]
    def calc_det_result(self, image):
        rects, shapes = self.calc_landmark_result(image)
        return rects

    # Returns:
    #     rectangles: a numpy array of shape [num_face, 5].
    #                 Denote of each row:
    #                 [left_top_x, left_top_y, right_bottom_x, right_bottom_y, confidence]
    #     points:     a numpy array of shape [num_face, 10],
    #                 Denote of each row:
    #                 [left_eye_x, left_eye_y, right_eye_x, right_eye_y,
    #                 nose_x, nose_y,
    #                 left_mouthcorner_x,left_mouthcorner_y,right_mouthcorner_x,right_mouthcorner_y,]
    def calc_landmark_result(self, image):
        # TODO time test
        start = cv2.getTickCount()
        rectangles, shapes = tools.detect_face(image, self.minsize,
                                               self.pnet_func, self.rnet_func,
                                               self.onet_func, self.threshold,
                                               self.factor)
        shapes = np.transpose(shapes)
        # TODO time test
        usetime = (cv2.getTickCount() - start) / cv2.getTickFrequency()
        print "Use time {}s.".format(usetime)
        return rectangles, shapes

    # SAME as calc_landmark_result but return shape [num_face, 4]
    # Denote of each row:
    #       [left_eye_x, left_eye_y, right_eye_x, right_eye_y]
    def extract_eye_result(self, shapes):
        assert (shapes is not None)
        assert (shapes.shape[0] > 0 and shapes.shape[1] == 10)
        return shapes[:, 0:4]

    # show the detection results
    def show_result(self, image_path, rectangles, shapes):
        image = cv2.imread(image_path, cv2.IMREAD_COLOR)
        if rectangles.shape[0] != shapes.shape[0]:
            print "Error in show results {} != {}.".format(
                rectangles.shape[0], shapes.shape[0])
        for rect in rectangles:
            cv2.rectangle(image, (int(round(rect[0])),int(round(rect[1]))), \
            (int(round(rect[2])),int(round(rect[3]))), (255,255,0), 2)
        for shape in shapes:
            shape_num = len(shape) / 2
            for i in xrange(shape_num):
                pt = (int(round(shape[2 * i])), int(round(shape[2 * i + 1])))
                cv2.circle(image, pt, 2, (0, 0, 255), 2)
        cv2.imwrite("show.jpg", image)
Esempio n. 9
0
def bounding_box_face(img, gpu_mem):

    ### Model parameters
    model_dir = 'assets/save_model/'
    minsize = 20
    # factor = 0.7
    # threshold = [0.8, 0.8, 0.8]
    factor = 0.709
    threshold = [0.6, 0.7, 0.7]

    file_paths = get_model_filenames(model_dir)
    with tf.device('/gpu:0'):
        with tf.Graph().as_default():
            config = tf.ConfigProto(allow_soft_placement=True)
            config.gpu_options.per_process_gpu_memory_fraction = gpu_mem
            with tf.Session(config=config) as sess:
                if len(file_paths) == 3:
                    image_pnet = tf.placeholder(tf.float32,
                                                [None, None, None, 3])
                    pnet = PNet({'data': image_pnet}, mode='test')
                    out_tensor_pnet = pnet.get_all_output()

                    image_rnet = tf.placeholder(tf.float32, [None, 24, 24, 3])
                    rnet = RNet({'data': image_rnet}, mode='test')
                    out_tensor_rnet = rnet.get_all_output()

                    image_onet = tf.placeholder(tf.float32, [None, 48, 48, 3])
                    onet = ONet({'data': image_onet}, mode='test')
                    out_tensor_onet = onet.get_all_output()

                    saver_pnet = tf.train.Saver([
                        v for v in tf.global_variables()
                        if v.name[0:5] == "pnet/"
                    ])
                    saver_rnet = tf.train.Saver([
                        v for v in tf.global_variables()
                        if v.name[0:5] == "rnet/"
                    ])
                    saver_onet = tf.train.Saver([
                        v for v in tf.global_variables()
                        if v.name[0:5] == "onet/"
                    ])

                    saver_pnet.restore(sess, file_paths[0])

                    def pnet_fun(img):
                        return sess.run(out_tensor_pnet,
                                        feed_dict={image_pnet: img})

                    saver_rnet.restore(sess, file_paths[1])

                    def rnet_fun(img):
                        return sess.run(out_tensor_rnet,
                                        feed_dict={image_rnet: img})

                    saver_onet.restore(sess, file_paths[2])

                    def onet_fun(img):
                        return sess.run(out_tensor_onet,
                                        feed_dict={image_onet: img})

                else:
                    saver = tf.train.import_meta_graph(file_paths[0])
                    saver.restore(sess, file_paths[1])

                    def pnet_fun(img):
                        return sess.run(
                            ('softmax/Reshape_1:0', 'pnet/conv4-2/BiasAdd:0'),
                            feed_dict={'Placeholder:0': img})

                    def rnet_fun(img):
                        return sess.run(('softmax_1/softmax:0',
                                         'rnet/conv5-2/rnet/conv5-2:0'),
                                        feed_dict={'Placeholder_1:0': img})

                    def onet_fun(img):
                        return sess.run(('softmax_2/softmax:0',
                                         'onet/conv6-2/onet/conv6-2:0',
                                         'onet/conv6-3/onet/conv6-3:0'),
                                        feed_dict={'Placeholder_2:0': img})

                rectangles, points = detect_face(img, minsize, pnet_fun,
                                                 rnet_fun, onet_fun, threshold,
                                                 factor)

    tf.reset_default_graph()
    return rectangles, points
Esempio n. 10
0
def main(args):

    img = cv2.imread(args.image_path)
    file_paths = get_model_filenames(args.model_dir)
    with tf.device('/gpu:0'):
        with tf.Graph().as_default():
            config = tf.ConfigProto(allow_soft_placement=True)
            with tf.Session(config=config) as sess:
                if len(file_paths) == 3:
                    image_pnet = tf.placeholder(tf.float32,
                                                [None, None, None, 3])
                    pnet = PNet({'data': image_pnet}, mode='test')
                    out_tensor_pnet = pnet.get_all_output()

                    image_rnet = tf.placeholder(tf.float32, [None, 24, 24, 3])
                    rnet = RNet({'data': image_rnet}, mode='test')
                    out_tensor_rnet = rnet.get_all_output()

                    image_onet = tf.placeholder(tf.float32, [None, 48, 48, 3])
                    onet = ONet({'data': image_onet}, mode='test')
                    out_tensor_onet = onet.get_all_output()

                    saver_pnet = tf.train.Saver([
                        v for v in tf.global_variables()
                        if v.name[0:5] == "pnet/"
                    ])
                    saver_rnet = tf.train.Saver([
                        v for v in tf.global_variables()
                        if v.name[0:5] == "rnet/"
                    ])
                    saver_onet = tf.train.Saver([
                        v for v in tf.global_variables()
                        if v.name[0:5] == "onet/"
                    ])

                    saver_pnet.restore(sess, file_paths[0])

                    def pnet_fun(img):
                        return sess.run(out_tensor_pnet,
                                        feed_dict={image_pnet: img})

                    saver_rnet.restore(sess, file_paths[1])

                    def rnet_fun(img):
                        return sess.run(out_tensor_rnet,
                                        feed_dict={image_rnet: img})

                    saver_onet.restore(sess, file_paths[2])

                    def onet_fun(img):
                        return sess.run(out_tensor_onet,
                                        feed_dict={image_onet: img})

                else:
                    saver = tf.train.import_meta_graph(file_paths[0])
                    saver.restore(sess, file_paths[1])

                    def pnet_fun(img):
                        return sess.run(
                            ('softmax/Reshape_1:0', 'pnet/conv4-2/BiasAdd:0'),
                            feed_dict={'Placeholder:0': img})

                    def rnet_fun(img):
                        return sess.run(('softmax_1/softmax:0',
                                         'rnet/conv5-2/rnet/conv5-2:0'),
                                        feed_dict={'Placeholder_1:0': img})

                    def onet_fun(img):
                        return sess.run(('softmax_2/softmax:0',
                                         'onet/conv6-2/onet/conv6-2:0',
                                         'onet/conv6-3/onet/conv6-3:0'),
                                        feed_dict={'Placeholder_2:0': img})

                start_time = time.time()
                rectangles, points = detect_face(img, args.minsize, pnet_fun,
                                                 rnet_fun, onet_fun,
                                                 args.threshold, args.factor)
                duration = time.time() - start_time

                print(duration)
                print('rectangles->', rectangles)
                print('pts->', points)
                points = np.transpose(points)
                for rectangle in rectangles:
                    cv2.putText(img, str(rectangle[4]),
                                (int(rectangle[0]), int(rectangle[1])),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
                    cv2.rectangle(img, (int(rectangle[0]), int(rectangle[1])),
                                  (int(rectangle[2]), int(rectangle[3])),
                                  (255, 0, 0), 1)
                for point in points:
                    for i in range(0, 10, 2):
                        cv2.circle(img, (int(point[i]), int(point[i + 1])), 2,
                                   (0, 255, 0))
                cv2.imshow("test", img)
                if args.save_image:
                    cv2.imwrite(args.save_name, img)
                if cv2.waitKey(0) & 0xFF == ord('q'):
                    cv2.destroyAllWindows()