normalization='batch', id='softmax') optimizer_settings = { 'args': { 'momentum': 0.9 }, 'initial_lr': 0.1, 'optimizer': 'SGD' } solver = MXSolver( batch_size=64, devices=(args.gpu_index, ), epochs=30, initializer=PReLUInitializer(), optimizer_settings=optimizer_settings, symbol=network, verbose=True, ) from data_utilities import load_mnist data = load_mnist(path='stretched_canvas_mnist', scale=1, shape=(1, 56, 56))[:2] data += load_mnist(path='stretched_mnist', scale=1, shape=(1, 56, 56))[2:] info = solver.train(data) postfix = '-' + args.postfix if args.postfix else '' identifier = 'residual-network-on-stretched-mnist-%d%s' % ( args.n_residual_layers, postfix)
network = nin(activate) lr = 0.1 lr_table = {100000 : lr * 0.1} lr_scheduler = AtIterationScheduler(lr, lr_table) optimizer_settings = { 'args' : {'momentum' : 0.9}, 'initial_lr' : lr, 'lr_scheduler' : lr_scheduler, 'optimizer' : 'SGD', 'weight_decay' : 0.0001, } solver = MXSolver( batch_size = BATCH_SIZE, devices = (0, 1, 2, 3), epochs = 300, initializer = DReLUInitializer(0, 1), optimizer_settings = optimizer_settings, symbol = network, verbose = True, ) data = load_cifar10_record(BATCH_SIZE) info = solver.train(data) identifier = 'residual-network-n-%d-activate-%s-times-%d' % (N, ACTIVATE, TIMES) pickle.dump(info, open('info/%s' % identifier, 'wb')) parameters = solver.export_parameters() pickle.dump(parameters, open('parameters/%s' % identifier, 'wb'))
'args': { 'momentum': 0.9 }, 'initial_lr': args.initial_lr, 'lr_scheduler': lr_scheduler, 'optimizer': 'SGD', 'weight_decay': 0.0001, } from mx_solver import MXSolver from mx_initializer import PReLUInitializer solver = MXSolver( batch_size=args.batch_size, devices=(0, 1, 2, 3), epochs=150, initializer=PReLUInitializer(), optimizer_settings=optimizer_settings, symbol=network, verbose=True, ) from data_utilities import load_cifar10_record data = load_cifar10_record(args.batch_size) info = solver.train(data) postfix = '-' + args.postfix if args.postfix else '' identifier = 'rnn-attention-network-on-cifar-10-%d%s' % (args.n_layers, postfix) import cPickle as pickle
lr_scheduler = AtIterationScheduler(lr, lr_table) optimizer_settings = { 'args': { 'momentum': 0.9 }, 'initial_lr': lr, 'lr_scheduler': lr_scheduler, 'optimizer': 'SGD', } solver = MXSolver( batch_size=BATCH_SIZE, devices=GPU_availability()[:1], epochs=150, initializer=PReLUInitializer(), optimizer_settings=optimizer_settings, symbol=network, verbose=True, ) data = load_cifar10(center=True, rescale=True) # data = load_cifar10_record(BATCH_SIZE) info = solver.train(data) identifier = 'dropping-out-mlp-%d-%d' % (N_LAYERS, N_HIDDEN_UNITS) pickle.dump(info, open('info/%s' % identifier, 'wb')) parameters = solver.export_parameters() pickle.dump(parameters, open('parameters/%s' % identifier, 'wb'))
network = layers.fully_connected(X=network, n_hidden_units=10) network = layers.softmax_loss(prediction=network, normalization='batch', id='softmax') BATCH_SIZE = 128 lr = 0.1 lr_table = {32000 : lr * 0.1, 48000 : lr * 0.01} lr_scheduler = AtIterationScheduler(lr, lr_table) optimizer_settings = { 'args' : {'momentum' : 0.9}, 'initial_lr' : lr, 'lr_scheduler' : lr_scheduler, 'optimizer' : 'SGD', 'weight_decay' : 0.0001, } solver = MXSolver( batch_size = BATCH_SIZE, devices = (0, 1, 2, 3), epochs = 150, initializer = PReLUInitializer(), optimizer_settings = optimizer_settings, symbol = network, verbose = True, ) data = load_cifar10_record(BATCH_SIZE) info = solver.train(data) identifier = 'cifar-residual-network-%d-%s-transition' % (N, mode) pickle.dump(info, open('info/%s' % identifier, 'wb'))
optimizer_settings = { 'args': { 'momentum': 0.9 }, 'initial_lr': lr, 'lr_scheduler': AtIterationScheduler(lr, lr_table), 'optimizer': 'SGD', 'weight_decay': 0.0001, } solver = MXSolver( batch_size=BATCH_SIZE, devices=(0, 1, 2, 3), epochs=int(sys.argv[1]), initializer=PReLUInitializer(), optimizer_settings=optimizer_settings, symbol=network, verbose=True, ) info = solver.train(data) identifier = 'triple-state-transitory-residual-network' pickle.dump(info, open('info/%s' % identifier, 'wb')) parameters, states = solver.export_parameters() parameters = { key: value for key, value in parameters.items() if 'transition' in key }