Esempio n. 1
0
def initialization(dataset_path=None,
                   metadatas=None,
                   voice_ids=voice_ids_default,
                   BACH_DATASET=BACH_DATASET):
    from glob import glob
    print('Creating dataset')
    if dataset_path:
        chorale_list = filter_file_list(glob(dataset_path + '/*.mid') +
                                        glob(dataset_path + '/*.xml'),
                                        num_voices=NUM_VOICES)
        pickled_dataset = 'datasets/custom_dataset/' + dataset_path.split(
            '/')[-1] + '.pickle'
    else:
        chorale_list = filter_file_list(
            corpus.getBachChorales(fileExtensions='xml'))
        pickled_dataset = BACH_DATASET

    # remove wrong chorales:
    min_pitches, max_pitches = compute_min_max_pitches(chorale_list,
                                                       voices=voice_ids)

    make_dataset(chorale_list,
                 pickled_dataset,
                 voice_ids=voice_ids,
                 transpose=True,
                 metadatas=metadatas)
Esempio n. 2
0
def demoBachSearchBrief():
    choraleList = corpus.getBachChorales()
    results = stream.Stream()
    for filePath in choraleList:
        fileName = os.path.split(filePath)[1]
        pieceName = fileName.replace('.xml', '')
        chorale = converter.parse(filePath)
        print(fileName)
        key = chorale.analyze('key')
        if key.mode == 'minor':
            lastChordPitches = []
            for part in chorale.parts:
                lastChordPitches.append(part.flat.pitches[-1])
            lastChord = chord.Chord(lastChordPitches)
            lastChord.duration.type = "whole"
            lastChord.transpose("P8", inPlace=True)
            if lastChord.isMinorTriad(
            ) is False and lastChord.isIncompleteMinorTriad() is False:
                continue
            lastChord.lyric = pieceName
            m = stream.Measure()
            m.keySignature = chorale.flat.getElementsByClass('KeySignature')[0]
            m.append(lastChord)
            results.append(m.makeAccidentals(inPlace=True))
    results.show()
Esempio n. 3
0
def demoBachSearchBrief():    
    choraleList = corpus.getBachChorales()
    results = stream.Stream()
    for filePath in choraleList:
      fileName = os.path.split(filePath)[1]
      pieceName = fileName.replace('.xml', '')
      chorale = converter.parse(filePath)
      print fileName
      key = chorale.analyze('key')
      if key.mode == 'minor':
        lastChordPitches = []
        for part in chorale.parts:
          lastChordPitches.append(part.flat.pitches[-1])
        lastChord = chord.Chord(lastChordPitches)
        lastChord.duration.type = "whole"
        lastChord.transpose("P8", inPlace=True)
        if lastChord.isMinorTriad() is False and lastChord.isIncompleteMinorTriad() is False:
          continue
        lastChord.lyric = pieceName
        m = stream.Measure()
        m.keySignature = chorale.flat.getElementsByClass(
          'KeySignature')[0]
        m.append(lastChord)
        results.append(m.makeAccidentals(inPlace=True))
    results.show()
Esempio n. 4
0
def get_random_choral(log=True):
    """ Gets a choral from the J. S. Bach chorals corpus (in Music21). """
    choral_file = corpus.getBachChorales()[random.randint(0, 399)]
    choral = corpus.parse(choral_file)
    if log:
        print("Chosen choral:", choral.metadata.title)
    return choral
Esempio n. 5
0
def get_random_choral(log=True):
  """ Gets a choral from the J. S. Bach chorals corpus (in Music21). """
  choral_file = corpus.getBachChorales()[random.randint(0, 399)]
  choral = corpus.parse(choral_file)
  if log:
    print("Chosen choral:", choral.metadata.title)
  return choral
Esempio n. 6
0
def initialization(dataset_path=None,
                   metadatas=None,
                   voice_ids=voice_ids_default,
                   BACH_DATASET=BACH_DATASET):
    from glob import glob
    print('Creating dataset')
    # Switched the backdash directions, hopefully will fix the error
    if dataset_path:
        chorale_list = filter_file_list(glob(dataset_path + '/*.mid') +
                                        glob(dataset_path + '/*.xml'),
                                        num_voices=NUM_VOICES)

        # hardcode below for now, original code is not working. Try in cloud linux instance next
        # pickled_dataset = 'datasets/custom_dataset/' + dataset_path.split('/')[-1] + '.pickle'
        pickled_dataset = 'datasets/custom_dataset/custom_dataset.pickle'

    else:
        chorale_list = filter_file_list(
            corpus.getBachChorales(fileExtensions='xml'))
        pickled_dataset = BACH_DATASET

    # remove wrong chorales:
    min_pitches, max_pitches = compute_min_max_pitches(chorale_list,
                                                       voices=voice_ids)

    make_dataset(chorale_list,
                 pickled_dataset,
                 voice_ids=voice_ids,
                 transpose=True,
                 metadatas=metadatas)
Esempio n. 7
0
def demoBachSearch():

    import os, random
    from music21 import corpus, key
    
    fpList = corpus.getBachChorales('.xml')
    random.shuffle(fpList)
    results = stream.Stream()

    for fp in fpList[:40]:
        fn = os.path.split(fp)[1]
        print fn
        s = converter.parse(fp)
        # get key, mode
        key, mode = s.analyze('key')[:2]
        if mode == 'minor':
            pFirst = []
            pLast = []

            for pStream in s.parts:
                # clear accidental display status
                pFirst.append(pStream.flat.getElementsByClass('Note')[0].pitch)
                pLast.append(pStream.flat.getElementsByClass('Note')[-1].pitch)

            cFirst = chord.Chord(pFirst)
            cFirst.quarterLength = 2
            cFirst.transpose(12, inPlace=True)
            cFirst.addLyric(fn)
            cFirst.addLyric('%s %s' % (key, mode))

            cLast = chord.Chord(pLast)
            cLast.quarterLength = 2
            cLast.transpose(12, inPlace=True)
            if cLast.isMajorTriad():
                cLast.addLyric('M')
            elif cLast.isMinorTriad():
                cLast.addLyric('m')
            else:
                cLast.addLyric('?')
        
            m = stream.Measure()
            m.keySignature = s.flat.getElementsByClass('KeySignature')[0]

            print 'got', m.keySignature

            m.append(cFirst)
            m.append(cLast)
            results.append(m.makeAccidentals(inPlace=True))

    results.show()
Esempio n. 8
0
def demoBachSearch():

    import random
    from music21 import key

    fpList = corpus.getBachChorales('.xml')
    random.shuffle(fpList)
    results = stream.Stream()

    for fp in fpList[:40]:
        fn = os.path.split(fp)[1]
        print(fn)
        s = converter.parse(fp)
        # get key, mode
        key, mode = s.analyze('key')[:2]
        if mode == 'minor':
            pFirst = []
            pLast = []

            for pStream in s.parts:
                # clear accidental display status
                pFirst.append(pStream.flat.getElementsByClass('Note')[0].pitch)
                pLast.append(pStream.flat.getElementsByClass('Note')[-1].pitch)

            cFirst = chord.Chord(pFirst)
            cFirst.quarterLength = 2
            cFirst.transpose(12, inPlace=True)
            cFirst.addLyric(fn)
            cFirst.addLyric('%s %s' % (key, mode))

            cLast = chord.Chord(pLast)
            cLast.quarterLength = 2
            cLast.transpose(12, inPlace=True)
            if cLast.isMajorTriad():
                cLast.addLyric('M')
            elif cLast.isMinorTriad():
                cLast.addLyric('m')
            else:
                cLast.addLyric('?')

            m = stream.Measure()
            m.keySignature = s.flat.getElementsByClass('KeySignature')[0]

            print('got', m.keySignature)

            m.append(cFirst)
            m.append(cLast)
            results.append(m.makeAccidentals(inPlace=True))

    results.show()
Esempio n. 9
0
def demoBachSearch():

    import random
    from music21 import key

    fpList = corpus.getBachChorales(".xml")
    random.shuffle(fpList)
    results = stream.Stream()

    for fp in fpList[:40]:
        fn = os.path.split(fp)[1]
        print(fn)
        s = converter.parse(fp)
        # get key, mode
        key, mode = s.analyze("key")[:2]
        if mode == "minor":
            pFirst = []
            pLast = []

            for pStream in s.parts:
                # clear accidental display status
                pFirst.append(pStream.flat.getElementsByClass("Note")[0].pitch)
                pLast.append(pStream.flat.getElementsByClass("Note")[-1].pitch)

            cFirst = chord.Chord(pFirst)
            cFirst.quarterLength = 2
            cFirst.transpose(12, inPlace=True)
            cFirst.addLyric(fn)
            cFirst.addLyric("%s %s" % (key, mode))

            cLast = chord.Chord(pLast)
            cLast.quarterLength = 2
            cLast.transpose(12, inPlace=True)
            if cLast.isMajorTriad():
                cLast.addLyric("M")
            elif cLast.isMinorTriad():
                cLast.addLyric("m")
            else:
                cLast.addLyric("?")

            m = stream.Measure()
            m.keySignature = s.flat.getElementsByClass("KeySignature")[0]

            print("got", m.keySignature)

            m.append(cFirst)
            m.append(cLast)
            results.append(m.makeAccidentals(inPlace=True))

    results.show()
Esempio n. 10
0
    def testEx03(self):

        # What is the most common closing soprano scale degree by key signature
        #s in the bach chorales?
        #from music21 import graph

        results = {}
        for fn in corpus.getBachChorales()[:2]:
            s = corpus.parse(fn)
            ksScale = s.flat.getElementsByClass('KeySignature')[0].getScale()
            for p in s.parts:
                if p.id.lower() == 'soprano':
                    n = s.parts['soprano'].flat.getElementsByClass('Note')[-1]
                    degree = ksScale.getScaleDegreeFromPitch(n.pitch)
                    if degree not in results.keys():
                        results[degree] = 0
                    results[degree] += 1
Esempio n. 11
0
    def testEx03(self):

        # What is the most common closing soprano scale degree by key signature
        #s in the bach chorales?
        #from music21 import graph

        results = {}
        for fn in corpus.getBachChorales()[:2]:
            s = corpus.parse(fn)
            ksScale = s.flat.getElementsByClass('KeySignature')[0].getScale()
            for p in s.parts:
                if p.id.lower() == 'soprano':
                    n = s.parts['soprano'].flat.getElementsByClass('Note')[-1]
                    degree = ksScale.getScaleDegreeFromPitch(n.pitch)
                    if degree not in results.keys():
                        results[degree] = 0
                    results[degree] += 1
def initialize_transposition_dataset(dataset_dir=None,
                                     metadatas: List[Metadata] = []):
    """
    Create 'datasets/transpose/bach_sop.pickle' or
    'datasets/transpose/custom_dataset.pickle'
    :param dataset_dir: use Bach chorales if None
    :param metadatas:
    :type metadatas: Metadata
    :return:
    :rtype:
    """
    from glob import glob
    PACKAGE_DIR = os.path.dirname(__file__)
    NUM_VOICES = 1
    voice_ids = [SOP_INDEX]
    print('Creating dataset')
    if dataset_dir:
        chorale_list = filter_file_list(glob(dataset_dir + '/*.mid') +
                                        glob(dataset_dir + '/*.xml'),
                                        num_voices=NUM_VOICES)
        pickled_dataset = os.path.join(PACKAGE_DIR,
                                       'datasets/transpose/' + \
                                       dataset_dir.split(
                                           '/')[
                                           -1] + '.pickle')
    else:
        chorale_list = filter_file_list(
            corpus.getBachChorales(fileExtensions='xml'))
        pickled_dataset = os.path.join(PACKAGE_DIR,
                                       'datasets/transpose/bach_sop.pickle')

    # remove wrong chorales:
    min_pitches, max_pitches = compute_min_max_pitches(chorale_list,
                                                       voices=voice_ids)

    make_transposition_dataset(chorale_list,
                               pickled_dataset,
                               voice_ids=voice_ids,
                               metadatas=metadatas)
Esempio n. 13
0
def bachParallels():
    '''
    find all instances of parallel fifths or octaves in Bach chorales.
    Checking the work of George Fitsioris and Darrell Conklin, 
    "Parallel successions of perfect fifths in the Bach chorales"
    Proceedings of the fourth Conference on Interdisciplinary Musicology (CIM08)
    Thessaloniki, Greece, 3-6 July 2008, http://web.auth.gr/cim08/
    '''
    from music21 import corpus
    for fn in corpus.getBachChorales():
        print(fn)
        c = corpus.parse(fn)
        displayMe = False
        for i in range(len(c.parts) - 1):
            iName = c.parts[i].id
            if iName.lower() not in ['soprano', 'alto', 'tenor', 'bass']:
                continue
            ifn = c.parts[i].flat.notesAndRests
            omi = ifn.offsetMap
            for j in range(i + 1, len(c.parts)):
                jName = c.parts[j].id
                if jName.lower() not in ['soprano', 'alto', 'tenor', 'bass']:
                    continue

                jfn = c.parts[j].flat.notesAndRests
                for k in range(len(omi) - 1):
                    n1pi = omi[k]['element']
                    n2pi = omi[k + 1]['element']
                    n1pj = jfn.getElementsByOffset(
                        offsetStart=omi[k]['endTime'] - .001,
                        offsetEnd=omi[k]['endTime'] - .001,
                        mustBeginInSpan=False)[0]
                    n2pj = jfn.getElementsByOffset(
                        offsetStart=omi[k + 1]['offset'],
                        offsetEnd=omi[k + 1]['offset'],
                        mustBeginInSpan=False)[0]
                    if n1pj is n2pj:
                        continue  # no oblique motion
                    if n1pi.isRest or n2pi.isRest or n1pj.isRest or n2pj.isRest:
                        continue
                    if n1pi.isChord or n2pi.isChord or n1pj.isChord or n2pj.isChord:
                        continue

                    vlq = voiceLeading.VoiceLeadingQuartet(
                        n1pi, n2pi, n1pj, n2pj)
                    if vlq.parallelMotion(
                            'P8') is False and vlq.parallelMotion(
                                'P5') is False:
                        continue
                    displayMe = True
                    n1pi.addLyric('par ' + str(vlq.vIntervals[0].name))
                    n2pi.addLyric(' w/ ' + jName)


#                    m1 = stream.Measure()
#                    m1.append(n1pi)
#                    m1.append(n2pi)
#                    r1 = note.Rest()
#                    r1.duration.quarterLength = 8 - m1.duration.quarterLength
#                    m1.append(r1)
#                    m2 = stream.Measure()
#                    m2.append(n1pj)
#                    m2.append(n2pj)
#                    r2 = note.Rest()
#                    r2.duration.quarterLength = 8 - m2.duration.quarterLength
#                    m2.append(r2)
#
#                    p1.append(m1)
#                    p2.append(m2)

#        sc.append(p1)
#        sc.append(p2)
#        sc.show()
        if displayMe:
            c.show()
Esempio n. 14
0
def getMusicDataset():
    if path.isfile("music_dataset.p"):
        print("Loading input data")
        music_file = open("music_dataset.p", "rb")
        input_data = load(music_file)
        music_file.close()
        return input_data
    else:
        bach_files = getBachChorales(fileExtensions='xml')
        chorale_files = bach_files[:100]

        chorales = list()
        for chorale_file in tqdm(chorale_files, desc="Parsing chorale files"):
            chorales.append(parse(chorale_file))

        alto_chorales = []
        for chorale in tqdm(chorales, desc="Extracting alto parts"):
            for part in chorale.parts:
                if part.partName == "Alto":
                    alto_chorales.append(part.flat.notesAndRests)

        chorale_data = []
        for part in tqdm(alto_chorales, desc="Creating note/rest lists"):
            data = []
            for nor in part:
                if nor.isNote or nor.isRest:
                    data.append((nor.name, nor.duration.quarterLength / 4))

            chorale_data.append(data)

        print("Finding Minimum Duration")
        min_dur = min([nor[1] for chorale in chorale_data for nor in chorale])

        input_data = []

        def extendNor(p, d):
            results = list()
            if p == "rest":
                p = "R"
            elif p == "D-":
                p = "C#"
            elif p == "F-":
                p = "E"
            elif p == "G-":
                p = "F#"
            elif p == "B-":
                p = "A#"
            elif p == "E-":
                p = "D#"
            elif p == "A-":
                p = "G#"
            elif p == "E#":
                p = "F"

            if d > min_dur:
                num_notes = int(d / min_dur)
                results.append(p)
                for i in range(num_notes - 1):
                    results.append("H")
            else:
                results.append(p)
            return results

        for chorale in tqdm(chorale_data,
                            desc="Creating regularized note data"):
            new_input = []
            for (pitch, dur) in chorale:
                new_notes = extendNor(pitch, dur)
                new_input.extend(new_notes)
            input_data.append(new_input)

        print("Dumping input data to pickle file")
        music_file = open("music_dataset.p", "wb")
        dump(input_data, music_file)
        music_file.close()
        return input_data
Esempio n. 15
0
def bachParallels():
    '''
    find all instances of parallel fifths or octaves in Bach chorales.
    Checking the work of George Fitsioris and Darrell Conklin, 
    "Parallel successions of perfect fifths in the Bach chorales"
    Proceedings of the fourth Conference on Interdisciplinary Musicology (CIM08)
    Thessaloniki, Greece, 3-6 July 2008, http://web.auth.gr/cim08/
    '''
    from music21 import corpus
    for fn in corpus.getBachChorales():
        print (fn)
        c = corpus.parse(fn)
        displayMe = False
        for i in range(len(c.parts) - 1):
            iName = c.parts[i].id
            if iName.lower() not in ['soprano', 'alto', 'tenor', 'bass']:
                continue
            ifn = c.parts[i].flat.notesAndRests
            omi = ifn.offsetMap
            for j in range(i+1, len(c.parts)):
                jName = c.parts[j].id
                if jName.lower() not in ['soprano', 'alto', 'tenor', 'bass']:
                    continue

                jfn = c.parts[j].flat.notesAndRests
                for k in range(len(omi) - 1):
                    n1pi = omi[k]['element']
                    n2pi = omi[k+1]['element']                    
                    n1pj = jfn.getElementsByOffset(offsetStart = omi[k]['endTime'] - .001, offsetEnd = omi[k]['endTime'] - .001, mustBeginInSpan = False)[0]
                    n2pj = jfn.getElementsByOffset(offsetStart = omi[k+1]['offset'], offsetEnd = omi[k+1]['offset'], mustBeginInSpan = False)[0]
                    if n1pj is n2pj:
                        continue # no oblique motion
                    if n1pi.isRest or n2pi.isRest or n1pj.isRest or n2pj.isRest:
                        continue
                    if n1pi.isChord or n2pi.isChord or n1pj.isChord or n2pj.isChord:
                        continue

                    vlq = voiceLeading.VoiceLeadingQuartet(n1pi, n2pi, n1pj, n2pj)
                    if vlq.parallelMotion('P8') is False and vlq.parallelMotion('P5') is False:
                        continue
                    displayMe = True
                    n1pi.addLyric('par ' + str(vlq.vIntervals[0].name))
                    n2pi.addLyric(' w/ ' + jName)
#                    m1 = stream.Measure()
#                    m1.append(n1pi)
#                    m1.append(n2pi)
#                    r1 = note.Rest()
#                    r1.duration.quarterLength = 8 - m1.duration.quarterLength
#                    m1.append(r1)
#                    m2 = stream.Measure()
#                    m2.append(n1pj)
#                    m2.append(n2pj)
#                    r2 = note.Rest()
#                    r2.duration.quarterLength = 8 - m2.duration.quarterLength
#                    m2.append(r2)
#
#                    p1.append(m1)
#                    p2.append(m2)
                    
#        sc.append(p1)
#        sc.append(p2)
#        sc.show()
        if displayMe:
            c.show()
Esempio n. 16
0
def ks_mem(freq):
  """ Alternative memory for Karplus-Strong """
  return (sum(lz.sinusoid(x * freq) for x in [1, 3, 9]) +
          lz.white_noise() + lz.Stream(-1, 1)) / 5

# Configuration
rate = 44100
s, Hz = lz.sHz(rate)
ms = 1e-3 * s

beat = 90 # bpm
step = 60. / beat * s

# Open the choral file
choral_file = corpus.getBachChorales()[random.randint(0, 399)]
choral = corpus.parse(choral_file)
print u"Playing", choral.metadata.title

# Creates the score from the music21 data
score = reduce(operator.concat,
               [[(pitch.frequency * Hz, # Note
                  note.offset * step, # Starting time
                  note.quarterLength * step, # Duration
                  Fermata in note.expressions) for pitch in note.pitches]
                                               for note in choral.flat.notes]
              )

# Mix all notes into song
song = lz.Streamix()
last_start = 0