Esempio n. 1
0
    'this work\n(correction applied\nto all cells)', 'Garcia & Phillips\n2011',
    'Brewster et al.\n 2014', 'Razo-Mejia et al.\n 2018'
])
ax[1].set_xlabel('repressors per cell')
ax[1].set_ylabel('fold-change')

# Plot the "gold standard" binding energy.
ax[0].fill_betweenx([-1, 10],
                    epRA_low,
                    epRA_high,
                    color=colors['black'],
                    alpha=0.25,
                    zorder=1)

# Plot the inferred DNA binding energies.
for g, d in stats.groupby('source'):
    if g == 'no_correction':
        alpha = 0.25
    else:
        alpha = 1
    epRA_median, low, high = d[d['parameter'] == 'epRA'][[
        'median', 'hpd_min', 'hpd_max'
    ]].values[0]
    ax[0].hlines(position[g],
                 low,
                 high,
                 lw=1,
                 color=edge_colors[g],
                 alpha=alpha,
                 zorder=99)
    ax[0].plot(epRA_median,
Esempio n. 2
0
    gamma = mwc.bayes.Jeffreys('gamma', lower=1E-9, upper=100)

    # Compute the expected value.
    time = data['elapsed_time_min'].values
    mu = np.log(a0) + time * lam

    # Define the likelihood and sample.
    like = pm.Cauchy('like', mu, gamma, observed=np.log(data['OD_600'].values))
    trace = pm.sample(tune=5000, draws=5000)
    trace_df = mwc.stats.trace_to_dataframe(trace, model)
    stats = mwc.stats.compute_statistics(trace_df)

# %% Compute the best fit and credible region
modes = {}
hpds = {}
grouped = stats.groupby('parameter')
for g, d in grouped:
    modes[g] = d['mode'].values[0]
    hpds[g] = [d[['hpd_min', 'hpd_max']].values]

time_range = np.linspace(data['elapsed_time_min'].min(),
                         data['elapsed_time_min'].max(), 500)
best_fit = modes['a0'] * np.exp(modes['lambda'] * time_range)

cred_region = np.zeros((2, len(time_range)))
for i, t in enumerate(time_range):
    theo = trace_df['a0'] * np.exp(t * trace_df['lambda'])
    cred_region[:, i] = mwc.stats.compute_hpd(theo, mass_frac=0.95)

# %% Compute the doubling time.
t_double = np.log(2) / modes['lambda']
# Load the plates and statistics
plates = pd.read_csv('../../data/compiled_growth_plates.csv', comment='#')
stats = pd.read_csv('../../data/compiled_growth_statistics.csv', comment="#")
plates['temp_C'] = np.round(plates['temp_C'])
plates['time_min'] = np.round(plates['time_min'])
plates = plates[plates['time_min'] <= 600]

#%%
# reform the stats
stats = stats[((stats['carbon'] == 'glucose') | (stats['carbon'] == 'acetate')
               | (stats['carbon'] == 'glycerol'))
              & ((stats['temp'] == 37) | (stats['temp'] == 32)
                 | (stats['temp'] == 42))]

tidy_stats = pd.DataFrame([])
for g, d in stats.groupby(['date', 'carbon', 'temp', 'run_number']):
    growth_rate = d[d['parameter'] == 'max df']['value'].values[0]
    growth_err = d[d['parameter'] == 'max df std']['value'].values[0]
    dbl_time = d[d['parameter'] == 'inverse max df']['value'].values[0]
    dbl_err = d[d['parameter'] == 'inverse max df std']['value'].values[0]

    tidy_stats = tidy_stats.append(
        {
            'date': g[0],
            'carbon': g[1],
            'temp_C': g[2],
            'run_number': g[3],
            'growth_rate': growth_rate,
            'dbl_time': dbl_time,
            'growth_err': growth_err,
            'dbl_err': dbl_err