Esempio n. 1
0
def test_samples_not_n_views():
    with pytest.raises(ValueError):
        view1 = np.random.random((10, 11))
        view2 = np.random.random((10, 10))
        spectral = MultiviewSpectralClustering(n_views=3,
                                               random_state=RANDOM_STATE)
        spectral.fit_predict([view1, view2])
Esempio n. 2
0
def perform_clustering(seed, m_data, labels, n_clusters):

    # Singleview spectral clustering
    # Cluster each view separately
    s_spectral = SpectralClustering(n_clusters=n_clusters,
                                    random_state=RANDOM_SEED,
                                    n_init=100)
    s_clusters_v1 = s_spectral.fit_predict(m_data[0])
    s_clusters_v2 = s_spectral.fit_predict(m_data[1])

    # Concatenate the multiple views into a single view
    s_data = np.hstack(m_data)
    s_clusters = s_spectral.fit_predict(s_data)

    # Compute nmi between true class labels and singleview cluster labels
    s_nmi_v1 = nmi_score(labels, s_clusters_v1)
    s_nmi_v2 = nmi_score(labels, s_clusters_v2)
    s_nmi = nmi_score(labels, s_clusters)
    print('Singleview View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
    print('Singleview View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
    print('Singleview Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

    # Multiview spectral clustering
    # Use the MultiviewSpectralClustering instance to cluster the data
    m_spectral = MultiviewSpectralClustering(n_clusters=n_clusters,
                                             random_state=RANDOM_SEED,
                                             n_init=100)
    m_clusters = m_spectral.fit_predict(m_data)

    # Compute nmi between true class labels and multiview cluster labels
    m_nmi = nmi_score(labels, m_clusters)
    print('Multiview Concatenated NMI Score: {0:.3f}\n'.format(m_nmi))

    return m_clusters
Esempio n. 3
0
def test_n_neighbors_not_positive_int():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity='nearest_neighbors',
                                               n_neighbors=-1)

    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity='nearest_neighbors',
                                               n_neighbors=0)
Esempio n. 4
0
def test_info_view_not_valid():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=2,
                                               n_views=5,
                                               info_view=-1)
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=2,
                                               n_views=5,
                                               info_view=6)
Esempio n. 5
0
def test_fit_predict_default(data):

    v_data = data['fit_data'][:2]
    spectral = MultiviewSpectralClustering(2, random_state=RANDOM_STATE)
    predictions = spectral.fit_predict(v_data)
    n_clusts = data['n_clusters']

    assert (predictions.shape[0] == data['n_fit'])
    for clust in predictions:
        assert (clust >= 0 and clust < n_clusts)
Esempio n. 6
0
def test_n_iter_not_positive_int():
    with pytest.raises(ValueError):
        view1 = np.random.random((10, 11))
        view2 = np.random.random((10, 10))
        spectral = MultiviewSpectralClustering(2, n_iter=-1)

    with pytest.raises(ValueError):
        view1 = np.random.random((10, 11))
        view2 = np.random.random((10, 10))
        spectral = MultiviewSpectralClustering(2, n_iter=0)
Esempio n. 7
0
def test_fit_predict_info_view(data):

    v_data = data['fit_data']
    info_view = np.random.randint(len(v_data))
    n_clusts = data['n_clusters']
    spectral = MultiviewSpectralClustering(n_clusts,
                                           random_state=RANDOM_STATE,
                                           info_view=info_view)
    predictions = spectral.fit_predict(v_data)

    assert (predictions.shape[0] == data['n_fit'])
    for clust in predictions:
        assert (clust >= 0 and clust < n_clusts)
Esempio n. 8
0
def test_fit_predict_max_iter(data):

    v_data = data['fit_data']
    max_iter = 5
    n_clusts = data['n_clusters']
    spectral = MultiviewSpectralClustering(n_clusts,
                                           random_state=RANDOM_STATE,
                                           max_iter=max_iter)
    predictions = spectral.fit_predict(v_data)

    assert (predictions.shape[0] == data['n_fit'])
    for clust in predictions:
        assert (clust >= 0 and clust < n_clusts)
Esempio n. 9
0
def test_info_view_not_valid(small_data):
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=2, info_view=-1)
        spectral.fit_predict(small_data)
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=2, info_view=6)
        spectral.fit_predict(small_data)
Esempio n. 10
0
def test_n_init_not_positive_int(small_data):
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_init=-1)
        spectral.fit_predict(small_data)
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_init=0)
        spectral.fit_predict(small_data)
Esempio n. 11
0
def test_fit_predict_n_iter(data):

    v_data = data['fit_data']
    n_views = data['n_views']
    n_iter = 5
    n_clusts = data['n_clusters']
    spectral = MultiviewSpectralClustering(n_clusts,
                                           n_views=n_views,
                                           n_iter=n_iter)
    predictions = spectral.fit_predict(v_data)

    assert (predictions.shape[0] == data['n_fit'])
    for clust in predictions:
        assert (clust >= 0 and clust < n_clusts)
Esempio n. 12
0
def test_not_valid_affinity(small_data):
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity='What')
        spectral.fit_predict(small_data)
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity=None)
        spectral.fit_predict(small_data)
Esempio n. 13
0
def test_gamma_not_positive_float(small_data):
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(gamma=-1.5)
        spectral.fit_predict(small_data)

    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(gamma=0)
        spectral.fit_predict(small_data)
Esempio n. 14
0
def test_fit_predict_info_view(data):

    v_data = data['fit_data']
    n_views = data['n_views']
    info_view = np.random.randint(n_views)
    print('n_views is ' + str(n_views))
    print('info_views is ' + str(info_view))
    n_clusts = data['n_clusters']
    spectral = MultiviewSpectralClustering(n_clusts,
                                           n_views=n_views,
                                           info_view=info_view)
    predictions = spectral.fit_predict(v_data)

    assert (predictions.shape[0] == data['n_fit'])
    for clust in predictions:
        assert (clust >= 0 and clust < n_clusts)
Esempio n. 15
0
def data():

    num_fit_samples = 200
    n_feats1 = 20
    n_feats2 = 18
    n_feats3 = 30
    n_clusters = 2
    n_views = 3
    np.random.seed(RANDOM_STATE)
    fit_data = []
    fit_data.append(np.random.rand(num_fit_samples, n_feats1))
    fit_data.append(np.random.rand(num_fit_samples, n_feats2))
    fit_data.append(np.random.rand(num_fit_samples, n_feats3))

    spectral = MultiviewSpectralClustering(n_clusters,
                                           n_views=n_views,
                                           random_state=RANDOM_STATE)
    return {
        'n_fit': num_fit_samples,
        'n_feats1': n_feats1,
        'n_feats2': n_feats2,
        'n_feats3': n_feats3,
        'n_clusters': n_clusters,
        'spectral': spectral,
        'fit_data': fit_data,
        'n_views': n_views
    }
Esempio n. 16
0
def test_n_neighbors_not_positive_int(small_data):
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity='nearest_neighbors',
                                               n_neighbors=-1)
        spectral.fit_predict(small_data)

    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity='nearest_neighbors',
                                               n_neighbors=0)
        spectral.fit_predict(small_data)
Esempio n. 17
0
def test_affinity_mat_poly(data):

    v1_data = data['fit_data'][0]

    distances = cdist(v1_data, v1_data)
    gamma = 1 / (2 * np.median(distances)**2)
    true_kernel = polynomial_kernel(v1_data, gamma=gamma)
    spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE,
                                           affinity='poly')
    p_kernel = spectral._affinity_mat(v1_data)

    assert (p_kernel.shape[0] == data['n_fit'])
    assert (p_kernel.shape[1] == data['n_fit'])

    for ind1 in range(p_kernel.shape[0]):
        for ind2 in range(p_kernel.shape[1]):
            assert np.abs(true_kernel[ind1][ind2] -
                          p_kernel[ind1][ind2]) < 0.000001
Esempio n. 18
0
def test_affinity_mat_rbf2(data):

    v1_data = data['fit_data'][0]
    gamma = 1
    spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE,
                                           gamma=gamma)
    distances = cdist(v1_data, v1_data)
    gamma = 1 / (2 * np.median(distances)**2)
    true_kernel = rbf_kernel(v1_data, gamma=1)
    g_kernel = spectral._affinity_mat(v1_data)

    assert (g_kernel.shape[0] == data['n_fit'])
    assert (g_kernel.shape[1] == data['n_fit'])

    for ind1 in range(g_kernel.shape[0]):
        for ind2 in range(g_kernel.shape[1]):
            assert np.abs(true_kernel[ind1][ind2] -
                          g_kernel[ind1][ind2]) < 0.000001
Esempio n. 19
0
def test_affinity_neighbors(data):

    v1_data = data['fit_data'][0]
    n_neighbors = 10
    neighbors = NearestNeighbors(n_neighbors=n_neighbors)
    neighbors.fit(v1_data)
    true_kernel = neighbors.kneighbors_graph(v1_data).toarray()
    spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE,
                                           affinity='nearest_neighbors',
                                           n_neighbors=10)
    n_kernel = spectral._affinity_mat(v1_data)
    assert (n_kernel.shape[0] == data['n_fit'])
    assert (n_kernel.shape[1] == data['n_fit'])

    for ind1 in range(n_kernel.shape[0]):
        for ind2 in range(n_kernel.shape[1]):
            assert np.abs(true_kernel[ind1][ind2] -
                          n_kernel[ind1][ind2]) < 0.000001
Esempio n. 20
0
def test_samples_not_2D_1():
    with pytest.raises(ValueError):
        view1 = np.random.random((5, 8, 7))
        view2 = np.random.random((5, 9, 7))
        spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE)
        spectral.fit_predict([view1, view2])
Esempio n. 21
0
def test_samples_not_list():
    with pytest.raises(ValueError):
        view1 = 1
        view2 = 3
        spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE)
        spectral.fit_predict([view1, view2])
Esempio n. 22
0
def test_random_state_not_convertible():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=5, random_state='ab')
Esempio n. 23
0
def test_n_views_not_positive_int():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=5, n_views=-1)
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_clusters=5, n_views=0)
Esempio n. 24
0
def test_samples_not_list():
    with pytest.raises(ValueError):
        view1 = 1
        view2 = 3
        spectral = MultiviewSpectralClustering(2)
        spectral.fit_predict([view1, view2])
Esempio n. 25
0
def test_max_iter_not_positive_int():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(max_iter=-1)

    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(max_iter=0)
Esempio n. 26
0
def test_gamma_not_positive_float():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(gamma=-1.5)

    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(gamma=0)
Esempio n. 27
0
def test_not_valid_affinity():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity='What')
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(affinity=None)
Esempio n. 28
0
def test_samples_not_2D_2():
    with pytest.raises(ValueError):
        view1 = np.random.random((10, ))
        view2 = np.random.random((10, ))
        spectral = MultiviewSpectralClustering(2)
        spectral.fit_predict([view1, view2])
Esempio n. 29
0
def test_n_init_not_positive_int():
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_init=-1)

    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(n_init=0)
Esempio n. 30
0
def test_n_views_too_small2(small_data):
    with pytest.raises(ValueError):
        spectral = MultiviewSpectralClustering(random_state=RANDOM_STATE)
        spectral.fit_predict([])