def __init__(self, select_largest=False, keep_all=True): self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.pnet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True)
def __init__(self): self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.onet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True)
def __init__(self, device='cpu'): self.device = torch.device("cuda:0" if device == 'cuda' else "cpu") self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.pnet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True)
def __init__(self, weight_path='mtcnn_pytorch/src/weights'): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.pnet = PNet(weight_path).to(self.device) self.rnet = RNet(weight_path).to(self.device) self.onet = ONet(weight_path).to(self.device) self.pnet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True)
def __init__(self, device=devi, thresholds=[0.3, 0.6, 0.8], nms_thresholds=[0.6, 0.6, 0.6]): self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.onet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True) self.device = device self.thresholds = thresholds self.nms_thresholds = nms_thresholds
class MTCNN(): def __init__(self): self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.pnet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True) def align(self, img): _, landmarks = self.detect_faces(img) facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112)) return Image.fromarray(warped_face) def align_multi(self, img, limit=None, min_face_size=20.0): boxes, landmarks = self.detect_faces(img, min_face_size) if limit: boxes = boxes[:limit] landmarks = landmarks[:limit] faces = [] for landmark in landmarks: facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112)) faces.append(Image.fromarray(warped_face)) return boxes, landmarks, faces def detect_faces(self, image, min_face_size=20.0, thresholds=[0.6, 0.6, 0.7], nms_thresholds=[0.7, 0.7, 0.7]): """ Arguments: image: an instance of PIL.Image. min_face_size: a float number. thresholds: a list of length 3. nms_thresholds: a list of length 3. Returns: two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], bounding boxes and facial landmarks. """ # BUILD AN IMAGE PYRAMID width, height = image.size #height, width, channel = image.shape min_length = min(height, width) min_detection_size = 12 factor = 0.707 # sqrt(0.5) # scales for scaling the image scales = [] # scales the image so that # minimum size that we can detect equals to # minimum face size that we want to detect m = min_detection_size / min_face_size min_length *= m factor_count = 0 while min_length > min_detection_size: scales.append(m * factor**factor_count) min_length *= factor factor_count += 1 # STAGE 1 # it will be returned bounding_boxes = [] with torch.no_grad(): # run P-Net on different scales for s in scales: boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0]) bounding_boxes.append(boxes) # collect boxes (and offsets, and scores) from different scales bounding_boxes = [i for i in bounding_boxes if i is not None] if len(bounding_boxes) == 0: return [], [] bounding_boxes = np.vstack(bounding_boxes) keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0]) bounding_boxes = bounding_boxes[keep] # use offsets predicted by pnet to transform bounding boxes bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) # shape [n_boxes, 5] bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 2 img_boxes = get_image_boxes(bounding_boxes, image, size=24) img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.rnet(img_boxes) offsets = output[0].cpu().data.numpy() # shape [n_boxes, 4] probs = output[1].cpu().data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[1])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] keep = nms(bounding_boxes, nms_thresholds[1]) bounding_boxes = bounding_boxes[keep] bounding_boxes = calibrate_box(bounding_boxes, offsets[keep]) bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 3 img_boxes = get_image_boxes(bounding_boxes, image, size=48) if len(img_boxes) == 0: return [], [] img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.onet(img_boxes) landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10] offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4] probs = output[2].cpu().data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[2])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] landmarks = landmarks[keep] # compute landmark points width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] landmarks[:, 0:5] = np.expand_dims( xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5] landmarks[:, 5:10] = np.expand_dims( ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10] bounding_boxes = calibrate_box(bounding_boxes, offsets) keep = nms(bounding_boxes, nms_thresholds[2], mode='min') bounding_boxes = bounding_boxes[keep] landmarks = landmarks[keep] return bounding_boxes, landmarks
class MTCNN(): def __init__(self): self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.pnet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True) def align(self, img, crop_size=(112, 112), return_trans_inv=False): _, landmarks = self.detect_faces(img) if len(landmarks) == 0: return None if not return_trans_inv else (None, None) facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=crop_size, return_trans_inv=return_trans_inv) if return_trans_inv: return Image.fromarray(warped_face[0]), warped_face[1] else: return Image.fromarray(warped_face) def align_fully(self, img, crop_size=(112, 112), return_trans_inv=False, ori=[0, 1, 3], fast_mode=True): ori_size = img.copy() h = img.size[1] w = img.size[0] sw = 320. if fast_mode else w scale = sw / w img = img.resize((int(w * scale), int(h * scale))) candi = [] for i in ori: if len(candi) > 0: break if i > 0: rimg = img.transpose(i + 1) else: rimg = img box, landmarks = self.detect_faces(rimg, min_face_size=sw / 10, thresholds=[0.6, 0.7, 0.7]) landmarks /= scale if len(landmarks) == 0: continue if i == 0: f5p = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)] elif i == 1: f5p = [[w - 1 - landmarks[0][j + 5], landmarks[0][j]] for j in range(5)] elif i == 2: f5p = [[w - 1 - landmarks[0][j], h - 1 - landmarks[0][j + 5]] for j in range(5)] elif i == 3: f5p = [[landmarks[0][j + 5], h - 1 - landmarks[0][j]] for j in range(5)] candi.append((box[0][4], f5p)) if len(candi) == 0: return None if not return_trans_inv else (None, None) while len(candi) > 1: if candi[0][0] > candi[1][0]: del candi[1] else: del candi[0] facial5points = candi[0][1] warped_face = warp_and_crop_face(np.array(ori_size), facial5points, self.refrence, crop_size=crop_size, return_trans_inv=return_trans_inv) if return_trans_inv: return Image.fromarray(warped_face[0]), warped_face[1] else: return Image.fromarray(warped_face) def align_multi(self, img, limit=None, min_face_size=64.0, crop_size=(112, 112)): boxes, landmarks = self.detect_faces(img, min_face_size) if len(landmarks) == 0: return None if limit: boxes = boxes[:limit] landmarks = landmarks[:limit] faces = [] for landmark in landmarks: facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=crop_size) faces.append(Image.fromarray(warped_face)) # return boxes, faces return faces def get_landmarks(self, img, min_face_size=32, crop_size=(256, 256), fast_mode=False, ori=[0, 1, 3]): ori_size = img.copy() h = img.size[1] w = img.size[0] sw = 640. if fast_mode else w scale = sw / w img = img.resize((int(w * scale), int(h * scale))) min_face_size = min_face_size if not fast_mode else sw / 20 candi = [] boxes = np.zeros([0, 5]) for i in ori: if i > 0: rimg = img.transpose(i + 1) else: rimg = img box, landmarks = self.detect_faces(rimg, min_face_size=min_face_size, thresholds=[0.6, 0.7, 0.7]) landmarks /= scale if len(landmarks) == 0: continue if i == 0: f5p = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)] elif i == 1: f5p = [[w - 1 - landmarks[0][j + 5], landmarks[0][j]] for j in range(5)] x1 = w - 1 - box[:, 1] y1 = box[:, 0] x2 = w - 1 - box[:, 3] y2 = box[:, 2] box[:, :4] = np.stack((x2, y1, x1, y2), axis=1) elif i == 2: f5p = [[w - 1 - landmarks[0][j], h - 1 - landmarks[0][j + 5]] for j in range(5)] x1 = w - 1 - box[:, 0] y1 = h - 1 - box[:, 1] x2 = w - 1 - box[:, 2] y2 = h - 1 - box[:, 3] box[:, :4] = np.stack((x2, y2, x1, y1), axis=1) elif i == 3: f5p = [[landmarks[0][j + 5], h - 1 - landmarks[0][j]] for j in range(5)] x1 = box[:, 1] y1 = h - 1 - box[:, 0] x2 = box[:, 3] y2 = h - 1 - box[:, 2] box[:, :4] = np.stack((x1, y2, x2, y1), axis=1) candi.append(f5p) boxes = np.concatenate((boxes, box), axis=0) # pick = nms(boxes) faces = [] for idx, facial5points in enumerate(candi): # if idx not in pick: # continue warped_face = warp_and_crop_face(np.array(ori_size), facial5points, self.refrence, crop_size=crop_size, return_trans_inv=False) faces.append((warped_face, facial5points)) return faces def detect_faces(self, image, min_face_size=64.0, thresholds=[0.6, 0.7, 0.8], nms_thresholds=[0.7, 0.7, 0.7]): """ Arguments: image: an instance of PIL.Image. min_face_size: a float number. thresholds: a list of length 3. nms_thresholds: a list of length 3. Returns: two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], bounding boxes and facial landmarks. """ # BUILD AN IMAGE PYRAMID width, height = image.size min_length = min(height, width) min_detection_size = 12 factor = 0.707 # sqrt(0.5) # scales for scaling the image scales = [] # scales the image so that # minimum size that we can detect equals to # minimum face size that we want to detect m = min_detection_size / min_face_size min_length *= m factor_count = 0 while min_length > min_detection_size: scales.append(m * factor**factor_count) min_length *= factor factor_count += 1 # STAGE 1 # it will be returned bounding_boxes = [] with torch.no_grad(): # run P-Net on different scales for s in scales: boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0]) bounding_boxes.append(boxes) # collect boxes (and offsets, and scores) from different scales bounding_boxes = [i for i in bounding_boxes if i is not None] if len(bounding_boxes) == 0: return np.zeros([0]), np.zeros([0]) bounding_boxes = np.vstack(bounding_boxes) keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0]) bounding_boxes = bounding_boxes[keep] # use offsets predicted by pnet to transform bounding boxes bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) # shape [n_boxes, 5] bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 2 img_boxes = get_image_boxes(bounding_boxes, image, size=24) img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.rnet(img_boxes) offsets = output[0].cpu().data.numpy() # shape [n_boxes, 4] probs = output[1].cpu().data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[1])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] keep = nms(bounding_boxes, nms_thresholds[1]) bounding_boxes = bounding_boxes[keep] bounding_boxes = calibrate_box(bounding_boxes, offsets[keep]) bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 3 img_boxes = get_image_boxes(bounding_boxes, image, size=48) if len(img_boxes) == 0: return np.zeros([0]), np.zeros([0]) img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.onet(img_boxes) landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10] offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4] probs = output[2].cpu().data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[2])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] landmarks = landmarks[keep] # compute landmark points width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] landmarks[:, 0:5] = np.expand_dims( xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5] landmarks[:, 5:10] = np.expand_dims( ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10] bounding_boxes = calibrate_box(bounding_boxes, offsets) keep = nms(bounding_boxes, nms_thresholds[2], mode='min') bounding_boxes = bounding_boxes[keep] landmarks = landmarks[keep] return bounding_boxes, landmarks
class MTCNN_Alignment(): def __init__(self): self.onet = ONet().to(device) self.onet.eval() self.refrence = get_reference_facial_points(default_square=True) def align(self, img): _, landmarks = self.detect_faces(img) facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112)) return Image.fromarray(warped_face) def align_multi(self, img, limit=None, min_face_size=30.0): boxes, landmarks = self.detect_faces(img, min_face_size) if limit: boxes = boxes[:limit] landmarks = landmarks[:limit] faces = [] for landmark in landmarks: facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112)) faces.append(Image.fromarray(warped_face)) return boxes, faces def detect_faces(self, image, min_face_size=20.0, thresholds=[0.6, 0.7, 0.8], nms_thresholds=[0.7, 0.7, 0.7]): """ Arguments: image: an instance of PIL.Image. min_face_size: a float number. thresholds: a list of length 3. nms_thresholds: a list of length 3. Returns: two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], bounding boxes and facial landmarks. """ # BUILD AN IMAGE PYRAMID width, height = image.size # it will be returned bounding_boxes = np.asarray([[0, 0, height, width, 1]]) with torch.no_grad(): img_boxes = get_image_boxes(bounding_boxes, image, size=48) if len(img_boxes) == 0: return [], [] img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.onet(img_boxes) landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10] offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4] probs = output[2].cpu().data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[2])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] landmarks = landmarks[keep] # compute landmark points width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] landmarks[:, 0:5] = np.expand_dims( xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5] landmarks[:, 5:10] = np.expand_dims( ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10] bounding_boxes = calibrate_box(bounding_boxes, offsets) keep = nms(bounding_boxes, nms_thresholds[2], mode='min') bounding_boxes = bounding_boxes[keep] landmarks = landmarks[keep] return bounding_boxes, landmarks
class MTCNN(): def __init__(self): self.pnet = PNet().to(device) self.rnet = RNet().to(device) self.onet = ONet().to(device) self.pnet.eval() self.rnet.eval() self.onet.eval() self.refrence = get_reference_facial_points(default_square=True) def share_memory(self): self.pnet.share_memory() self.rnet.share_memory() self.onet.share_memory() def align(self, img): _, landmarks = self.detect_faces(img) facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112)) # cvb.show_img(warped_face) return Image.fromarray(warped_face) def align_best(self, img, limit=None, min_face_size=20., **kwargs): try: boxes, landmarks = self.detect_faces(img, min_face_size,) img = to_numpy(img) if limit: boxes = boxes[:limit] landmarks = landmarks[:limit] nrof_faces = len(boxes) boxes = np.asarray(boxes) if nrof_faces > 0: det = boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] bindex = 0 if nrof_faces > 1: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack( [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) bindex = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering boxes = boxes[bindex, 0:4] landmarks = landmarks[bindex, :] facial5points = [[landmarks[j], landmarks[j + 5]] for j in range(5)] warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112)) return to_image(warped_face) else: logging.warning(f'no face detected, {kwargs} ') return to_image(img).resize((112, 112), Image.BILINEAR) except Exception as e: logging.warning(f'face detect fail, err {e}') return to_image(img).resize((112, 112), Image.BILINEAR) def detect_faces(self, image, min_face_size=20., # thresholds=[0.7, 0.7, 0.8], thresholds=[0.1, 0.1, 0.9], nms_thresholds=[0.7, 0.7, 0.7]): """ Arguments: image: an instance of PIL.Image. min_face_size: a float number. thresholds: a list of length 3. nms_thresholds: a list of length 3. Returns: two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], bounding boxes and facial landmarks. """ image = to_image(image) # BUILD AN IMAGE PYRAMID width, height = image.size min_length = min(height, width) min_detection_size = 12 factor = 0.707 # sqrt(0.5) # scales for scaling the image scales = [] # scales the image so that # minimum size that we can detect equals to # minimum face size that we want to detect m = min_detection_size / min_face_size min_length *= m factor_count = 0 while min_length > min_detection_size: scales.append(m * factor ** factor_count) min_length *= factor factor_count += 1 # STAGE 1 # it will be returned bounding_boxes = [] with torch.no_grad(): # run P-Net on different scales for s in scales: boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0]) bounding_boxes.append(boxes) # collect boxes (and offsets, and scores) from different scales bounding_boxes = [i for i in bounding_boxes if i is not None] bounding_boxes = np.vstack(bounding_boxes) keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0]) bounding_boxes = bounding_boxes[keep] # use offsets predicted by pnet to transform bounding boxes bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) # shape [n_boxes, 5] bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 2 img_boxes = get_image_boxes(bounding_boxes, image, size=24) img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.rnet(img_boxes) offsets = output[0].cpu().data.numpy() # shape [n_boxes, 4] probs = output[1].cpu().data.numpy() # shape [n_boxes, 2] thresh = thresholds[1] keep = np.where(probs[:, 1] > thresh)[0] # while keep.shape[0] == 0: # thresh -= 0.01 # keep = np.where(probs[:, 1] > thresh)[0] # print('2 stage thresh', thresh) bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,)) offsets = offsets[keep] keep = nms(bounding_boxes, nms_thresholds[1]) bounding_boxes = bounding_boxes[keep] bounding_boxes = calibrate_box(bounding_boxes, offsets[keep]) bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 3 img_boxes = get_image_boxes(bounding_boxes, image, size=48) if len(img_boxes) == 0: return [], [] img_boxes = torch.FloatTensor(img_boxes).to(device) output = self.onet(img_boxes) landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10] offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4] probs = output[2].cpu().data.numpy() # shape [n_boxes, 2] thresh = thresholds[2] keep = np.where(probs[:, 1] > thresh)[0] if len(keep) == 0: return [], [] # while keep.shape[0] == 0: # thresh -= 0.01 # keep = np.where(probs[:, 1] > thresh)[0] # print('3 stage one thresh', thresh) bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,)) offsets = offsets[keep] landmarks = landmarks[keep] # compute landmark points width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5] landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10] bounding_boxes = calibrate_box(bounding_boxes, offsets) keep = nms(bounding_boxes, nms_thresholds[2], mode='min') bounding_boxes = bounding_boxes[keep] landmarks = landmarks[keep] return bounding_boxes, landmarks
def __init__(self): self.pnet = PNet() self.rnet = RNet() self.onet = ONet() self.onet.eval()
class MTCNN(): def __init__(self): self.pnet = PNet() self.rnet = RNet() self.onet = ONet() self.onet.eval() # self.nets = (self.pnet,self.rnet,self.onet) def detect_faces(self, image, min_face_size=180.0, thresholds=[0.6, 0.7, 0.8], nms_thresholds=[0.7, 0.7, 0.7]): """ Arguments: image: an instance of PIL.Image. min_face_size: a float number. thresholds: a list of length 3. nms_thresholds: a list of length 3. Returns: two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], bounding boxes and facial landmarks. """ # BUILD AN IMAGE PYRAMID width, height = image.size min_length = min(height, width) min_detection_size = 12 factor = 0.707 # sqrt(0.5) # scales for scaling the image scales = [] # scales the image so that # minimum size that we can detect equals to # minimum face size that we want to detect m = min_detection_size / min_face_size min_length *= m factor_count = 0 torch.set_grad_enabled(False) while min_length > min_detection_size: scales.append(m * factor**factor_count) min_length *= factor factor_count += 1 # STAGE 1 # it will be returned bounding_boxes = [] # run P-Net on different scales for s in scales: boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0]) bounding_boxes.append(boxes) # collect boxes (and offsets, and scores) from different scales bounding_boxes = [i for i in bounding_boxes if i is not None] if bounding_boxes == []: return [] bounding_boxes = np.vstack(bounding_boxes) keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0]) bounding_boxes = bounding_boxes[keep] # use offsets predicted by self.pnet to transform bounding boxes bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) # shape [n_boxes, 5] bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 2 img_boxes = get_image_boxes(bounding_boxes, image, size=24) img_boxes = Variable(torch.FloatTensor(img_boxes)) output = self.rnet(img_boxes) offsets = output[0].data.numpy() # shape [n_boxes, 4] probs = output[1].data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[1])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] keep = nms(bounding_boxes, nms_thresholds[1]) bounding_boxes = bounding_boxes[keep] bounding_boxes = calibrate_box(bounding_boxes, offsets[keep]) bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 3 img_boxes = get_image_boxes(bounding_boxes, image, size=48) if len(img_boxes) == 0: return [] img_boxes = Variable(torch.FloatTensor(img_boxes)) output = self.onet(img_boxes) offsets = output[1].data.numpy() # shape [n_boxes, 4] probs = output[2].data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[2])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, )) offsets = offsets[keep] bounding_boxes = calibrate_box(bounding_boxes, offsets) keep = nms(bounding_boxes, nms_thresholds[2], mode='min') bounding_boxes = bounding_boxes[keep] # img = image.crop(bounding_boxes[0][:-1].tolist()) return bounding_boxes
print('A size {}'.format(a.size())) # torch.Size([1, 4, 51, 51]) print('B size {}'.format(b.size())) # torch.Size([1, 2, 51, 51]) # R-Net model = RNet().to(device) # to device model.eval() # to eval mode example = torch.ones([1, 3, 24, 24]).to(device) traced = torch.jit.trace(model, example) traced.save(str(conf.save_path / 'rnet-gpu.pt')) a, b = model(example) print('R-Net') print('Input size {}'.format(example.size())) # torch.Size([1, 3, 24, 24]) print('A size {}'.format(a.size())) # torch.Size([1, 4]) print('B size {}'.format(b.size())) # torch.Size([1, 2]) # O-Net model = ONet().to(device) # to device model.eval() # to eval mode example = torch.ones([1, 3, 48, 48]).to(device) traced = torch.jit.trace(model, example) traced.save(str(conf.save_path / 'onet-gpu.pt')) a, b, c = model(example) print('O-Net') print('Input size {}'.format(example.size())) # torch.Size([1, 3, 48, 48]) print('A size {}'.format(a.size())) # torch.Size([1, 10]) print('B size {}'.format(b.size())) # torch.Size([1, 4]) print('C size {}'.format(c.size())) # torch.Size([1, 2])