Esempio n. 1
0
def test():
    from mujoco_py import load_model_from_xml, MjSim, MjViewer
    from mujoco_py.modder import TextureModder
    l, w, h, t, left, m = sample_cabinet()
    cab = build_cabinet(l, w, h, t, left)
    filename = 'test.urdf'
    with open(filename, "w") as text_file:
        text_file.write(cab.xml)

    # print(cab.xml)
    model = load_model_from_xml(cab.xml)
    sim = MjSim(model)
    viewer = MjViewer(sim)
    modder = TextureModder(sim)
    for name in sim.model.geom_names:
        modder.rand_all(name)

    t = 0
    if cab.geom[3] == 1:
        sim.data.ctrl[0] = -0.2
    else:
        sim.data.ctrl[0] = 0.2

    while t < 1000:
        # for name in sim.model.geom_names:
        #     modder.rand_all(name)
        sim.step()
        viewer.render()
        t += 1
def test(k=0):
    from mujoco_py import load_model_from_xml, MjSim, MjViewer
    from mujoco_py.modder import TextureModder

    l, w, h, t, left, m = sample_cabinet2()
    cab = build_cabinet2(l, w, h, t, left)
    # print(cab.xml)
    model = load_model_from_xml(cab.xml)
    sim = MjSim(model)
    viewer = MjViewer(sim)
    modder = TextureModder(sim)
    for name in sim.model.geom_names:
        modder.rand_all(name)

    set_two_door_control(sim)
    q1s = []
    q2s = []
    t = 0
    # mode 0 indicates starting lc
    while t < 4000:
        # for name in sim.model.geom_names:
        #     modder.rand_all(name)
        viewer.render()
        if t % 250 == 0:
            q1 = sim.data.qpos[0]
            q2 = sim.data.qpos[1]
            print(sim.data.qpos)
            q1s.append(q1)
            q2s.append(q2)

        sim.step()
        t += 1
    # print(q1s)
    np.save('devdata/q1_' + str(k).zfill(3), q1s)
    np.save('devdata/q2_' + str(k).zfill(3), q2s)
Esempio n. 3
0
def test_textures():
    model = load_model_from_xml(BASIC_MODEL_XML)
    sim = MjSim(model)
    sim.forward()

    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.premod.png')

    random_state = np.random.RandomState(0)
    modder = TextureModder(sim, random_state=random_state)
    modder.whiten_materials()
    modder.whiten_materials(['g1', 'g2'])

    modder.set_rgb('g1', (255, 0, 0))
    modder.set_rgb('g2', (0, 255, 0))
    modder.set_rgb('g3', (0, 0, 255))
    modder.set_rgb('g4', (255, 0, 255))
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rgb.png')

    modder.set_checker('g1', (255, 0, 0), (0, 255, 0))
    modder.set_gradient('g2', (0, 255, 0), (0, 0, 255), vertical=True)
    modder.set_gradient('g3', (255, 255, 0), (0, 0, 255), vertical=False)
    modder.set_noise('g4', (0, 0, 255), (255, 0, 0), 0.1)
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.variety.png')

    modder.rand_checker('g1')
    modder.rand_gradient('g2')
    modder.rand_noise('g3')
    modder.rand_rgb('g4')
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rand_specific.png')

    modder.rand_all('g1')
    modder.rand_all('g2')
    modder.rand_all('g3')
    modder.rand_all('g4')
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rand_all.png')

    modder.rand_checker('g1')
    modder.rand_checker('g2')
    modder.rand_checker('g3')
    modder.rand_checker('g4')
    mat_modder = MaterialModder(sim, random_state=random_state)
    mat_modder.rand_texrepeat('g1')
    mat_modder.rand_texrepeat('g2')
    mat_modder.rand_texrepeat('g3')
    mat_modder.rand_texrepeat('g4')
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rand_texrepeat.png')
Esempio n. 4
0
def test_textures():
    model = load_model_from_xml(BASIC_MODEL_XML)
    sim = MjSim(model)
    sim.forward()

    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.premod.png')

    random_state = np.random.RandomState(0)
    modder = TextureModder(sim, random_state=random_state)
    modder.whiten_materials()
    modder.whiten_materials(['g1', 'g2'])

    modder.set_rgb('g1', (255, 0, 0))
    modder.set_rgb('g2', (0, 255, 0))
    modder.set_rgb('g3', (0, 0, 255))
    modder.set_rgb('g4', (255, 0, 255))
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rgb.png')

    modder.set_checker('g1', (255, 0, 0), (0, 255, 0))
    modder.set_gradient('g2', (0, 255, 0), (0, 0, 255), vertical=True)
    modder.set_gradient('g3', (255, 255, 0), (0, 0, 255), vertical=False)
    modder.set_noise('g4', (0, 0, 255), (255, 0, 0), 0.1)
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.variety.png')

    modder.rand_checker('g1')
    modder.rand_gradient('g2')
    modder.rand_noise('g3')
    modder.rand_rgb('g4')
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rand_specific.png')

    modder.rand_all('g1')
    modder.rand_all('g2')
    modder.rand_all('g3')
    modder.rand_all('g4')
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rand_all.png')

    modder.rand_checker('g1')
    modder.rand_checker('g2')
    modder.rand_checker('g3')
    modder.rand_checker('g4')
    mat_modder = MaterialModder(sim, random_state=random_state)
    mat_modder.rand_texrepeat('g1')
    mat_modder.rand_texrepeat('g2')
    mat_modder.rand_texrepeat('g3')
    mat_modder.rand_texrepeat('g4')
    compare_imgs(sim.render(201, 205, camera_name="topcam"),
                 'test_textures.rand_texrepeat.png')
def test():
    # import transforms3d as tf3d
    from mujoco_py import load_model_from_xml, MjSim, MjViewer
    from mujoco_py.modder import TextureModder

    for i in range(200):
        l, w, h, t, left, m = sample_drawers()
        drawer = build_drawer(l, w, h, t, left)
        model = load_model_from_xml(drawer.xml)
        sim = MjSim(model)
        viewer = MjViewer(sim)
        modder = TextureModder(sim)
        for name in sim.model.geom_names:
            modder.rand_all(name)

        t = 0
        sim.data.ctrl[0] = 0.05
        while t < 1000:
            sim.step()
            viewer.render()
            t += 1
def test():
    from mujoco_py import load_model_from_xml, MjSim, MjViewer
    from mujoco_py.modder import TextureModder

    l, w, h, t, left, m = sample_toaster()
    cab = build_toaster(l, w, h, t, left)
    # print(cab.xml)
    model = load_model_from_xml(cab.xml)
    sim = MjSim(model)
    viewer = MjViewer(sim)
    modder = TextureModder(sim)
    for name in sim.model.geom_names:
        modder.rand_all(name)

    t = 0
    sim.data.ctrl[0] = 0.2
    while t < 1000:
        # for name in sim.model.geom_names:
        #     modder.rand_all(name)
        sim.step()
        viewer.render()
        t += 1
Esempio n. 7
0
class ArenaModder(BaseModder):
    """
    Object to handle randomization of all relevant properties of Mujoco sim

    """
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Get start state of params to slightly jitter later
        self.start_geo_size = self.model.geom_size.copy()
        self.start_geom_quat = self.model.geom_quat.copy()
        self.start_body_pos = self.model.body_pos.copy()
        self.start_body_quat = self.model.body_quat.copy()
        self.start_matid = self.model.geom_matid.copy()
        self.floor_offset = self.model.body_pos[self.model.body_name2id(
            'floor')]
        self.rock_mod_cache = None

        self.tex_modder = TextureModder(self.sim)
        self.cam_modder = CameraModder(self.sim)
        self.light_modder = LightModder(self.sim)

        # Set these both externally to visualize
        self.visualize = False
        self.viewer = None

    def whiten_materials(self):
        self.tex_modder.whiten_materials()

    def randomize(self):
        self.mod_textures()
        self.mod_lights()
        self.mod_camera()
        self.mod_walls()
        self.mod_extras()
        self.mod_rocks()

    def mod_textures(self):
        """Randomize all the textures in the scene, including the skybox"""
        for name in self.sim.model.geom_names:
            if name != "billboard" and "light_disc" not in name:
                self.tex_modder.rand_all(name)
                ##texture_sizes = [32, 64, 128, 256, 512, 1024]
                ##gid = self.model.geom_name2id(name)
                ##mid = self.model.geom_matid[gid]
                ##tid = self.model.mat_texid[mid]
                ##self.model.tex_width[tid] = sample_from_list(texture_sizes)
                ##self.model.tex_height[tid] = 6 * self.model.tex_width[tid]
        self.tex_modder.rand_all('skybox')

    def mod_lights(self):
        """Randomize pos, direction, and lights"""
        # light stuff
        LIGHT_RX = Range(LEFTX, RIGHTX)
        LIGHT_RY = Range(BINY, DIGY)
        LIGHT_RZ = Range(AFZ, AFZ + ZHIGH)
        LIGHT_RANGE3D = Range3D(LIGHT_RX, LIGHT_RY, LIGHT_RZ)
        LIGHT_UNIF = Range3D(Range(0, 1), Range(0, 1), Range(0, 1))

        for i, name in enumerate(self.model.light_names):
            lid = self.model.light_name2id(name)
            # random sample 80% of any given light being on
            self.light_modder.set_active(name, sample([0, 1]) < 0.8)
            #self.light_modder.set_active(name, 0)
            dir_xyz = sample_light_dir()
            self.light_modder.set_pos(name, sample_xyz(LIGHT_RANGE3D))
            self.light_modder.set_dir(name, dir_xyz)
            self.light_modder.set_specular(name, sample_xyz(LIGHT_UNIF))
            #self.light_modder.set_diffuse(name, sample_xyz(LIGHT_UNIF))
            #self.light_modder.set_ambient(name, sample_xyz(LIGHT_UNIF))
            #self.model.light_directional[lid] = sample([0,1]) < 0.01

    def mod_camera(self):
        """Randomize pos, direction, and fov of camera"""
        # Params
        XOFF = 1.0
        CAM_RX = Range(ACX - XOFF, ACX + XOFF)  # center of arena +/- 0.5
        CAM_RY = Range(BINY + 0.2, SZ_ENDY)
        CAM_RZ = Range(AFZ + ZLOW, AFZ + ZHIGH)
        CAM_RANGE3D = Range3D(CAM_RX, CAM_RY, CAM_RZ)
        CAM_RYAW = Range(-95, -85)
        CAM_RPITCH = Range(65, 90)
        CAM_RROLL = Range(85, 95)  # this might actually be pitch?
        CAM_ANGLE3 = Range3D(CAM_RYAW, CAM_RPITCH, CAM_RROLL)

        # "The horizontal field of view is computed automatically given the
        # window size and the vertical field of view." - Mujoco
        # This range was calculated using: themetalmuncher.github.io/fov-calc/
        # ZED has 110° hfov --> 78° vfov, Logitech C920 has 78° hfov ---> 49° vfov
        # These were rounded all the way down to 40° and up to 80°. It starts
        # to look a bit bad in the upper range, but I think it will help
        # generalization.
        CAM_RFOVY = Range(40, 80)

        # Actual mods
        self.cam_modder.set_pos('camera1', sample_xyz(CAM_RANGE3D))
        self.cam_modder.set_quat('camera1', sample_quat(CAM_ANGLE3))

        fovy = sample(CAM_RFOVY)
        self.cam_modder.set_fovy('camera1', fovy)

    def _set_visible(self, prefix, range_top, visible):
        """Helper function to set visibility of several objects"""
        if not visible:
            if range_top == 0:
                name = prefix
                gid = self.model.geom_name2id(name)
                self.model.geom_rgba[gid][-1] = 0.0

            for i in range(range_top):
                name = "{}{}".format(prefix, i)
                gid = self.model.geom_name2id(name)
                self.model.geom_rgba[gid][-1] = 0.0
        else:
            if range_top == 0:
                name = prefix
                gid = self.model.geom_name2id(name)
                self.model.geom_rgba[gid][-1] = 1.0

            for i in range(range_top):
                name = "{}{}".format(prefix, i)
                gid = self.model.geom_name2id(name)
                self.model.geom_rgba[gid][-1] = 1.0

    def mod_extra_distractors(self, visible=True):
        """mod rocks and tools on the side of the arena"""
        # TODO: I might consider changing these to look like rocks instead of
        # just random shapes.  It just looks weird to me right now.  Ok for now,
        # but it seems a bit off.
        N = 20
        self._set_visible("side_obj", N, visible)
        if not visible:
            return

        Z_JITTER = 0.05
        OBJ_XRANGE = Range(0.01, 0.1)
        OBJ_YRANGE = Range(0.01, 0.1)
        OBJ_ZRANGE = Range(0.01, 0.1)
        OBJ_SIZE_RANGE = Range3D(OBJ_XRANGE, OBJ_YRANGE, OBJ_ZRANGE)

        floor_gid = self.model.geom_name2id("floor")

        left_body_id = self.model.body_name2id("left_wall")
        left_geom_id = self.model.geom_name2id("left_wall")
        right_body_id = self.model.body_name2id("right_wall")
        right_geom_id = self.model.geom_name2id("right_wall")

        left_center = self.model.body_pos[left_body_id]
        left_geo = self.model.geom_size[left_geom_id]
        left_height = left_center[2] + left_geo[2]
        left_xrange = Range(left_center[0] - left_geo[0],
                            left_center[0] + left_geo[0])
        left_yrange = Range(left_center[1] - left_geo[1],
                            left_center[1] + left_geo[1])
        left_zrange = 0.02 + Range(left_height - Z_JITTER,
                                   left_height + Z_JITTER)
        left_range = Range3D(left_xrange, left_yrange, left_zrange)

        right_center = self.model.body_pos[right_body_id]
        right_geo = self.model.geom_size[right_geom_id]
        right_height = right_center[2] + right_geo[2]
        right_xrange = Range(right_center[0] - right_geo[0],
                             right_center[0] + right_geo[0])
        right_yrange = Range(right_center[1] - right_geo[1],
                             right_center[1] + right_geo[1])
        right_zrange = 0.02 + Range(right_height - Z_JITTER,
                                    right_height + Z_JITTER)
        right_range = Range3D(right_xrange, right_yrange, right_zrange)

        for i in range(N):
            name = "side_obj{}".format(i)
            obj_bid = self.model.body_name2id(name)
            obj_gid = self.model.geom_name2id(name)
            self.model.geom_quat[obj_gid] = random_quat()
            self.model.geom_size[obj_gid] = sample_xyz(OBJ_SIZE_RANGE)
            self.model.geom_type[obj_gid] = sample_geom_type()

            # 50% chance of invisible
            if sample([0, 1]) < 0.5:
                self.model.geom_rgba[obj_gid][-1] = 0.0
            else:
                self.model.geom_rgba[obj_gid][-1] = 1.0
            ## 50% chance of same color as floor and rocks
            if sample([0, 1]) < 0.5:
                self.model.geom_matid[obj_gid] = self.model.geom_matid[
                    floor_gid]
            else:
                self.model.geom_matid[obj_gid] = self.start_matid[obj_gid]

            # 10 always on the left, 10 always on the right
            if i < 10:
                self.model.body_pos[obj_bid] = sample_xyz(left_range)
            else:
                self.model.body_pos[obj_bid] = sample_xyz(right_range)

    def mod_extra_judges(self, visible=True):
        """mod NASA judges around the perimeter of the arena"""
        # TODO: might want to add regions on the sides of the arena, but these
        # may be covered by the distractors already
        N = 5
        self._set_visible("judge", N, visible)
        if not visible:
            return

        JUDGE_XRANGE = Range(0.1, 0.2)
        JUDGE_YRANGE = Range(0.1, 0.2)
        JUDGE_ZRANGE = Range(0.75, 1.0)
        JUDGE_SIZE_RANGE = Range3D(JUDGE_XRANGE, JUDGE_YRANGE, JUDGE_ZRANGE)

        digwall_bid = self.model.body_name2id("dig_wall")
        digwall_gid = self.model.geom_name2id("dig_wall")

        digwall_center = self.model.body_pos[digwall_bid]
        digwall_geo = self.model.geom_size[digwall_gid]
        digwall_xrange = Range(-1.0 + digwall_center[0] - digwall_geo[0],
                               1.0 + digwall_center[0] + digwall_geo[0])
        digwall_yrange = Range(digwall_center[1] + 0.5,
                               digwall_center[1] + 1.5)
        digwall_zrange = JUDGE_ZRANGE - 0.75
        digwall_range = Range3D(digwall_xrange, digwall_yrange, digwall_zrange)

        for i in range(N):
            name = "judge{}".format(i)
            judge_bid = self.model.body_name2id(name)
            judge_gid = self.model.geom_name2id(name)

            #self.model.geom_quat[judge_gid] = jitter_quat(self.start_geom_quat[judge_gid], 0.05)
            self.model.geom_quat[judge_gid] = random_quat()
            self.model.geom_size[judge_gid] = sample_xyz(JUDGE_SIZE_RANGE)
            self.model.geom_type[judge_gid] = sample_geom_type()
            if self.model.geom_type[judge_gid] == 3 or self.model.geom_type[
                    judge_gid] == 5:
                self.model.geom_size[judge_gid][1] = self.model.geom_size[
                    judge_gid][2]

            self.model.body_pos[judge_bid] = sample_xyz(digwall_range)

            # 50% chance of invisible
            self.model.geom_rgba[judge_gid][-1] = sample([0, 1]) < 0.5

    def mod_extra_robot_parts(self, visible=True):
        """add distractor parts of robots in the lower area of the camera frame"""
        N = 3
        self._set_visible("robot_part", N, visible)
        if not visible:
            return
        # Project difference into camera coordinate frame
        cam_pos = self.model.cam_pos[0]
        cam_quat = np.quaternion(*self.model.cam_quat[0])
        lower_range = Range3D([0.0, 0.0], [-0.2, -0.3], [-0.2, -0.3])
        lower_size = Range3D([0.2, 0.6], [0.01, 0.15], [0.01, 0.15])
        lower_angle = Range3D([-85.0, -95.0], [-180, 180], [-85, -95])

        upper_range = Range3D([-0.6, 0.6], [-0.05, 0.05], [-0.05, 0.05])
        upper_size = Range3D([0.005, 0.05], [0.005, 0.05], [0.01, 0.3])
        upper_angle = Range3D([-85.0, -95.0], [-180, 180], [-85, -95])

        name = "robot_part0"
        lower_bid = self.model.body_name2id(name)
        lower_gid = self.model.geom_name2id(name)

        lower_pos = cam_pos + quaternion.rotate_vectors(
            cam_quat, sample_xyz(lower_range))
        self.model.body_pos[lower_bid] = lower_pos
        self.model.geom_size[lower_gid] = sample_xyz(lower_size)
        self.model.geom_quat[lower_gid] = sample_quat(lower_angle)
        self.model.geom_type[lower_gid] = sample_geom_type(reject=["capsule"])

        if self.model.geom_type[lower_gid] == 5:
            self.model.geom_size[lower_gid][0] = self.model.geom_size[
                lower_gid][2]

        for i in range(1, 10):
            name = "robot_part{}".format(i)
            upper_bid = self.model.body_name2id(name)
            upper_gid = self.model.geom_name2id(name)
            upper_pos = lower_pos + sample_xyz(upper_range)
            self.model.body_pos[upper_bid] = upper_pos
            self.model.geom_size[upper_gid] = sample_xyz(upper_size)
            self.model.geom_type[upper_gid] = sample_geom_type()

            # 50% of the time, choose random angle instead reasonable angle
            if sample([0, 1]) < 0.5:
                self.model.geom_quat[upper_gid] = sample_quat(upper_angle)
            else:
                self.model.geom_quat[upper_gid] = random_quat()

    def mod_extra_arena_structure(self, visible=True):
        """add randomized structure of the arena in the background with 
        pillars and a crossbar"""
        N = 16
        self._set_visible("arena_structure", N, visible)
        if not visible:
            return

        STARTY = DIGY + 3.0
        ENDY = DIGY + 5.0
        XBAR_SIZE = Range3D([10.0, 20.0], [0.05, 0.1], [0.2, 0.5])
        XBAR_RANGE = Range3D([0.0, 0.0], [STARTY, ENDY], [3.0, 5.0])
        STRUCTURE_SIZE = Range3D([0.05, 0.1], [0.05, 0.1], [3.0, 6.0])
        STRUCTURE_RANGE = Range3D([np.nan, np.nan], [STARTY, ENDY], [0.0, 0.0])
        x_range = np.linspace(ACX - 10.0, ACX + 10.0, 15)

        # crossbar
        name = "arena_structure{}".format(N - 1)
        xbar_bid = self.model.body_name2id(name)
        xbar_gid = self.model.geom_name2id(name)

        self.model.geom_quat[xbar_gid] = jitter_quat(
            self.start_geom_quat[xbar_gid], 0.01)
        self.model.geom_size[xbar_gid] = sample_xyz(XBAR_SIZE)
        self.model.body_pos[xbar_bid] = sample_xyz(XBAR_RANGE)

        ### 10% chance of invisible
        ##if sample([0,1]) < 0.1:
        ##    self.model.geom_rgba[xbar_gid][-1] = 0.0
        ##else:
        ##    self.model.geom_rgba[xbar_gid][-1] = 1.0

        for i in range(N - 1):
            name = "arena_structure{}".format(i)
            arena_structure_bid = self.model.body_name2id(name)
            arena_structure_gid = self.model.geom_name2id(name)
            STRUCTURE_RANGE[0] = Range(x_range[i] - 0.1, x_range[i] + 0.1)

            self.model.geom_quat[arena_structure_gid] = jitter_quat(
                self.start_geom_quat[arena_structure_gid], 0.01)
            self.model.geom_size[arena_structure_gid] = sample_xyz(
                STRUCTURE_SIZE)
            self.model.body_pos[arena_structure_bid] = sample_xyz(
                STRUCTURE_RANGE)

            self.model.geom_matid[arena_structure_gid] = self.model.geom_matid[
                xbar_gid]

            # 10% chance of invisible
            if sample([0, 1]) < 0.1:
                self.model.geom_rgba[arena_structure_gid][-1] = 0.0
            else:
                self.model.geom_rgba[arena_structure_gid][-1] = 1.0

    def mod_extra_arena_background(self, visible=True, N=10):
        """ """
        self._set_visible("background", N, visible)
        if not visible:
            return

        BACKGROUND_XRANGE = Range(0.1, 0.5)
        BACKGROUND_YRANGE = Range(0.1, 0.5)
        BACKGROUND_ZRANGE = Range(0.1, 1.0)
        BACKGROUND_SIZE_RANGE = Range3D(BACKGROUND_XRANGE, BACKGROUND_YRANGE,
                                        BACKGROUND_ZRANGE)

        digwall_bid = self.model.body_name2id("dig_wall")
        digwall_gid = self.model.geom_name2id("dig_wall")
        c = digwall_center = self.model.body_pos[digwall_bid]

        background_range = Range3D([c[0] - 4.0, c[0] + 4.0],
                                   [c[1] + 8.0, c[1] + 12.0], [0.0, 5.0])

        for i in range(N):
            name = "background{}".format(i)
            background_bid = self.model.body_name2id(name)
            background_gid = self.model.geom_name2id(name)

            self.model.geom_quat[background_gid] = random_quat()
            self.model.geom_size[background_gid] = sample_xyz(
                BACKGROUND_SIZE_RANGE)
            self.model.geom_type[background_gid] = sample_geom_type()

            self.model.body_pos[background_bid] = sample_xyz(background_range)

    def mod_extra_lights(self, visible=True):
        """"""
        #visible = False
        MODE_TARGETBODY = 3
        STARTY = DIGY + 3.0
        ENDY = DIGY + 5.0
        LIGHT_RANGE = Range3D([ACX - 2.0, ACX + 2.0], [STARTY, ENDY],
                              [3.0, 5.0])
        any_washed = False

        for i in range(3):
            name = "extra_light{}".format(i)
            lid = self.model.light_name2id(name)
            self.model.light_active[lid] = visible
            if not visible:
                return

            self.model.light_pos[lid] = sample_xyz(LIGHT_RANGE)
            self.model.light_dir[lid] = sample_light_dir()
            self.model.light_directional[lid] = 0

            ### 3% chance of directional light, washing out colors
            ### (P(at least 1 will be triggered) ~= 0.1) = 1 - 3root(p)
            washout = sample([0, 1]) < 0.03
            any_washed = any_washed or washout
            self.model.light_directional[lid] = washout

        if any_washed:
            self.mod_extra_light_discs(
                visible=visible and sample([0, 1]) < 0.9)
        else:
            self.mod_extra_light_discs(visible=False)

    def mod_extra_light_discs(self, visible=True):
        """"""
        N = 10
        self._set_visible("light_disc", N, visible)
        if not visible:
            return

        Z_JITTER = 0.05
        DISC_XRANGE = Range(0.1, 4.0)
        DISC_YRANGE = Range(0.1, 4.0)
        DISC_ZRANGE = Range(0.1, 4.0)
        DISC_SIZE_RANGE = Range3D(DISC_XRANGE, DISC_YRANGE, DISC_ZRANGE)
        OUTR = 20.0
        INR = 10.0

        floor_bid = self.model.body_name2id("floor")
        c = self.model.body_pos[floor_bid]
        disc_xrange = Range(c[0] - OUTR, c[0] + OUTR)
        disc_yrange = Range(c[1], c[1] + OUTR)
        disc_zrange = Range(-5.0, 10.0)
        disc_range = Range3D(disc_xrange, disc_yrange, disc_zrange)

        for i in range(N):
            name = "light_disc{}".format(i)
            disc_bid = self.model.body_name2id(name)
            disc_gid = self.model.geom_name2id(name)
            disc_mid = self.model.geom_matid[disc_gid]

            self.model.geom_quat[disc_gid] = random_quat()
            self.model.geom_size[disc_gid] = sample_xyz(DISC_SIZE_RANGE)
            self.model.geom_type[disc_gid] = sample_geom_type()

            # keep trying to place the disc until it lands outside of blocking stuff
            # (they will land in a u shape, because they are sampled with a
            # constrain to not land in the middle)
            while True:
                xyz = sample_xyz(disc_range)

                if ((xyz[0] > (c[0] - INR) and xyz[0] < (c[0] + INR))
                        and (xyz[1] > (c[1] - INR) and xyz[1] < (c[1] + INR))):
                    continue
                else:
                    self.model.geom_pos[disc_gid] = xyz
                    break

            # 50% chance of invisible
            if sample([0, 1]) < 0.5:
                self.model.geom_rgba[disc_gid][-1] = 0.0
            else:
                self.model.geom_rgba[disc_gid][-1] = 1.0

    def mod_extras(self, visible=True):
        """
        Randomize extra properties of the world such as the extra rocks on the side
        of the arena wal

        The motivation for these mods are that it seems likely that these distractor 
        objects, judges, etc, in the real images could degrade the performance 
        of the detector. 

        Artifacts:
        - Rocks and tools on edges of bin
        - NASA judges around the perimeter
        - Parts of the robot in the frame
        - Background arena structure and crowd 
        - Bright light around edges of arena
        """
        self.mod_extra_distractors(visible)
        self.mod_extra_robot_parts(visible)
        self.mod_extra_lights(visible)
        # 10% of the time, hide the other distractor pieces
        self.mod_extra_judges(visible=visible and sample([0, 1]) < 0.9)
        self.mod_extra_arena_structure(
            visible=visible and sample([0, 1]) < 0.9)
        self.mod_extra_arena_background(
            visible=visible and sample([0, 1]) < 0.9)

    def mod_walls(self):
        """
        Randomize the x, y, and orientation of the walls slights.
        Also drastically randomize the height of the walls. In many cases they won't
        be seen at all. This will allow the model to generalize to scenarios without
        walls, or where the walls and geometry is slightly different than the sim 
        model
        """

        wall_names = ["left_wall", "right_wall", "bin_wall", "dig_wall"]
        for name in wall_names:
            geom_id = self.model.geom_name2id(name)
            body_id = self.model.body_name2id(name)

            jitter_x = Range(-0.2, 0.2)
            jitter_y = Range(-0.2, 0.2)
            jitter_z = Range(-0.75, 0.0)
            jitter3D = Range3D(jitter_x, jitter_y, jitter_z)

            self.model.body_pos[
                body_id] = self.start_body_pos[body_id] + sample_xyz(jitter3D)
            self.model.body_quat[body_id] = jitter_quat(
                self.start_body_quat[body_id], 0.005)
            if sample([0, 1]) < 0.05:
                self.model.body_pos[body_id][2] = -2.0

    def mod_dirt(self):
        """Randomize position and rotation of dirt"""
        # TODO: 50% chance to flip the dirt pile upsidedown, then we will have
        # to account for this in calculations

        # dirt stuff
        DIRT_RX = Range(0.0, 0.3)
        DIRT_RY = Range(0.0, 0.3)
        DIRT_RZ = Range(-0.05, 0.03)
        DIRT_RANGE3D = Range3D(DIRT_RX, DIRT_RY, DIRT_RZ)
        DIRT_RYAW = Range(-180, 180)
        DIRT_RPITCH = Range(-90.5, -89.5)
        DIRT_RROLL = Range(-0.5, 0.5)
        DIRT_ANGLE3 = Range3D(DIRT_RYAW, DIRT_RPITCH, DIRT_RROLL)
        dirt_bid = self.model.body_name2id("dirt")
        dirt_gid = self.model.geom_name2id("dirt")
        dirt_mid = self.model.geom_dataid[dirt_gid]

        # randomize position and yaw of dirt
        self.model.body_pos[dirt_bid] = self.start_body_pos[
            dirt_bid] + sample_xyz(DIRT_RANGE3D)
        self.model.geom_quat[dirt_gid] = sample_quat(DIRT_ANGLE3)

        vert_adr = self.model.mesh_vertadr[dirt_mid]
        vert_num = self.model.mesh_vertnum[dirt_mid]
        mesh_verts = self.model.mesh_vert[vert_adr:vert_adr + vert_num]

        rot_quat = self.model.geom_quat[dirt_gid]
        rots = quaternion.rotate_vectors(
            np.quaternion(*rot_quat).normalized(), mesh_verts)

        mesh_abs_pos = self.floor_offset + self.model.body_pos[dirt_bid] + rots

        #xy_indexes = mesh_abs_pos[:, 0:2]
        #z_heights = mesh_abs_pos[:, 2]

        # Return a function that the user can call to get the approximate
        # height of an xy location
        def local_mean_height(xy):
            """
            Take an xy coordinate, and the approximate z height of the mesh at that
            location. It works decently.

            Uses a weighted average mean of all points within a threshold of xy.
            """
            # grab all mesh points within threshold euclidean distance of xy
            gt0_xyz = mesh_abs_pos[mesh_abs_pos[:, 2] > 0.01]
            eudists = np.sum(np.square(gt0_xyz[:, 0:2] - xy), axis=1)
            indices = eudists < 0.1
            close_xyz = gt0_xyz[indices]

            # if there are any nearby points above 0
            if np.count_nonzero(close_xyz[:, 2]) > 0:
                # weights for weighted sum. closer points to xy have higher weight
                weights = 1 / (eudists[indices])
                weights = np.expand_dims(weights / np.sum(weights), axis=1)
                pos = np.sum(close_xyz * weights, axis=0)

                # show an "o" and a marker where the height is
                if self.visualize:
                    self.viewer.add_marker(pos=pos,
                                           label="o",
                                           size=np.array([0.01, 0.01, 0.01]),
                                           rgba=np.array([0.0, 1.0, 0.0, 1.0]))

                # approximate z height of ground
                return pos[2]
            else:
                return 0

        def always_zero(xy):
            return 0

        dirt_height_xy = local_mean_height
        #dirt_height_xy = always_zero
        return dirt_height_xy

    def mod_rocks(self):
        """
        Randomize the rocks so that the model will generalize to competition rocks
        This randomizations currently being done are:
            - Positions (within guesses of competition regions)
            - Orientations
            - Shuffling the 3 rock meshes so that they can be on the left, middle, or right
            - Generating new random rock meshes every n runs (with Blender)
        """
        # Rock placement range parameters
        ROCK_LANEX = 0.4  # width parameters of x range
        OUTER_EXTRA = 0.5  # how much farther rocks should go out on the right and left lanes
        ROCK_BUFFX = 0.2  # distacne between rock lanes
        # How far into the obstacle zone the rocks should start.
        ROCK_START_OFFSET = 0.2
        MID_START_OFFSET = 0.4  # bit more for middle rock
        ROCK_RY = Range(OBS_SY + ROCK_START_OFFSET, OBS_ENDY)
        MID_RY = Range(OBS_SY + MID_START_OFFSET, OBS_ENDY)
        ROCK_RZ = Range(AFZ - 0.02, AFZ + 0.2)
        # Position dependent ranges
        LEFT_RX = Range(-3 * ROCK_LANEX - OUTER_EXTRA,
                        -ROCK_LANEX - ROCK_BUFFX)
        MID_RX = Range(-ROCK_LANEX, ROCK_LANEX)
        RIGHT_RX = Range(ROCK_BUFFX + ROCK_LANEX, 3 * ROCK_LANEX + OUTER_EXTRA)
        # Form full 3D sample range
        LEFT_ROCK_RANGE = Range3D(LEFT_RX, ROCK_RY, ROCK_RZ)
        MID_ROCK_RANGE = Range3D(MID_RX, MID_RY, ROCK_RZ)
        RIGHT_ROCK_RANGE = Range3D(RIGHT_RX, ROCK_RY, ROCK_RZ)
        ROCK_RANGES = [LEFT_ROCK_RANGE, MID_ROCK_RANGE, RIGHT_ROCK_RANGE]

        # actual mods
        rock_body_ids = {}
        rock_geom_ids = {}
        rock_mesh_ids = {}
        max_height_idxs = {}
        rot_cache = {}
        #max_height_xys = {}

        dirt_height_xy = self.mod_dirt()

        for name in self.model.geom_names:
            if name[:4] != "rock":
                continue

            geom_id = self.model.geom_name2id(name)
            body_id = self.model.body_name2id(name)
            mesh_id = self.model.geom_dataid[geom_id]
            rock_geom_ids[name] = geom_id
            rock_body_ids[name] = body_id
            rock_mesh_ids[name] = mesh_id

            # Rotate the rock and get the z value of the highest point in the
            # rotated rock mesh
            rot_quat = random_quat()
            vert_adr = self.model.mesh_vertadr[mesh_id]
            vert_num = self.model.mesh_vertnum[mesh_id]
            mesh_verts = self.model.mesh_vert[vert_adr:vert_adr + vert_num]
            rots = quaternion.rotate_vectors(
                np.quaternion(*rot_quat).normalized(), mesh_verts)
            self.model.geom_quat[geom_id] = rot_quat
            max_height_idx = np.argmax(rots[:, 2])
            max_height_idxs[name] = max_height_idx
            rot_cache[name] = rots

        # Shuffle the positions of the rocks (l or m or r)
        shuffle_names = list(rock_body_ids.keys())
        random.shuffle(shuffle_names)
        self.rock_mod_cache = []
        for i in range(len(shuffle_names)):
            name = shuffle_names[i]
            rots = rot_cache[name]
            self.model.body_pos[rock_body_ids[name]] = np.array(
                sample_xyz(ROCK_RANGES[i]))

            max_height_idx = max_height_idxs[name]
            xyz_for_max_z = rots[max_height_idx]

            # xyz coords in global frame
            global_xyz = self.floor_offset + xyz_for_max_z + self.model.body_pos[
                rock_body_ids[name]]
            gxy = global_xyz[0:2]
            max_height = global_xyz[2]

            if self.visualize:
                self.viewer.add_marker(pos=global_xyz,
                                       label="m",
                                       size=np.array([0.01, 0.01, 0.01]),
                                       rgba=np.array([0.0, 0.0, 1.0, 1.0]))

            dirt_z = dirt_height_xy(gxy)
            #dirt_z = 0
            #print(name, dirt_z)

            z_height = max_height - dirt_z
            self.rock_mod_cache.append((name, z_height))

    def get_ground_truth(self):
        """
        self.rock_mod_cache set from self.mod_rocks

        Return 1d numpy array of 9 elements for positions of all 3 rocks including:
            - rock x dist from cam
            - rock y dist from cam
            - rock z height from arena floor
        """
        cam_pos = self.model.cam_pos[0]

        #line_pos = self.floor_offset + np.array([0.0, 0.75, 0.0])
        #self.viewer.add_marker(pos=line_pos)

        ##r0_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock0')]
        ##r1_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock1')]
        ##r2_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock2')]
        ##r0_diff = r0_pos - cam_pos
        ##r1_diff = r1_pos - cam_pos
        ##r2_diff = r2_pos - cam_pos

        ground_truth = np.zeros(9, dtype=np.float32)
        for i, slot in enumerate(self.rock_mod_cache):
            name = slot[0]
            z_height = slot[1]

            pos = self.floor_offset + self.model.body_pos[
                self.model.body_name2id(name)]
            diff = pos - cam_pos

            # Project difference into camera coordinate frame
            cam_angle = quaternion.as_euler_angles(
                np.quaternion(*self.model.cam_quat[0]))[0]
            cam_angle += np.pi / 2
            in_cam_frame = np.zeros_like(diff)
            x = diff[1]
            y = -diff[0]
            in_cam_frame[0] = x * np.cos(cam_angle) + y * np.sin(cam_angle)
            in_cam_frame[1] = -x * np.sin(cam_angle) + y * np.cos(cam_angle)
            in_cam_frame[2] = z_height
            # simple check that change of frame is mathematically valid
            assert (np.isclose(np.sum(np.square(diff[:2])),
                               np.sum(np.square(in_cam_frame[:2]))))
            # swap positions to match ROS standard coordinates
            ground_truth[3 * i + 0] = in_cam_frame[0]
            ground_truth[3 * i + 1] = in_cam_frame[1]
            ground_truth[3 * i + 2] = in_cam_frame[2]
            text = "{0} x: {1:.2f} y: {2:.2f} height:{3:.2f}".format(
                name, ground_truth[3 * i + 0], ground_truth[3 * i + 1],
                z_height)
            ##text = "x: {0:.2f} y: {1:.2f} height:{2:.2f}".format(ground_truth[3*i+0], ground_truth[3*i+1], z_height)
            ##text = "height:{0:.2f}".format(z_height)
            if self.visualize:
                self.viewer.add_marker(pos=pos, label=text, rgba=np.zeros(4))

        return ground_truth
Esempio n. 8
0
def render_callback(sim, viewer):
    global modder
    if modder is None:
        modder = TextureModder(sim)
    for name in sim.model.geom_names:
        modder.rand_all(name)
Esempio n. 9
0
def render_callback(sim, viewer):
    global modder
    if modder is None:
        modder = TextureModder(sim)
    for name in sim.model.geom_names:
        modder.rand_all(name)
Esempio n. 10
0
from mujoco_py.modder import TextureModder
import os

model = load_model_from_path("../xmls/fetch/main.xml")
pool = MjSimPool(model)
modder = TextureModder(sim)

pool = MjSimPool([MjSim(model) for _ in range(20)])
for i, sim in enumerate(pool.sims):
    sim.data.qpos[:] = 0.0
    sim.data.qvel[:] = 0.0
    sim.data.ctrl[:] = i

# Advance all 20 simulations 100 times.
for _ in range(100):
    pool.step()

import ipdb; ipdb.set_trace()

for i, sim in enumerate(pool.sims):
    print("%d-th sim qpos=%s" % (i, str(sim.data.qpos)))


while True:
    for name in sim.model.geom_names:
        modder.rand_all(name)

    sim.forward()
    cam_img = sim.render(640, 360)[::-1, :, :]
    import ipdb; ipdb.set_trace()
Esempio n. 11
0
from mujoco_py.modder import TextureModder, MaterialModder
import os
from gym import utils
from gym.envs.robotics import gen3_env

MODEL_XML_PATH = "/home/rjangir/workSpace/gen3-mujoco/gym/gym/envs/robotics/assets/gen3/sideways_fold.xml"
model = load_model_from_path(MODEL_XML_PATH)
#model = load_model_from_path("xmls/fetch/main.xml")
sim = MjSim(model)

viewer = MjViewer(sim)
modder = TextureModder(sim)
#matModder = MaterialModder(sim) #specularity, shininess, reflectance

t = 0

while True:
    #print("body names", sim.model.name_skinadr, sim.model.skin_matid[0])
    skin_mat = sim.model.skin_matid[0]
    #print("skin mat texture", sim.model.mat_texid[skin_mat], sim.model.tex_type[sim.model.mat_texid[skin_mat]])
    for name in sim.model.geom_names:
        modder.whiten_materials()
        modder.set_checker(name, (255, 0, 0), (0, 0, 0))
        modder.rand_all(name)
    modder.set_checker('skin', (255, 0, 0), (0, 0, 0))
    modder.rand_all('skin')
    viewer.render()
    t += 1
    if t > 100 and os.getenv('TESTING') is not None:
        break
Esempio n. 12
0
class BlockWordEnv:
    def __init__(self,
                 env_file,
                 random_color=None,
                 random_num=5,
                 debug=False,
                 random_seed=0):
        self.env_file = env_file
        self.random_color = random_color
        self.random_num = random_num
        self.debug = debug
        self.model = load_model_from_path(env_file)
        self.sim = MjSim(self.model, nsubsteps=1)
        self.sim.model.vis.map.znear = 0.02
        self.sim.model.vis.map.zfar = 50.0
        self.cube_size = self.sim.model.geom_size[
            self.model._geom_name2id['cube_0']]
        self.cuboid_size = self.sim.model.geom_size[
            self.model._geom_name2id['cuboid_0']]
        self.cube_num = len(
            [i for i in self.sim.model.geom_names if 'cube_' in i])
        self.cuboid_num = len(
            [i for i in self.sim.model.geom_names if 'cuboid_' in i])
        if self.debug:
            print('total cube num:', self.cube_num)
            print('total cuboid num:', self.cuboid_num)
        self.max_num_per_type = max(self.cube_num, self.cuboid_num)
        self.center_bounds = [
            -0.25, 0.25
        ]  # [0, self.cuboid_size[0] * self.max_num_per_type]
        self.pos_candidates = np.arange(
            self.center_bounds[0], self.center_bounds[1] + self.cube_size[0],
            self.cube_size[0])
        self.modder = TextureModder(self.sim, random_state=random_seed)
        self.cur_id = {'cube': 0, 'cuboid': 0}
        self.viewer = None
        self.active_blocks = []
        if random_color:
            self.reset_viewer()

    def reset(self):
        self.sim.reset()
        self.sim.step()
        self.active_blocks = []
        self.cur_id = {'cube': 0, 'cuboid': 0}
        if self.random_color:
            self.randomize_color()
        if self.viewer is not None:
            self.reset_viewer()

    def randomize_color(self):
        self.modder.whiten_materials()
        for name in self.sim.model.geom_names:
            if 'table' in name:
                continue
            self.modder.rand_all(name)

    def simulate_one_epoch(self):
        self.gen_constrained_ran_bk_configs()
        imgs = []
        for i in range(self.random_num):
            img = self.get_img()
            imgs.append(img.copy())
            self.randomize_color()
        stable = self.check_stability(render=False)
        return imgs, stable

    def step(self):
        self.sim.step()

    def forward(self):
        self.sim.forward()

    def get_active_bk_states(self):
        bk_poses = []
        for bk_name in self.active_blocks:
            pose = self.sim.data.get_joint_qpos(bk_name)
            bk_poses.append(pose)
        return np.array(bk_poses)

    def check_stability(self, render=False):
        self.sim.step()
        prev_poses = self.get_active_bk_states()
        for i in range(400):
            self.sim.step()
            if render:
                self.render()
        post_poses = self.get_active_bk_states()
        diff = np.abs(post_poses - prev_poses)
        diff_norm = np.linalg.norm(diff[:, :3], axis=1)
        if self.debug:
            print('prev:')
            print(prev_poses[:, :3])
            print('post')
            print(post_poses[:, :3])
            print('diff norm:', diff_norm)
        stable = np.all(diff_norm < 0.01)
        if self.debug:
            print('Current configuration stable:', stable)
        return stable

    def render(self):
        if self.viewer is None:
            self.reset_viewer()
        self.viewer.render()

    def reset_viewer(self):
        self.viewer = MjViewer(self.sim)
        self.viewer.cam.lookat[:3] = np.array([0, 0, 0.1])
        self.viewer.cam.distance = 2
        self.viewer.cam.elevation = -20

    def move_given_block(self, name, target_pos):
        prev_pose = self.sim.data.get_joint_qpos(name)
        post_pose = prev_pose.copy()
        post_pose[:3] = target_pos
        self.sim.data.set_joint_qpos(name, post_pose)
        self.active_blocks.append(name)
        if self.debug:
            print('{0:s} pose after moving:'.format(name), post_pose)

    def move_given_blocks(self, block_dict):
        for bk_name, pos in block_dict.items():
            self.move_given_block(bk_name, pos)

    def move_block_for_demo(self, name, target_pos):
        prev_pose = self.sim.data.get_joint_qpos(name)
        if self.debug:
            print('{0:s} pose before moving:'.format(name), prev_pose)
        post_pose = prev_pose.copy()
        planned_path = []
        up_steps = 20
        h_steps = 30
        down_steps = 20
        planned_path.append(prev_pose.copy())
        for i in range(up_steps):
            tmp_pose = planned_path[-1].copy()
            tmp_pose[2] += (0.45 - prev_pose[2]) / float(up_steps)
            planned_path.append(tmp_pose.copy())
        for i in range(h_steps + 1):
            tmp_pose = planned_path[-1].copy()
            tmp_pose[0] = (target_pos[0] -
                           prev_pose[0]) * i / h_steps + prev_pose[0]
            tmp_pose[1] = (target_pos[1] -
                           prev_pose[1]) * i / h_steps + prev_pose[1]
            planned_path.append(tmp_pose.copy())
        for i in range(down_steps):
            tmp_pose = planned_path[-1].copy()
            tmp_pose[2] -= (0.45 - target_pos[2]) / float(down_steps)
            planned_path.append(tmp_pose.copy())
        post_pose[:3] = target_pos
        planned_path.append(post_pose.copy())
        for pos in planned_path:
            self.sim.data.set_joint_qpos(name, pos)
            time.sleep(0.02)
            self.sim.forward()
            self.render()
        self.active_blocks.append(name)
        if self.debug:
            print('{0:s} pose after moving:'.format(name), post_pose)

    def move_blocks_for_demo(self, block_dict):
        name = list(block_dict.keys())[0]
        target_pos = block_dict[name]
        initial_poses = {}
        for key in block_dict.keys():
            initial_poses[key] = self.sim.data.get_joint_qpos(key)
        prev_pose = self.sim.data.get_joint_qpos(name)
        if self.debug:
            print('{0:s} pose before moving:'.format(name), prev_pose)
        post_pose = prev_pose.copy()
        planned_delta_path = []
        planned_path = []
        up_steps = 20
        h_steps = 30
        down_steps = 20
        planned_path.append(prev_pose.copy())
        planned_delta_path.append(np.zeros_like(prev_pose))
        for i in range(up_steps):
            tmp_pose = planned_path[-1].copy()
            tmp_pose[2] += (0.45 - prev_pose[2]) / float(up_steps)
            planned_delta_path.append(tmp_pose - planned_path[-1])
            planned_path.append(tmp_pose.copy())
        for i in range(h_steps + 1):
            tmp_pose = planned_path[-1].copy()
            tmp_pose[0] = (target_pos[0] -
                           prev_pose[0]) * i / h_steps + prev_pose[0]
            tmp_pose[1] = (target_pos[1] -
                           prev_pose[1]) * i / h_steps + prev_pose[1]
            planned_delta_path.append(tmp_pose - planned_path[-1])
            planned_path.append(tmp_pose.copy())
        for i in range(down_steps):
            tmp_pose = planned_path[-1].copy()
            tmp_pose[2] -= (0.45 - target_pos[2]) / float(down_steps)
            planned_delta_path.append(tmp_pose - planned_path[-1])
            planned_path.append(tmp_pose.copy())
        post_pose[:3] = target_pos
        planned_delta_path.append(post_pose - planned_path[-1])
        planned_path.append(post_pose.copy())

        for delta_pos in planned_delta_path:
            for bk_name, target_bk_pos in block_dict.items():
                initial_poses[bk_name] = initial_poses[bk_name] + delta_pos
                self.sim.data.set_joint_qpos(bk_name, initial_poses[bk_name])
            time.sleep(0.02)
            self.sim.forward()
            self.render()
        self.active_blocks.append(name)
        if self.debug:
            print('{0:s} pose after moving:'.format(name),
                  self.sim.data.get_joint_qpos(name))

    def move_block(self, target_pos, bk_type='cube'):
        # center bounds: [0, 0.1 * 30]
        assert bk_type == 'cube' or bk_type == 'cuboid'
        bk_name = '{0:s}_{1:d}'.format(bk_type, self.cur_id[bk_type])
        prev_pose = self.sim.data.get_joint_qpos(bk_name)
        post_pose = prev_pose.copy()
        post_pose[:3] = target_pos

        self.sim.data.set_joint_qpos(bk_name, post_pose)
        self.active_blocks.append(bk_name)
        if self.debug:
            print(
                '{0:s}_{1:d} pose after moving:'.format(
                    bk_type, self.cur_id[bk_type]), post_pose)
        self.cur_id[bk_type] += 1

    def get_img(self):
        # return self.get_img_demo()
        img = self.sim.render(camera_name='camera',
                              width=600,
                              height=600,
                              depth=False)
        img = np.flipud(img)
        resized_img = cv2.resize(img[0:500, 50:550], (224, 224),
                                 cv2.INTER_AREA)
        return resized_img

    def get_img_demo(self):
        img = self.sim.render(camera_name='camera',
                              width=1200,
                              height=700,
                              depth=False)
        img = np.flipud(img)
        img = img[:, :, ::-1]
        return img

    def build_tower(self):
        layer_num = 1
        for i in range(20):
            z = (2 * layer_num - 1) * self.cube_size[2]
            y = 0
            x = 0
            target_pos = np.array([x, y, z])
            self.move_block(target_pos, bk_type='cube')
            layer_num += 1

    def gen_ran_bk_configs(self, render=False):
        while True:
            cuboid_num = np.random.choice(5, 1)[0]
            cube_num = np.random.choice(15, 1)[0]
            if cuboid_num > 0 or cube_num > 0:
                break
        total_num = cuboid_num + cube_num
        blocks = [0] * cube_num + [1] * cuboid_num
        permuted_blocks = np.random.permutation(blocks)
        cur_x = self.center_bounds[0]
        layer_num = 1
        for i in range(total_num):
            bk = permuted_blocks[i]
            bk_type = 'cube' if bk == 0 else 'cuboid'
            bk_size = self.cube_size if bk == 0 else self.cuboid_size
            z = (2 * layer_num - 1) * self.cube_size[2]
            y = 0
            if self.center_bounds[1] - cur_x < bk_size[0]:
                layer_num += 1
                cur_x = self.center_bounds[0]
                continue
            else:
                bk_lower_limit = cur_x + bk_size[0]
                pos_candidates = self.pos_candidates[
                    self.pos_candidates >= bk_lower_limit]
                x = np.random.choice(pos_candidates, 1)[0]
                cur_x = x + bk_size[0]
                target_pos = np.array([x, y, z])
                self.move_block(target_pos, bk_type=bk_type)
        self.sim.forward()
        if render:
            self.render()

    def gen_constrained_ran_bk_configs(self, render=False):
        # prob = np.exp(-0.1 * np.arange(30))
        while True:
            cuboid_num = np.random.choice(5, 1)[0]
            cube_num = np.random.choice(15, 1)[0]
            if cuboid_num > 0 or cube_num > 0:
                break
        if self.debug:
            print('Selected cube num:', cube_num)
            print('Selected cuboid num:', cuboid_num)
        total_num = cuboid_num + cube_num
        blocks = [0] * cube_num + [1] * cuboid_num
        permuted_blocks = np.random.permutation(blocks)
        cur_x = self.center_bounds[0]
        layer_num = 1
        layer_pos_candidates = self.pos_candidates.copy()
        filled_segs = []
        for i in range(total_num):
            bk = permuted_blocks[i]
            bk_type = 'cube' if bk == 0 else 'cuboid'
            bk_size = self.cube_size if bk == 0 else self.cuboid_size
            z = (2 * layer_num - 1) * self.cube_size[2]
            y = 0
            bk_lower_limit = cur_x + bk_size[0]
            pos_candidates = layer_pos_candidates[
                layer_pos_candidates >= bk_lower_limit]
            if pos_candidates.size < 1:
                layer_num += 1
                cur_x = self.center_bounds[0]
                layer_pos_candidates = self.pos_candidates.copy()
                good_ids = np.zeros_like(layer_pos_candidates, dtype=bool)
                for seg in filled_segs:
                    good_ids = np.logical_or(
                        good_ids,
                        np.logical_and(layer_pos_candidates >= seg[0],
                                       layer_pos_candidates <= seg[1]))
                layer_pos_candidates = layer_pos_candidates[good_ids]
                if self.debug:
                    print('Layer [{0:d}] pos candidates num: {1:d}'.format(
                        layer_num, layer_pos_candidates.size))
                if layer_pos_candidates.size < 1:
                    break
                filled_segs = []
                continue
            else:
                x = np.random.choice(pos_candidates, 1)[0]
                cur_x = x + bk_size[0]
                target_pos = np.array([x, y, z])
                self.move_block(target_pos, bk_type=bk_type)
                filled_segs.append([x - bk_size[0], cur_x])
        self.sim.forward()
        if render:
            self.render()
Esempio n. 13
0
#!/usr/bin/env python3
"""
Displays robot fetch at a disco party.
"""
from mujoco_py import load_model_from_path, MjSim, MjViewer
from mujoco_py.modder import TextureModder
import os

model = load_model_from_path("xmls/fetch/main.xml")
sim = MjSim(model)

viewer = MjViewer(sim)
modder = TextureModder(sim)

t = 0

while True:
    for name in sim.model.geom_names:
        modder.rand_all(name)

    viewer.render()
    t += 1
    if t > 100 and os.getenv('TESTING') is not None:
        break
Esempio n. 14
0
class RobotEnv(gym.GoalEnv):
    def __init__(self, model_path, initial_qpos, n_actions, n_substeps, mode, visual_randomize, visual_data_recording):
        if model_path.startswith('/'):
            fullpath = model_path
        else:
            fullpath = os.path.join(os.path.dirname(__file__), 'assets', model_path)
        if not os.path.exists(fullpath):
            raise IOError('File {} does not exist'.format(fullpath))

        self.mode = mode
        model = mujoco_py.load_model_from_path(fullpath)
        self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps)
        self.viewer = None # comment when using "human"
        self._viewers = {}
        
        self.modder = TextureModder(self.sim)
        self.visual_randomize = visual_randomize
        self.mat_modder = MaterialModder(self.sim)
        self.light_modder = LightModder(self.sim)
        self.camera_modder = CameraModder(self.sim)


        self.metadata = {
            'render.modes': ['human', 'rgb_array'],
            'video.frames_per_second': int(np.round(1.0 / self.dt))
        }

        self.visual_data_recording = visual_data_recording
        self._index = 0
        self._label_matrix = []

        self.seed()
        self._env_setup(initial_qpos=initial_qpos)
        self.initial_state = copy.deepcopy(self.sim.get_state())

        self.goal = self._sample_goal()
        obs = self._get_obs()
        self.action_space = spaces.Box(-1., 1., shape=(n_actions,), dtype='float32')
        self.observation_space = spaces.Dict(dict(
            desired_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'),
            achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'),
            observation=spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype='float32'),
        ))
        if self.viewer:
            self._viewer_setup()

    @property
    def dt(self):
        return self.sim.model.opt.timestep * self.sim.nsubsteps

    # Env methods
    # ----------------------------

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        if self.visual_randomize:
            for name in self.sim.model.geom_names:
                self.modder.whiten_materials()
                self.modder.set_checker(name, (255, 0, 0), (0, 0, 0))
                self.modder.rand_all(name)
                self.mat_modder.rand_all(name)
            self.modder.set_checker('skin', (255, 0, 0), (0, 0, 0))
            self.modder.rand_all('skin')
            self.light_modder.rand_all('light0')
            self.light_modder.rand_all('light1')
            self.light_modder.rand_all('light2')
            self.light_modder.rand_all('light3')
            self.camera_modder.rand_fovy('camera1')
            self.camera_modder.rand_pos('camera1')
            self.camera_modder.rand_quat('camera1', factor=[0.1, 0.1, 0.1])
        action = np.clip(action, self.action_space.low, self.action_space.high)
        self._set_action(action)
        self.sim.step()
        self._step_callback()
        obs = self._get_obs()

        done = False
        info = {
            'is_success': self._is_success(obs['achieved_goal'], self.goal),
        }   
        reward = self.compute_reward(obs['achieved_goal'], self.goal, info)
        #print("REWARD", reward ," and IS SUCCESS ", info['is_success'])
        return obs, reward, done, info

    def reset(self):
        # Attempt to reset the simulator. Since we randomize initial conditions, it
        # is possible to get into a state with numerical issues (e.g. due to penetration or
        # Gimbel lock) or we may not achieve an initial condition (e.g. an object is within the hand).
        # In this case, we just keep randomizing until we eventually achieve a valid initial
        # configuration.
        super(RobotEnv, self).reset()
        did_reset_sim = False
        while not did_reset_sim:
            did_reset_sim = self._reset_sim()
        # if self.visual_randomize:
        #     for name in self.sim.model.geom_names:
        #         self.modder.whiten_materials()
        #         self.modder.set_checker(name, (255, 0, 0), (0, 0, 0))
        #         self.modder.rand_all(name)
        #         self.mat_modder.rand_all(name)
        #     self.modder.set_checker('skin', (255, 0, 0), (0, 0, 0))
        #     self.modder.rand_all('skin')   
        self.goal = self._sample_goal().copy()
        obs = self._get_obs()
        return obs

    def close(self):
        if self.viewer is not None:
            # self.viewer.finish()
            self.viewer = None
            self._viewers = {}

    def render(self, mode='human', width=DEFAULT_SIZE, height=DEFAULT_SIZE):
        self._render_callback()
        if mode == 'rgb_array':
            self._get_viewer(mode).render(width, height)
            # window size used for old mujoco-py:
            data = self._get_viewer(mode).read_pixels(width, height, depth=False)
            # original image is upside-down, so flip it
            return data[::-1, :, :]
            #return None
        elif mode == 'human':
            self._get_viewer(mode).render()

    def _get_viewer(self, mode):
        self.viewer = self._viewers.get(mode)
        if self.viewer is None:
            if mode == 'human':
                self.viewer = mujoco_py.MjViewer(self.sim)
            elif mode == 'rgb_array':
                device_id = self.sim.model.camera_name2id('camera1')
                self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, device_id=device_id)
            self._viewer_setup()
            self._viewers[mode] = self.viewer
        return self.viewer

    # Extension methods
    # ----------------------------

    def _reset_sim(self):
        """Resets a simulation and indicates whether or not it was successful.
        If a reset was unsuccessful (e.g. if a randomized state caused an error in the
        simulation), this method should indicate such a failure by returning False.
        In such a case, this method will be called again to attempt a the reset again.
        """

        self.sim.set_state(self.initial_state)
        self.sim.forward()
        return True

    def _get_obs(self):
        """Returns the observation.
        """
        raise NotImplementedError()

    def _set_action(self, action):
        """Applies the given action to the simulation.
        """
        raise NotImplementedError()

    def _is_success(self, achieved_goal, desired_goal):
        """Indicates whether or not the achieved goal successfully achieved the desired goal.
        """
        raise NotImplementedError()

    def _sample_goal(self):
        """Samples a new goal and returns it.
        """
        raise NotImplementedError()

    def _env_setup(self, initial_qpos):
        """Initial configuration of the environment. Can be used to configure initial state
        and extract information from the simulation.
        """
        pass

    def _viewer_setup(self):
        """Initial configuration of the viewer. Can be used to set the camera position,
        for example.
        """
        pass

    def _render_callback(self):
        """A custom callback that is called before rendering. Can be used
        to implement custom visualizations.
        """
        pass

    def _step_callback(self):
        """A custom callback that is called after stepping the simulation. Can be used
        to enforce additional constraints on the simulation state.
        """
        pass
Esempio n. 15
0
class MjDataSetGenerator(DataSetGenerator):
    IMG_HEIGHT = 480
    IMG_WIDTH = 640

    def __init__(self,
                 model_path,
                 dataset_name,
                 use_procedural=False,
                 cam_pos_file=None,
                 cam_norm_pos_file=None):
        super().__init__(dataset_name,
                         cam_pos_file=cam_pos_file,
                         cam_norm_pos_file=cam_norm_pos_file)
        self.model = mujoco_py.load_model_from_path(model_path)
        self.sim = mujoco_py.MjSim(self.model)
        self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, None)
        self.cam_modder = CameraModder(self.sim)
        self.tex_modder = TextureModder(self.sim)
        self.use_procedural = use_procedural

    def on_screen_render(self, cam_name):
        self.sim.reset()
        temp_viewer = mujoco_py.MjViewer(self.sim)
        t = 0

        while True:
            # Randomised material/texture if any is assigned to geom
            self._rand_mat()

            # Set camera position and orientation
            self._set_cam_pos(cam_name, t)
            self.sim.step()
            self._set_cam_orientation(cam_name, t)

            temp_viewer.render()
            t += 1
            if t > 100 and os.getenv('TESTING') is not None:
                break

    def create_data_set(self,
                        ndata,
                        radius_range,
                        deg_range,
                        quat,
                        cameras,
                        target_geom,
                        png_tex_ids=None,
                        start=0):
        self.sim.reset()
        self._make_dir()

        t = start

        # initialise the camera position array
        self.cam_pos = self._get_cam_pos(radius_range, deg_range, quat, ndata,
                                         start)
        # self.cam_pos = self._get_debug_cam_pos(radius_range, deg_range, quat, ndata, 4)

        # generate dataset
        while True:

            # Randomised the position of the object
            # Set camera position
            self._set_cam_pos(cameras[0], t)

            # Randomised light source position
            self._randomise_light_pos()

            # Randomised material/texture if any is assigned to geom
            self._rand_mat(target_geom, png_tex_ids)

            # Simulate and render in offscreen renderer
            self.sim.step()

            # Save images for all camera
            for cam in cameras:
                self._set_cam_orientation(cam, t)
                cam_id = self.cam_modder.get_camid(cam)
                self.viewer.render(self.IMG_WIDTH, self.IMG_HEIGHT, cam_id)
                rgb = self.viewer.read_pixels(self.IMG_WIDTH,
                                              self.IMG_HEIGHT)[0][::-1, :, :]
                self._save_fig_to_dir(rgb, t, cam_id)

            # Time advance one
            t += 1

            # Print progress to terminal
            self.print_progress(ndata, t)

            if t == ndata or os.getenv('TESTING') is not None:
                print("Finish creating {} {} images".format(
                    ndata, self.data_set_name))
                break

        self._save_cam_pos(self.cam_pos)

    def _rand_mat(self, target_geom, png_tex):
        for name in self.sim.model.geom_names:
            # Random mat using mujoco py modder or png in xml
            if self.use_procedural:
                self.tex_modder.rand_all(name)
            else:
                # change redness
                if name == target_geom["cube"]:
                    self._change_redness(name)

                # change wood texture
                if name == target_geom["ground"]:
                    self._change_tex_png(name, png_tex)

    def _get_tex_id(self, mat_id):
        tex_id = self.model.mat_texid[mat_id]
        assert tex_id >= 0, "Material has no assigned texture"
        return tex_id

    def _change_redness(self, name):
        r = self.tex_modder.random_state.randint(120, 256)
        g = self.tex_modder.random_state.randint(0, 120)
        b = self.tex_modder.random_state.randint(0, 120)
        self.tex_modder.set_rgb(name, [r, g, b])

    def _change_tex_png(self, name, png_tex):
        geom_id = self.model.geom_name2id(name)
        mat_id = self.model.geom_matid[geom_id]
        self.model.mat_texid[mat_id] = \
            self.tex_modder.random_state.randint(png_tex[0], png_tex[1] + 1)
        self.tex_modder.upload_texture(name)

    def _set_cam_pos(self, cam_name, t, printPos=None):
        # If no
        if self.cam_pos is None:
            self.cam_pos = self._get_cam_pos([0.25, 0.7], [0, 80], 0.5)

        # set position of the reference camera
        cam_id = self.cam_modder.get_camid(cam_name)
        self.model.cam_pos[cam_id] = self.cam_pos[t, 0:3]

        if printPos:
            print("The cam pos is: ", self.cam_pos[t, :])

    # Call after sim.step if want to change the camera orientation while keep
    def _set_cam_orientation(self, cam_name, t, printPos=None):
        cam_id = self.cam_modder.get_camid(cam_name)
        if self.cam_pos_file is None:
            # Add the offset to the rotational matrix
            self.sim.data.cam_xmat[
                cam_id] = self.sim.data.cam_xmat[cam_id] + self.cam_pos[t, 3:]
            # Save the actual rotational matrix
            self.cam_pos[t, 3:] = self.sim.data.cam_xmat[cam_id]
        else:
            self.sim.data.cam_xmat[cam_id] = self.cam_pos[t, 3:]

        if printPos:
            print("The cam orientation is: ", self.cam_pos[t, :])

    def _randomise_light_pos(self):
        # set position
        # index of light is hard coded for now
        # TODO: get light index by name
        for i in range(len(self.model.light_pos)):
            self.model.light_pos[i, 0] = uniform(-10, 10)
            self.model.light_pos[i, 1] = uniform(-10, 5)