Esempio n. 1
0
def main(_):
    ff = open(FLAGS.out_file, 'w')
    if not ff:
        raise RuntimeError('OUTPUT FILE OPEN ERROR!!!!!!')

    os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.7
    config.gpu_options.allow_growth = True
    if not tf.gfile.Exists(FLAGS.data_dir):
        raise RuntimeError('data direction is not exist!')

    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, FLAGS.patch_size, FLAGS.patch_size, 3], 'x')

    y = build.net(x, False, FLAGS)

    # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    # with tf.control_dependencies(update_ops):
    pred = tf.nn.softmax(y, 1)

    with tf.name_scope("saver"):
        saver = tf.train.Saver(name="saver")

    f = open(os.path.join(FLAGS.meta_dir, FLAGS.set) + '.txt', 'r')
    image_names = []
    labels = []
    line = f.readline()
    while line:
        l = line.split(' ')
        if len(l) == 2:
            image_name = l[0]
            label = l[1]
        else:
            image_name = l[0] + ' ' + l[1]
            label = l[2]
        # image_name, label = line.split(' ')
        label = label[0:-1]
        image_names.append(image_name.split('.')[0] + '-' + FLAGS.extra + '.' + FLAGS.format)
        labels.append(int(label))
        line = f.readline()
    f.close()

    f = open(os.path.join(FLAGS.meta_dir, 'spc_classes.txt'), 'r')
    meta = {}
    line = f.readline()
    while line:
        label, class_name = line.split(' ')
        class_name = class_name[0:-1]
        meta[int(label)] = class_name
        line = f.readline()
    f.close()
    confusion = np.zeros(shape=(10, 10), dtype=np.uint32)
    confusion_i = np.zeros(shape=(10, 10), dtype=np.uint32)
    total = 0.
    correct = 0.
    total_p = 0.
    correct_p = 0.
    with tf.Session(config = config) as sess:
        if tf.gfile.Exists(os.path.join(FLAGS.ckpt_dir, 'checkpoint')):
            saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpt_dir) if FLAGS.model_name is None else os.path.join(FLAGS.ckpt_dir, FLAGS.model_name))
        else:
            raise RuntimeError("Check point files don't exist!")

        for i in range(len(labels)):
            label = labels[i]
            class_name = meta[label]
            image_name = image_names[i]
            full_path = os.path.join(FLAGS.data_dir, class_name, image_name)
            img = plt.imread(full_path)
            for img in get_patches(img, 1, 512):
                data = np.ndarray(shape=(FLAGS.patches, FLAGS.patch_size, FLAGS.patch_size, 3), dtype=np.float32)
                for n, patch in enumerate(get_patches(img, FLAGS.patches, FLAGS.patch_size)):
                    patch = standardization(patch)
                    data[n, :] = patch
                # data = standardization(data)
                prediction = sess.run(pred, feed_dict={x: data})
                prediction0 = np.argmax(prediction, 1)
                for n in prediction0:
                    if n == label:
                        correct_p = correct_p + 1
                    confusion[label, n] = confusion[label, n] + 1
                total_p = total_p + FLAGS.patches
                # count = np.bincount(prediction)
                # prediction = np.argmax(count)
                prediction = np.sum(prediction, 0)
                #print(prediction)
                prediction = np.argmax(prediction)
                confusion_i[label, prediction] = confusion_i[label, prediction] + 1
                print("predict %d while true label is %d." % (prediction, label), file=ff)
                ff.flush()
                total = total + 1
                if prediction == label:
                    correct = correct + 1
    print('accuracy(patch level) = %f' % (correct_p / total_p), file=ff)
    print('accuracy(image level) = %f' % (correct / total), file=ff)
    print('confusion matrix--patch level:', file=ff)
    print(confusion, file=ff)
    print('confusion matrix--image level:', file=ff)
    print(confusion_i, file=ff)
    print('/|\\', file=ff)
    print(' |', file=ff)
    print('actual', file=ff)
    print(' |', file=ff)
    print(' ---prediction--->', file=ff)
    ff.close()
Esempio n. 2
0
def main(_):
    os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.95
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    # config.log_device_placement = True
    if not tf.gfile.Exists(FLAGS.data_dir):
        raise RuntimeError('data direction is not exist!')

    # if tf.gfile.Exists(FLAGS.log_dir):
    #     tf.gfile.DeleteRecursively(FLAGS.log_dir)
    tf.gfile.MakeDirs(FLAGS.log_dir)

    # if not tf.gfile.Exists(FLAGS.ckpt_dir):
    tf.gfile.MakeDirs(os.path.join(FLAGS.ckpt_dir, 'best'))

    f = open(FLAGS.out_file, 'a')
    if not f:
        raise RuntimeError('OUTPUT FILE OPEN ERROR!!!!!!')

    with tf.device('/cpu:0'):
        num_gpus = len(FLAGS.gpu.split(','))
        global_step = tf.Variable(FLAGS.start_step,
                                  name='global_step',
                                  trainable=False)
        # learning_rate = tf.train.exponential_decay(0.05, global_step, 2000, 0.9, staircase=True)
        learning_rate = tf.train.exponential_decay(0.1,
                                                   global_step,
                                                   1000,
                                                   0.95,
                                                   staircase=True)
        # learning_rate = tf.train.piecewise_constant(global_step, [24000, 48000, 72000, 108000, 144000],
        #                                                 [0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001])
        tf.summary.scalar('learing rate', learning_rate)
        # opt = tf.train.AdamOptimizer(learning_rate)
        opt = tf.train.MomentumOptimizer(learning_rate,
                                         momentum=FLAGS.momentum)
        # opt = tf.train.GradientDescentOptimizer(learning_rate)
        # learning_rate = tf.train.exponential_decay(0.01, global_step, 32000, 0.1)
        # opt = tf.train.GradientDescentOptimizer(learning_rate)

        tower_grads = []
        tower_loss = []
        tower_acc = []
        tower_acc_v = []
        images, labels = input_pipeline(
            tf.train.match_filenames_once(
                os.path.join(FLAGS.data_dir, 'train', '*.tfrecords')),
            FLAGS.batch_size)
        batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
            [images, labels], capacity=2 * num_gpus)
        images_v, labels_v = input_pipeline(
            tf.train.match_filenames_once(
                os.path.join(FLAGS.data_dir, 'valid', '*.tfrecords')),
            128 // num_gpus)
        batch_queue_v = tf.contrib.slim.prefetch_queue.prefetch_queue(
            [images_v, labels_v], capacity=2 * num_gpus)
        for i in range(num_gpus):
            with tf.device('/gpu:%d' % i):
                with tf.name_scope('tower_%d' % i) as scope:
                    image_batch, label_batch = batch_queue.dequeue()
                    logits = build.net(image_batch, is_training, FLAGS)
                    losses.sparse_softmax_cross_entropy(labels=label_batch,
                                                        logits=logits,
                                                        scope=scope)
                    total_loss = losses.get_losses(
                        scope=scope) + losses.get_regularization_losses(
                            scope=scope)
                    total_loss = tf.add_n(total_loss)

                    grads = opt.compute_gradients(total_loss)
                    tower_grads.append(grads)
                    tower_loss.append(losses.get_losses(scope=scope))

                    with tf.name_scope('accuracy'):
                        correct_prediction = tf.equal(
                            tf.reshape(tf.argmax(logits, 1), [-1, 1]),
                            tf.cast(label_batch, tf.int64))
                        accuracy = tf.reduce_mean(
                            tf.cast(correct_prediction, tf.float32))
                    tower_acc.append(accuracy)
                    tf.get_variable_scope().reuse_variables()

                    image_batch_v, label_batch_v = batch_queue_v.dequeue()
                    logits_v = build.net(image_batch_v, False, FLAGS)
                    correct_prediction = tf.equal(
                        tf.reshape(tf.argmax(logits_v, 1), [-1, 1]),
                        tf.cast(label_batch_v, tf.int64))
                    accuracy = tf.reduce_mean(
                        tf.cast(correct_prediction, tf.float32))
                    tower_acc_v.append(accuracy)
        with tf.name_scope('scores'):
            with tf.name_scope('accuracy'):
                accuracy = tf.reduce_mean(tf.stack(tower_acc, axis=0))
            with tf.name_scope('accuracy_v'):
                accuracy_v = tf.reduce_mean(tf.stack(tower_acc_v, axis=0))
            with tf.name_scope('batch_loss'):
                batch_loss = tf.add_n(tower_loss)[0] / num_gpus

            tf.summary.scalar('loss', batch_loss)
            tf.summary.scalar('accuracy', accuracy)

        grads = average_gradients(tower_grads)

        variable_averages = tf.train.ExponentialMovingAverage(
            0.9999, global_step)
        variables_averages_op = variable_averages.apply(
            tf.trainable_variables())
        with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
            apply_gradient_op = opt.apply_gradients(grads,
                                                    global_step=global_step)
            train_op = tf.group(apply_gradient_op, variables_averages_op)
            # train_op = apply_gradient_op

        # summary_op = tf.summary.merge_all()
        # init = tf.global_variables_initializer()
        summary_op = tf.summary.merge_all()

        saver = tf.train.Saver(name="saver", max_to_keep=10)
        saver_best = tf.train.Saver(name='best', max_to_keep=100)
        with tf.Session(config=config) as sess:
            sess.run(tf.local_variables_initializer())
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            if tf.gfile.Exists(os.path.join(FLAGS.ckpt_dir, 'checkpoint')):
                saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpt_dir))
            else:
                sess.run(tf.global_variables_initializer())

            train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train',
                                                 sess.graph)
            train_writer.flush()
            cache = np.ones(5, dtype=np.float32) / FLAGS.num_classes
            cache_v = np.ones(5, dtype=np.float32) / FLAGS.num_classes
            d = 1000
            best = 0
            for i in range(FLAGS.start_step, FLAGS.max_steps + 1):
                # feed = feed_dict(True, True)
                if i % d == 0:  # Record summaries and test-set accuracy
                    # loss0 = sess.run([total_loss], feed_dict=feed_dict(False, False))
                    # test_writer.add_summary(summary, i)
                    # feed[is_training] = FLAGS
                    acc, loss, summ, lr, acc_v = sess.run(
                        [
                            accuracy, batch_loss, summary_op, learning_rate,
                            accuracy_v
                        ],
                        feed_dict={is_training: False})
                    cache[int(i / d) % 5] = acc
                    cache_v[int(i / d) % 5] = acc_v
                    train_writer.add_summary(summ, i)
                    print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
                          file=f)
                    print(
                        'step %d: acc(t)=%f(%f), loss=%f; acc(v)=%f(%f); lr=%e'
                        % (i, acc, cache.mean(), loss, acc_v, cache_v.mean(),
                           lr),
                        file=f)
                    saver.save(sess,
                               os.path.join(FLAGS.ckpt_dir, FLAGS.model_name),
                               global_step=i)
                    if acc_v > 0.90:
                        saver_best.save(sess,
                                        os.path.join(FLAGS.ckpt_dir, 'best',
                                                     FLAGS.model_name),
                                        global_step=i)
                    f.flush()
                sess.run(train_op, feed_dict={is_training: True})

            coord.request_stop()
            coord.join(threads)

    train_writer.close()
    # test_writer.close()
    f.close()
Esempio n. 3
0
def main(_):
    ff = open(FLAGS.out_file, 'w')
    if not ff:
        raise RuntimeError('OUTPUT FILE OPEN ERROR!!!!!!')
    print('fname,camera', file=ff)
    os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.7
    config.gpu_options.allow_growth = True

    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32,
                           [None, FLAGS.patch_size, FLAGS.patch_size, 3], 'x')

    y = build.net(x, False, FLAGS)

    # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    # with tf.control_dependencies(update_ops):
    pred = tf.nn.softmax(y, 1)

    if FLAGS.ema:
        variable_averages = tf.train.ExponentialMovingAverage(0.9999)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore, name='saver')
    else:
        saver = tf.train.Saver(name="saver")

    # f = open(os.path.join(FLAGS.meta_dir, FLAGS.set) + '.txt', 'r')
    # image_names = []
    # labels = []
    # line = f.readline()
    # while line:
    #     l = line.split(' ')
    #     if len(l) == 2:
    #         image_name = l[0]
    #         label = l[1]
    #     else:
    #         image_name = l[0] + ' ' + l[1]
    #         label = l[2]
    #     # image_name, label = line.split(' ')
    #     label = label[0:-1]
    #     image_names.append(image_name.split('.')[0] + '-' + FLAGS.extra + '.' + FLAGS.format)
    #     labels.append(int(label))
    #     line = f.readline()
    # f.close()
    image_names = os.listdir(FLAGS.data_dir)

    f = open(os.path.join(FLAGS.meta_dir, 'spc_classes.txt'), 'r')
    meta = {}
    line = f.readline()
    while line:
        label, class_name = line.split(' ')
        class_name = class_name[0:-1]
        meta[int(label)] = class_name
        line = f.readline()
    f.close()
    # confusion = np.zeros(shape=(10, 10), dtype=np.uint32)
    # confusion_i = np.zeros(shape=(10, 10), dtype=np.uint32)
    # total = 0.
    # correct = 0.
    # total_p = 0.
    # correct_p = 0.
    with tf.Session(config=config) as sess:
        if tf.gfile.Exists(os.path.join(FLAGS.ckpt_dir, 'checkpoint')):
            saver.restore(
                sess,
                tf.train.latest_checkpoint(FLAGS.ckpt_dir)
                if FLAGS.model_name is None else os.path.join(
                    FLAGS.ckpt_dir, FLAGS.model_name))
        else:
            raise RuntimeError("Check point files don't exist!")

        for i in range(len(image_names)):
            # label = labels[i]
            # class_name = meta[label]
            image_name = image_names[i]
            full_path = os.path.join(FLAGS.data_dir, image_name)
            img = plt.imread(full_path)
            if img.shape[2] == 4:
                img = img[:, :, 0:3]
            data = np.ndarray(shape=(FLAGS.patches, FLAGS.patch_size,
                                     FLAGS.patch_size, 3),
                              dtype=np.float32)
            for n, patch in enumerate(
                    get_patches(img, FLAGS.patches, FLAGS.patch_size)):
                patch = standardization(patch)
                data[n, :] = patch
            # data = standardization(data)
            prediction = sess.run(pred, feed_dict={x: data})
            prediction = np.argmax(prediction, 1)
            # for n in prediction0:
            #     if n == label:
            #         correct_p = correct_p + 1
            #     confusion[label, n] = confusion[label, n] + 1
            # total_p = total_p + FLAGS.patches
            count = np.bincount(prediction)
            prediction = np.argmax(count)
            # prediction = np.sum(prediction, 0)
            #print(prediction)
            # prediction = np.argmax(prediction)

            print("%s,%s" % (image_name, meta[prediction]), file=ff)
            ff.flush()

    ff.close()
Esempio n. 4
0
def main(_):
    os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.95
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    # config.log_device_placement = True
    if not tf.gfile.Exists(FLAGS.data_dir):
        raise RuntimeError('data direction is not exist!')

    # if tf.gfile.Exists(FLAGS.log_dir):
    #     tf.gfile.DeleteRecursively(FLAGS.log_dir)
    tf.gfile.MakeDirs(FLAGS.log_dir)

    # if not tf.gfile.Exists(FLAGS.ckpt_dir):
    tf.gfile.MakeDirs(os.path.join(FLAGS.ckpt_dir, 'best'))

    f = open(FLAGS.out_file + '.txt',
             'a' if FLAGS.start_step is not 0 else 'w')
    if not f:
        raise RuntimeError('OUTPUT FILE OPEN ERROR!!!!!!')

    with tf.device('/cpu:0'):
        num_gpus = len(FLAGS.gpu.split(','))
        global_step = tf.Variable(FLAGS.start_step,
                                  name='global_step',
                                  trainable=False)

        # learning_rate = tf.train.piecewise_constant(global_step,
        #                                             [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000],
        #                                             [0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0])
        # step_size = 10000
        # learning_rate = tf.train.exponential_decay(1.0, global_step, 2*step_size, 0.5, staircase=True)
        # cycle = tf.floor(1 + tf.cast(global_step, tf.float32) / step_size / 2.)
        # xx = tf.abs(tf.cast(global_step, tf.float32)/step_size - 2. * tf.cast(cycle, tf.float32) + 1.)
        # learning_rate = 1e-4 + (1e-1 - 1e-4) * tf.maximum(0., (1-xx))*learning_rate
        # learning_rate = tf.train.piecewise_constant(global_step, [10000, 70000, 120000, 170000, 220000],
        #                                                         [0.01, 0.1, 0.001, 0.0001, 0.00001, 0.000001])
        # learning_rate = tf.constant(0.001)
        learning_rate = tf.train.exponential_decay(0.05,
                                                   global_step,
                                                   30000,
                                                   0.1,
                                                   staircase=True)
        print(
            'learning_rate = tf.train.exponential_decay(0.05, global_step, 30000, 0.1, staircase=True)',
            file=f)

        # opt = tf.train.AdamOptimizer(learning_rate)
        opt = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
        # opt = tf.train.GradientDescentOptimizer(learning_rate)
        # learning_rate = tf.train.exponential_decay(0.01, global_step, 32000, 0.1)
        # opt = tf.train.GradientDescentOptimizer(learning_rate)
        print('opt = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)',
              file=f)
        print('weight decay = %e' % FLAGS.weight_decay, file=f)
        f.flush()
        tf.summary.scalar('learing rate', learning_rate)
        tower_grads = []
        tower_loss = []
        tower_acc = []
        images_t, labels_t = input_pipeline(
            tf.train.match_filenames_once(
                os.path.join(FLAGS.data_dir, 'train', '*.tfrecords')),
            FLAGS.batch_size * num_gpus,
            read_threads=len(os.listdir(os.path.join(FLAGS.data_dir,
                                                     'train'))))
        # batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
        #     [images, labels], capacity=2 * num_gpus)
        images_v, labels_v = input_pipeline(
            tf.train.match_filenames_once(
                os.path.join(FLAGS.data_dir, 'valid',
                             '*.tfrecords')), (256 // num_gpus) * num_gpus,
            read_threads=len(os.listdir(os.path.join(FLAGS.data_dir,
                                                     'valid'))),
            if_train=False)
        # batch_queue_v = tf.contrib.slim.prefetch_queue.prefetch_queue(
        #     [images_v, labels_v], capacity=2 * num_gpus)

        image_batch0 = tf.placeholder(
            tf.float32, [None, FLAGS.patch_size, FLAGS.patch_size, channels],
            'imgs')
        label_batch0 = tf.placeholder(tf.int32, [None, 1], 'labels')
        image_batch = tf.split(image_batch0, num_gpus, 0)
        label_batch = tf.split(label_batch0, num_gpus, 0)
        for i in range(num_gpus):
            with tf.device('/gpu:%d' % i):
                with tf.name_scope('tower_%d' % i) as scope:
                    logits = build.net(image_batch[i], is_training, FLAGS)
                    losses.sparse_softmax_cross_entropy(labels=label_batch[i],
                                                        logits=logits,
                                                        scope=scope)
                    total_loss = losses.get_losses(
                        scope=scope) + losses.get_regularization_losses(
                            scope=scope)
                    total_loss = tf.add_n(total_loss)

                    grads = opt.compute_gradients(total_loss)
                    tower_grads.append(grads)
                    tower_loss.append(losses.get_losses(scope=scope))

                    with tf.name_scope('accuracy'):
                        correct_prediction = tf.equal(
                            tf.reshape(tf.argmax(logits, 1), [-1, 1]),
                            tf.cast(label_batch[i], tf.int64))
                        accuracy = tf.reduce_mean(
                            tf.cast(correct_prediction, tf.float32))
                    tower_acc.append(accuracy)
                    tf.get_variable_scope().reuse_variables()

        with tf.name_scope('scores'):
            with tf.name_scope('accuracy'):
                accuracy = tf.reduce_mean(tf.stack(tower_acc, axis=0))
            with tf.name_scope('batch_loss'):
                batch_loss = tf.add_n(tower_loss)[0] / num_gpus

            tf.summary.scalar('loss', batch_loss)
            tf.summary.scalar('accuracy', accuracy)

        grads = average_gradients(tower_grads)

        with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
            variable_averages = tf.train.ExponentialMovingAverage(
                0.9999, global_step)
            variables_averages_op = variable_averages.apply(
                tf.trainable_variables())
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                apply_gradient_op = opt.apply_gradients(
                    grads, global_step=global_step)
            train_op = tf.group(apply_gradient_op, variables_averages_op)
            p_relu_update = tf.get_collection('p_relu')
            # train_op = apply_gradient_op

        # summary_op = tf.summary.merge_all()
        # init = tf.global_variables_initializer()
        summary_op = tf.summary.merge_all()

        saver = tf.train.Saver(name="saver", max_to_keep=10)
        saver_best = tf.train.Saver(name='best', max_to_keep=200)
        with tf.Session(config=config) as sess:
            sess.run(tf.local_variables_initializer())
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            if tf.gfile.Exists(os.path.join(FLAGS.ckpt_dir, 'checkpoint')):
                saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpt_dir))
            else:
                sess.run(tf.global_variables_initializer())
            if FLAGS.start_step != 0:
                sess.run(tf.assign(global_step, FLAGS.start_step))
            train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train',
                                                 sess.graph)
            train_writer.flush()
            valid_writer = tf.summary.FileWriter(FLAGS.log_dir + '/valid',
                                                 sess.graph)
            valid_writer.flush()
            cache = np.ones(5, dtype=np.float32) / FLAGS.num_classes
            cache_v = np.ones(5, dtype=np.float32) / FLAGS.num_classes
            d = 1000
            best = 0
            for i in range(FLAGS.start_step, FLAGS.max_steps + 1):

                def get_batch(set, on_training):
                    if set == 'train':
                        img, lb = sess.run([images_t, labels_t])
                        # x = np.random.randint(0, 64)
                        # y = np.random.randint(0, 64)
                        # img = np.roll(np.roll(img, x, 1), y, 2)
                    elif set == 'valid':
                        img, lb = sess.run([images_v, labels_v])
                    else:
                        raise RuntimeError('Unknown set name')

                    feed_dict = {}
                    feed_dict[image_batch0] = img
                    feed_dict[label_batch0] = lb
                    feed_dict[is_training] = on_training
                    return feed_dict

                # feed = feed_dict(True, True)
                if i % d == 0:  # Record summaries and test-set accuracy
                    # loss0 = sess.run([total_loss], feed_dict=feed_dict(False, False))
                    # test_writer.add_summary(summary, i)
                    # feed[is_training] = FLAGS
                    acc, loss, summ, lr = sess.run(
                        [accuracy, batch_loss, summary_op, learning_rate],
                        feed_dict=get_batch('train', False))
                    acc2 = sess.run(accuracy,
                                    feed_dict=get_batch('train', True))
                    cache[int(i / d) % 5] = acc
                    acc_v, loss_v, summ_v = sess.run(
                        [accuracy, batch_loss, summary_op],
                        feed_dict=get_batch('valid', False))
                    acc2_v = sess.run(accuracy,
                                      feed_dict=get_batch('valid', True))
                    cache_v[int(i / d) % 5] = acc_v
                    train_writer.add_summary(summ, i)
                    valid_writer.add_summary(summ_v, i)
                    print(('step %d, ' % i) +
                          time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
                          file=f)
                    print(
                        'acc(t)=%f(%f), loss(t)=%f;\nacc(v)=%f(%f), loss(v)=%f; lr=%e'
                        % (acc, cache.mean(), loss, acc_v, cache_v.mean(),
                           loss_v, lr),
                        file=f)
                    print('%f, %f' % (acc2, acc2_v), file=f)
                    saver.save(sess,
                               os.path.join(FLAGS.ckpt_dir, FLAGS.model_name),
                               global_step=i)
                    if acc_v > 0.90:
                        saver_best.save(sess,
                                        os.path.join(FLAGS.ckpt_dir, 'best',
                                                     FLAGS.model_name),
                                        global_step=i)
                    f.flush()
                sess.run(train_op, feed_dict=get_batch('train', True))
                sess.run(p_relu_update)

            coord.request_stop()
            coord.join(threads)

    train_writer.close()
    # test_writer.close()
    f.close()
Esempio n. 5
0
def main(_):
    os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.7
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    # config.log_device_placement = True
    if not tf.gfile.Exists(FLAGS.data_dir):
        raise RuntimeError('data direction is not exist!')

    # if tf.gfile.Exists(FLAGS.log_dir):
    #     tf.gfile.DeleteRecursively(FLAGS.log_dir)
    # tf.gfile.MakeDirs(FLAGS.log_dir)

    if not tf.gfile.Exists(FLAGS.ckpt_dir):
        tf.gfile.MakeDirs(FLAGS.ckpt_dir)

    f = open(FLAGS.out_file, 'w')
    if not f:
        raise RuntimeError('OUTPUT FILE OPEN ERROR!!!!!!')

    with tf.device('/cpu:0'):
        global_step = tf.Variable(FLAGS.start_step,
                                  name='global_step',
                                  trainable=False)
        # learning_rate = tf.train.exponential_decay(0.1, global_step, 192000, 0.9, staircase=True)
        # tf.summary.scalar('learing rate', learning_rate)
        # opt = tf.train.AdamOptimizer(learning_rate)
        # opt = tf.train.MomentumOptimizer(learning_rate, momentum=FLAGS.momentum)
        # opt = tf.train.GradientDescentOptimizer(learning_rate)
        # learning_rate = tf.train.exponential_decay(0.01, global_step, 32000, 0.1)
        # opt = tf.train.GradientDescentOptimizer(learning_rate)

        # tower_grads = []
        num_gpus = len(FLAGS.gpu.split(','))
        tower_loss = []
        tower_acc = []
        images, labels = input_pipeline(
            tf.train.match_filenames_once(
                os.path.join(FLAGS.data_dir, 'valid', '*.tfrecords')),
            int(FLAGS.batch_size / num_gpus))
        image_batch = tf.placeholder(
            tf.float32, [None, FLAGS.patch_size, FLAGS.patch_size, 3], 'imgs')
        label_batch = tf.placeholder(tf.int32, [None, 1], 'labels')
        for i in range(num_gpus):
            with tf.device('/gpu:%d' % i):
                with tf.name_scope('tower_%d' % i) as scope:
                    # image_batch, label_batch = batch_queue.dequeue()
                    # image_batch = tf.ones(shape=[128, 64, 64, 3], dtype=tf.float32)
                    # label_batch = tf.ones(shape=[128, 1], dtype=tf.int32)
                    logits = build.net(image_batch, False, FLAGS)
                    losses.sparse_softmax_cross_entropy(labels=label_batch,
                                                        logits=logits,
                                                        scope=scope)
                    # total_loss = losses.get_losses(scope=scope) + losses.get_regularization_losses(scope=scope)
                    # total_loss = tf.add_n(total_loss)

                    # grads = opt.compute_gradients(total_loss)
                    # tower_grads.append(grads)
                    tower_loss.append(losses.get_losses(scope=scope))

                    with tf.name_scope('accuracy'):
                        correct_prediction = tf.equal(
                            tf.reshape(tf.argmax(logits, 1), [-1, 1]),
                            tf.cast(label_batch, tf.int64))
                        accuracy = tf.reduce_mean(
                            tf.cast(correct_prediction, tf.float32))
                    tower_acc.append(accuracy)
                    tf.get_variable_scope().reuse_variables()
        with tf.name_scope('scores'):
            with tf.name_scope('accuracy'):
                accuracy = tf.reduce_mean(tf.stack(tower_acc, axis=0))

            with tf.name_scope('batch_loss'):
                batch_loss = tf.add_n(tower_loss)[0]

            tf.summary.scalar('loss', batch_loss)
            tf.summary.scalar('accuracy', accuracy)

        # grads = average_gradients(tower_grads)

        # variable_averages = tf.train.ExponentialMovingAverage(
        #     cifar10.MOVING_AVERAGE_DECAY, global_step)
        # variables_averages_op = variable_averages.apply(tf.trainable_variables())
        # with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
        #     update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        #     with tf.control_dependencies(update_ops):
        #         apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
        #     # train_op = tf.group(apply_gradient_op, variables_averages_op)
        #     train_op = apply_gradient_op

        # summary_op = tf.summary.merge_all()
        # init = tf.global_variables_initializer()
        summary_op = tf.summary.merge_all()
        # variable_averages = tf.train.ExponentialMovingAverage(0.9999)
        # variables_to_restore = variable_averages.variables_to_restore()
        # saver = tf.train.Saver(variables_to_restore, name='saver')
        saver = tf.train.Saver(name="saver")

        with tf.Session(config=config) as sess:
            sess.run(tf.local_variables_initializer())
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            if tf.gfile.Exists(os.path.join(FLAGS.ckpt_dir, 'checkpoint')):
                # saver.restore(sess, FLAGS.ckpt_dir+'/model')
                saver.restore(
                    sess,
                    tf.train.latest_checkpoint(FLAGS.ckpt_dir)
                    if FLAGS.model_name is None else os.path.join(
                        FLAGS.ckpt_dir, FLAGS.model_name))

            train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test',
                                                 sess.graph)
            train_writer.flush()
            for i in range(FLAGS.start_step, FLAGS.max_steps + 1):
                # feed = feed_dict(True, True)
                # if i % 1000 == 0:  # Record summaries and test-set accuracy
                # loss0 = sess.run([total_loss], feed_dict=feed_dict(False, False))
                # test_writer.add_summary(summary, i)
                # feed[is_training] = FLAGS
                img, lb = sess.run([images, labels])
                acc, loss, summ = sess.run([accuracy, batch_loss, summary_op],
                                           feed_dict={
                                               image_batch: img,
                                               label_batch: lb
                                           })
                # acc, loss, summ = sess.run([accuracy, batch_loss, summary_op], feed_dict={image_batch: np.ones(shape = [256, 64, 64, 3], dtype=np.float32), label_batch: np.ones(shape=[256, 1], dtype=np.int32)})
                train_writer.add_summary(summ, i)
                print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
                      file=f)
                # print('step %d: train_acc=%f, train_loss=%f; test_acc=%f, test_loss=%f' % (i, acc1, loss1, acc0, loss0),
                #       file=f)
                print('step %d: accuracy=%f, loss=%f' % (i, acc, loss), file=f)
                # saver.save(sess, os.path.join(FLAGS.ckpt_dir, FLAGS.model_name))
                f.flush()
                # sess.run(train_op, feed_dict={is_training: True})

            coord.request_stop()
            coord.join(threads)

    train_writer.close()
    # test_writer.close()
    f.close()