Esempio n. 1
0
    def test_draw_samples_no_broadcast(self, dtype, mean, mean_is_samples, precision,
                                       precision_is_samples, rv_shape, num_samples):

        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_is_samples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        precision_mx = mx.nd.array(precision, dtype=dtype)
        if not precision_is_samples:
            precision_mx = add_sample_dimension(mx.nd, precision_mx)
        # precision = precision_mx.asnumpy()

        # n_dim = 1 + len(rv.shape) if is_samples_any else len(rv.shape)
        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))
        # rand_exp = np.expand_dims(rand, axis=-1)
        # lmat = np.linalg.cholesky(precision)
        # temp1 = np.matmul(lmat, rand_exp).sum(-1)
        # rv_samples_np = mean + temp1

        normal = MultivariateNormalMeanPrecision.define_variable(shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor

        variables = {normal.mean.uuid: mean_mx, normal.precision.uuid: precision_mx}
        draw_samples_rt = normal.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert array_has_samples(mx.nd, draw_samples_rt)
        assert get_num_samples(mx.nd, draw_samples_rt) == num_samples, \
            (get_num_samples(mx.nd, draw_samples_rt), num_samples)
Esempio n. 2
0
    def test_draw_samples_no_broadcast(self, dtype_dof, dtype,
                                       degrees_of_freedom, scale,
                                       scale_is_samples, rv_shape,
                                       num_samples):
        degrees_of_freedom_mx = mx.nd.array([degrees_of_freedom],
                                            dtype=dtype_dof)
        scale_mx = mx.nd.array(scale, dtype=dtype)
        if not scale_is_samples:
            scale_mx = add_sample_dimension(mx.nd, scale_mx)

        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        var = Wishart.define_variable(shape=rv_shape,
                                      dtype=dtype,
                                      rand_gen=rand_gen).factor
        variables = {
            var.degrees_of_freedom.uuid: degrees_of_freedom_mx,
            var.scale.uuid: scale_mx
        }
        draw_samples_rt = var.draw_samples(F=mx.nd,
                                           variables=variables,
                                           num_samples=num_samples)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert array_has_samples(mx.nd, draw_samples_rt)
        assert get_num_samples(
            mx.nd, draw_samples_rt) == num_samples, (get_num_samples(
                mx.nd, draw_samples_rt), num_samples)
Esempio n. 3
0
    def test_log_pdf_no_broadcast(self, dtype, mean, mean_isSamples, var,
                                  var_isSamples, rv, rv_isSamples,
                                  num_samples):

        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        mean = mean_mx.asnumpy()

        var_mx = mx.nd.array(var, dtype=dtype)
        if not var_isSamples:
            var_mx = add_sample_dimension(mx.nd, var_mx)
        var = var_mx.asnumpy()

        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_isSamples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        rv = rv_mx.asnumpy()

        from scipy.stats import multivariate_normal
        isSamples_any = any([mean_isSamples, var_isSamples, rv_isSamples])
        rv_shape = rv.shape[1:]

        n_dim = 1 + len(
            rv.shape) if isSamples_any and not rv_isSamples else len(rv.shape)
        mean_np = numpy_array_reshape(mean, isSamples_any, n_dim)
        var_np = numpy_array_reshape(var, isSamples_any, n_dim)
        rv_np = numpy_array_reshape(rv, isSamples_any, n_dim)

        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        r = []
        for s in range(len(rv_np)):
            a = []
            for i in range(len(rv_np[s])):
                a.append(
                    multivariate_normal.logpdf(rv_np[s][i], mean_np[s][i],
                                               var_np[s][i]))
            r.append(a)
        log_pdf_np = np.array(r)

        normal = MultivariateNormal.define_variable(shape=rv_shape,
                                                    dtype=dtype,
                                                    rand_gen=rand_gen).factor
        variables = {
            normal.mean.uuid: mean_mx,
            normal.covariance.uuid: var_mx,
            normal.random_variable.uuid: rv_mx
        }
        log_pdf_rt = normal.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(
                mx.nd, log_pdf_rt) == num_samples, (get_num_samples(
                    mx.nd, log_pdf_rt), num_samples)
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())
Esempio n. 4
0
    def test_draw_samples_with_broadcast(self, dtype, mean, mean_isSamples,
                                         var, var_isSamples, rv_shape,
                                         num_samples):

        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        var_mx = mx.nd.array(var, dtype=dtype)
        if not var_isSamples:
            var_mx = add_sample_dimension(mx.nd, var_mx)
        var = var_mx.asnumpy()

        isSamples_any = any([mean_isSamples, var_isSamples])
        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))
        rv_samples_np = mean + np.matmul(np.linalg.cholesky(var),
                                         np.expand_dims(rand, axis=-1)).sum(-1)

        normal = MultivariateNormal.define_variable(shape=rv_shape,
                                                    dtype=dtype,
                                                    rand_gen=rand_gen).factor
        variables = {normal.mean.uuid: mean_mx, normal.covariance.uuid: var_mx}
        draw_samples_rt = normal.draw_samples(F=mx.nd, variables=variables)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, draw_samples_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(
                mx.nd, draw_samples_rt) == num_samples, (get_num_samples(
                    mx.nd, draw_samples_rt), num_samples)
Esempio n. 5
0
    def test_draw_samples_with_broadcast(self, dtype_dof, dtype, degrees_of_freedom, scale, scale_is_samples, rv_shape,
                                         num_samples):

        degrees_of_freedom_mx = mx.nd.array([degrees_of_freedom], dtype=dtype_dof)
        scale_mx = mx.nd.array(scale, dtype=dtype)
        if not scale_is_samples:
            scale_mx = add_sample_dimension(mx.nd, scale_mx)

        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))
        reps = 1000
        mins = np.zeros(reps)
        maxs = np.zeros(reps)
        for i in range(reps):
            rvs = wishart.rvs(df=degrees_of_freedom, scale=scale, size=num_samples)
            mins[i] = rvs.min()
            maxs[i] = rvs.max()
        # rv_samples_np = wishart.rvs(df=degrees_of_freedom, scale=scale, size=num_samples)

        var = Wishart.define_variable(shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {var.degrees_of_freedom.uuid: degrees_of_freedom_mx, var.scale.uuid: scale_mx}
        draw_samples_rt = var.draw_samples(F=mx.nd, variables=variables)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, draw_samples_rt) == scale_is_samples
        if scale_is_samples:
            assert get_num_samples(mx.nd, draw_samples_rt) == num_samples, (get_num_samples(mx.nd, draw_samples_rt),
                                                                            num_samples)
        assert mins.min() < draw_samples_rt.asnumpy().min()
        assert maxs.max() > draw_samples_rt.asnumpy().max()
Esempio n. 6
0
    def test_log_pdf(self, dtype_dof, dtype, degrees_of_freedom, random_state,
                     scale_is_samples, rv_is_samples, num_data_points, num_samples, broadcast):
        # Create positive semi-definite matrices
        rv = make_spd_matrices_4d(num_samples, num_data_points, degrees_of_freedom, random_state=random_state)
        if broadcast:
            scale = make_spd_matrix(n_dim=degrees_of_freedom, random_state=random_state)
        else:
            scale = make_spd_matrices_4d(num_samples, num_data_points, degrees_of_freedom, random_state=random_state)

        degrees_of_freedom_mx = mx.nd.array([degrees_of_freedom], dtype=dtype_dof)
        degrees_of_freedom = degrees_of_freedom_mx.asnumpy()[0]  # ensures the correct dtype

        scale_mx = mx.nd.array(scale, dtype=dtype)
        if not scale_is_samples:
            scale_mx = add_sample_dimension(mx.nd, scale_mx)
        scale = scale_mx.asnumpy()

        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        rv = rv_mx.asnumpy()

        is_samples_any = scale_is_samples or rv_is_samples

        if broadcast:
            scale_np = np.broadcast_to(scale, rv.shape)
        else:
            n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)
            scale_np = numpy_array_reshape(scale, is_samples_any, n_dim)

        rv_np = numpy_array_reshape(rv, is_samples_any, degrees_of_freedom)

        r = []
        for s in range(num_samples):
            a = []
            for i in range(num_data_points):
                a.append(wishart.logpdf(rv_np[s][i], df=degrees_of_freedom, scale=scale_np[s][i]))
            r.append(a)
        log_pdf_np = np.array(r)

        var = Wishart.define_variable(shape=rv.shape[1:], dtype=dtype, rand_gen=None).factor
        variables = {var.degrees_of_freedom.uuid: degrees_of_freedom_mx, var.scale.uuid: scale_mx,
                     var.random_variable.uuid: rv_mx}
        log_pdf_rt = var.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, log_pdf_rt) == is_samples_any
        if is_samples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples, (get_num_samples(mx.nd, log_pdf_rt), num_samples)
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())
Esempio n. 7
0
    def test_log_pdf(self, dtype, prob_true, prob_true_is_samples, rv,
                     rv_is_samples, num_samples):

        rv_shape = rv.shape[1:] if rv_is_samples else rv.shape
        n_dim = 1 + len(rv.shape) if not rv_is_samples else len(rv.shape)
        prob_true_np = numpy_array_reshape(prob_true, prob_true_is_samples,
                                           n_dim)
        rv_np = numpy_array_reshape(rv, rv_is_samples, n_dim)
        rv_full_shape = (num_samples, ) + rv_shape
        rv_np = np.broadcast_to(rv_np, rv_full_shape)

        log_pdf_np = bernoulli.logpmf(k=rv_np, p=prob_true_np)

        var = Bernoulli.define_variable(0, shape=rv_shape, dtype=dtype).factor
        prob_true_mx = mx.nd.array(prob_true, dtype=dtype)
        if not prob_true_is_samples:
            prob_true_mx = add_sample_dimension(mx.nd, prob_true_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        variables = {
            var.prob_true.uuid: prob_true_mx,
            var.random_variable.uuid: rv_mx
        }
        log_pdf_rt = var.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())
Esempio n. 8
0
    def test_draw_samples(self, dtype, mean, mean_is_samples, precision,
                          precision_is_samples, rv_shape, num_samples):
        n_dim = 1 + len(rv_shape)
        mean_np = numpy_array_reshape(mean, mean_is_samples, n_dim)
        precision_np = numpy_array_reshape(precision, precision_is_samples, n_dim)

        rand = np.random.randn(num_samples, *rv_shape)
        rv_samples_np = mean_np + rand * np.power(precision_np, -0.5)

        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        var = NormalMeanPrecision.define_variable(shape=rv_shape, dtype=dtype,
                                                  rand_gen=rand_gen).factor
        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_is_samples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        precision_mx = mx.nd.array(precision, dtype=dtype)
        if not precision_is_samples:
            precision_mx = add_sample_dimension(mx.nd, precision_mx)
        variables = {var.mean.uuid: mean_mx, var.precision.uuid: precision_mx}
        rv_samples_rt = var.draw_samples(
            F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(rv_samples_rt.dtype, dtype)
        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples

        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(rv_samples_np, rv_samples_rt.asnumpy(), rtol=rtol, atol=atol)
Esempio n. 9
0
    def test_log_pdf(self, dtype, mean, mean_is_samples, precision, precision_is_samples,
                     rv, rv_is_samples, num_samples):
        is_samples_any = any([mean_is_samples, precision_is_samples, rv_is_samples])
        rv_shape = rv.shape[1:] if rv_is_samples else rv.shape
        n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)
        mean_np = numpy_array_reshape(mean, mean_is_samples, n_dim)
        precision_np = numpy_array_reshape(precision, precision_is_samples, n_dim)
        rv_np = numpy_array_reshape(rv, rv_is_samples, n_dim)
        log_pdf_np = norm.logpdf(rv_np, mean_np, np.power(precision_np, -0.5))

        var = NormalMeanPrecision.define_variable(shape=rv_shape, dtype=dtype).factor
        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_is_samples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        precision_mx = mx.nd.array(precision, dtype=dtype)
        if not precision_is_samples:
            precision_mx = add_sample_dimension(mx.nd, precision_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        variables = {var.mean.uuid: mean_mx, var.precision.uuid: precision_mx, var.random_variable.uuid: rv_mx}
        log_pdf_rt = var.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == is_samples_any
        if is_samples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy(), rtol=rtol, atol=atol)
Esempio n. 10
0
    def test_draw_samples(self, dtype, mean, mean_isSamples, var,
                          var_isSamples, rv_shape, num_samples):
        n_dim = 1 + len(rv_shape)
        mean_np = numpy_array_reshape(mean, mean_isSamples, n_dim)
        var_np = numpy_array_reshape(var, var_isSamples, n_dim)

        rand = np.random.randn(num_samples, *rv_shape)
        rv_samples_np = mean_np + rand * np.sqrt(var_np)

        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        normal = Normal.define_variable(shape=rv_shape, dtype=dtype,
                                        rand_gen=rand_gen).factor
        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        var_mx = mx.nd.array(var, dtype=dtype)
        if not var_isSamples:
            var_mx = add_sample_dimension(mx.nd, var_mx)
        variables = {normal.mean.uuid: mean_mx, normal.variance.uuid: var_mx}
        rv_samples_rt = normal.draw_samples(
            F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(rv_samples_rt.dtype, dtype)
        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples

        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(rv_samples_np, rv_samples_rt.asnumpy(), rtol=rtol, atol=atol)
Esempio n. 11
0
    def test_log_pdf(self, dtype, mean, mean_isSamples, var, var_isSamples,
                     rv, rv_isSamples, num_samples):
        from scipy.stats import norm

        isSamples_any = any([mean_isSamples, var_isSamples, rv_isSamples])
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape
        n_dim = 1 + len(rv.shape) if isSamples_any and not rv_isSamples else len(rv.shape)
        mean_np = numpy_array_reshape(mean, mean_isSamples, n_dim)
        var_np = numpy_array_reshape(var, var_isSamples, n_dim)
        rv_np = numpy_array_reshape(rv, rv_isSamples, n_dim)
        log_pdf_np = norm.logpdf(rv_np, mean_np, np.sqrt(var_np))
        normal = Normal.define_variable(shape=rv_shape, dtype=dtype).factor
        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        var_mx = mx.nd.array(var, dtype=dtype)
        if not var_isSamples:
            var_mx = add_sample_dimension(mx.nd, var_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_isSamples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        variables = {normal.mean.uuid: mean_mx, normal.variance.uuid: var_mx, normal.random_variable.uuid: rv_mx}
        log_pdf_rt = normal.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy(), rtol=rtol, atol=atol)
Esempio n. 12
0
    def test_draw_samples_non_mock(self, plot=False):
        # Also make sure the non-mock sampler works
        dtype = np.float32
        num_samples = 100000

        a = np.array([2])
        b = np.array([5])

        rv_shape = (1, )

        a_mx = add_sample_dimension(mx.nd, mx.nd.array(a, dtype=dtype))
        b_mx = add_sample_dimension(mx.nd, mx.nd.array(b, dtype=dtype))

        rand_gen = None
        var = Beta.define_variable(shape=rv_shape,
                                   rand_gen=rand_gen,
                                   dtype=dtype).factor
        variables = {var.alpha.uuid: a_mx, var.beta.uuid: b_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd,
                                         variables=variables,
                                         num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert rv_samples_rt.dtype == dtype

        if plot:
            plot_univariate(samples=rv_samples_rt, dist=beta, a=a[0], b=b[0])

        a_est, b_est, _, _ = beta.fit(rv_samples_rt.asnumpy().ravel())
        a_tol = 0.2
        b_tol = 0.2
        assert np.abs(a[0] - a_est) < a_tol
        assert np.abs(b[0] - b_est) < b_tol
Esempio n. 13
0
    def test_draw_samples(self, dtype, low, low_is_samples, high,
                          high_is_samples, rv_shape, num_samples):
        n_dim = 1 + len(rv_shape)
        low_np = numpy_array_reshape(low, low_is_samples, n_dim)
        high_np = numpy_array_reshape(high, high_is_samples, n_dim)

        rv_samples_np = np.random.uniform(low=low_np, high=high_np, size=(num_samples,) + rv_shape)

        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rv_samples_np.flatten(), dtype=dtype))

        var = Uniform.define_variable(shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        low_mx = mx.nd.array(low, dtype=dtype)
        if not low_is_samples:
            low_mx = add_sample_dimension(mx.nd, low_mx)
        high_mx = mx.nd.array(high, dtype=dtype)
        if not high_is_samples:
            high_mx = add_sample_dimension(mx.nd, high_mx)
        variables = {var.low.uuid: low_mx, var.high.uuid: high_mx}

        rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(rv_samples_rt.dtype, dtype)
        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples

        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(rv_samples_np, rv_samples_rt.asnumpy(), rtol=rtol, atol=atol)
Esempio n. 14
0
    def test_draw_samples_non_mock(self, plot=False):
        # Also make sure the non-mock sampler works
        dtype = np.float32
        num_samples = 100000

        mean = np.array([0.5])
        variance = np.array([2])

        rv_shape = (1,)

        mean_mx = add_sample_dimension(mx.nd, mx.nd.array(mean, dtype=dtype))
        variance_mx = add_sample_dimension(mx.nd, mx.nd.array(variance, dtype=dtype))

        rand_gen = None
        var = Normal.define_variable(shape=rv_shape, rand_gen=rand_gen, dtype=dtype).factor
        variables = {var.mean.uuid: mean_mx, var.variance.uuid: variance_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert rv_samples_rt.dtype == dtype

        from scipy.stats import norm
        if plot:
            plot_univariate(samples=rv_samples_rt, dist=norm, loc=mean[0], scale=np.sqrt(variance[0]))

        mean_est, scale_est = norm.fit(rv_samples_rt.asnumpy().ravel())
        mean_tol = 1e-1
        variance_tol = 1e-1
        assert np.abs(mean[0] - mean_est) < mean_tol
        assert np.abs(variance[0] - scale_est ** 2) < variance_tol
Esempio n. 15
0
    def test_draw_samples_non_mock(self, plot=False):
        # Also make sure the non-mock sampler works
        dtype = np.float32
        num_samples = 1000

        low = np.array([0.5])
        high = np.array([2])

        rv_shape = (1,)

        low_mx = mx.nd.array(low, dtype=dtype)
        high_mx = mx.nd.array(high, dtype=dtype)

        rand_gen = None
        var = Uniform.define_variable(shape=rv_shape, rand_gen=rand_gen, dtype=dtype).factor
        variables = {var.low.uuid: low_mx, var.high.uuid: high_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert rv_samples_rt.dtype == dtype

        if plot:
            plot_univariate(samples=rv_samples_rt, dist=uniform, loc=low[0], scale=high[0] - low[0], buffer=1)

        location_est, scale_est = uniform.fit(rv_samples_rt.asnumpy().ravel())
        location_tol = 1e-2
        scale_tol = 1e-2
        assert np.abs(low[0] - location_est) < location_tol
        assert np.abs(high[0] - scale_est - location_est) < scale_tol
Esempio n. 16
0
    def test_draw_samples(self):
        np.random.seed(0)
        samples_1_np = np.random.randn(5)
        samples_1 = mx.nd.array(samples_1_np)
        samples_2_np = np.random.randn(50)
        samples_2 = mx.nd.array(samples_2_np)
        m = Model()
        v = Variable(shape=(1,))
        m.v2 = Normal.define_variable(mean=v, variance=mx.nd.array([1]), rand_gen=MockMXNetRandomGenerator(samples_1))
        m.v3 = Normal.define_variable(mean=m.v2, variance=mx.nd.array([0.1]), shape=(10,), rand_gen=MockMXNetRandomGenerator(samples_2))
        np.random.seed(0)
        v_np =np.random.rand(1)
        v_mx = mx.nd.array(v_np)

        v_rt = add_sample_dimension(mx.nd, v_mx)
        variance = m.v2.factor.variance
        variance2 = m.v3.factor.variance
        variance_rt = add_sample_dimension(mx.nd, variance.constant)
        variance2_rt = add_sample_dimension(mx.nd, variance2.constant)
        samples = m.draw_samples(F=mx.nd, num_samples=5, targets=[m.v3.uuid],
        variables={v.uuid: v_rt, variance.uuid: variance_rt, variance2.uuid: variance2_rt})[0]

        samples_np = v_np + samples_1_np[:, None] + np.sqrt(0.1)*samples_2_np.reshape(5,10)

        assert array_has_samples(mx.nd, samples) and get_num_samples(mx.nd, samples)==5
        assert np.allclose(samples.asnumpy(), samples_np)
Esempio n. 17
0
    def test_log_pdf(self, dtype, low, low_is_samples, high, high_is_samples, rv, rv_is_samples,
                     num_samples):
        is_samples_any = any([low_is_samples, high_is_samples, rv_is_samples])
        rv_shape = rv.shape[1:] if rv_is_samples else rv.shape
        n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)
        low_np = numpy_array_reshape(low, low_is_samples, n_dim)
        high_np = numpy_array_reshape(high, high_is_samples, n_dim)
        scale_np = high_np - low_np
        rv_np = numpy_array_reshape(rv, rv_is_samples, n_dim)

        # Note uniform.logpdf takes loc and scale, where loc=a and scale=b-a
        log_pdf_np = uniform.logpdf(rv_np, low_np, scale_np)
        var = Uniform.define_variable(shape=rv_shape, dtype=dtype).factor

        low_mx = mx.nd.array(low, dtype=dtype)
        if not low_is_samples:
            low_mx = add_sample_dimension(mx.nd, low_mx)
        high_mx = mx.nd.array(high, dtype=dtype)
        if not high_is_samples:
            high_mx = add_sample_dimension(mx.nd, high_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        variables = {var.low.uuid: low_mx, var.high.uuid: high_mx, var.random_variable.uuid: rv_mx}
        log_pdf_rt = var.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == is_samples_any
        if is_samples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy(), rtol=rtol, atol=atol)
Esempio n. 18
0
    def test_draw_samples(self, dtype, log_prob, log_prob_isSamples, rv_shape,
                          num_samples, one_hot_encoding, normalization):
        n_dim = 1 + len(rv_shape)
        log_prob_np = numpy_array_reshape(log_prob, log_prob_isSamples, n_dim)
        rv_full_shape = (num_samples, ) + rv_shape
        log_prob_np = np.broadcast_to(log_prob_np, rv_full_shape[:-1] + (3, ))

        rand_np = np.random.randint(0, 3, size=rv_full_shape[:-1])
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand_np.flatten(), dtype=dtype))

        if one_hot_encoding:
            rand_np = np.identity(3)[rand_np].reshape(*rv_full_shape)
        else:
            rand_np = np.expand_dims(rand_np, axis=-1)
        rv_samples_np = rand_np

        cat = Categorical.define_variable(0,
                                          num_classes=3,
                                          one_hot_encoding=one_hot_encoding,
                                          normalization=normalization,
                                          shape=rv_shape,
                                          rand_gen=rand_gen,
                                          dtype=dtype).factor
        log_prob_mx = mx.nd.array(log_prob, dtype=dtype)
        if not log_prob_isSamples:
            log_prob_mx = add_sample_dimension(mx.nd, log_prob_mx)
        variables = {cat.log_prob.uuid: log_prob_mx}
        rv_samples_rt = cat.draw_samples(F=mx.nd,
                                         variables=variables,
                                         num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert np.allclose(rv_samples_np, rv_samples_rt.asnumpy())
Esempio n. 19
0
    def test_draw_samples_non_mock(self, plot=False):
        # Also make sure the non-mock sampler works
        dtype = np.float32
        num_samples = 100000

        mean = np.array([0.5, 0])
        covariance = np.array([[2, 0.5], [0.5, 2]])

        rv_shape = (2,)

        mean_mx = add_sample_dimension(mx.nd, mx.nd.array(mean, dtype=dtype))
        covariance_mx = add_sample_dimension(mx.nd, mx.nd.array(covariance, dtype=dtype))

        rand_gen = None
        var = MultivariateNormal.define_variable(shape=rv_shape, rand_gen=rand_gen, dtype=dtype).factor
        variables = {var.mean.uuid: mean_mx, var.covariance.uuid: covariance_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert rv_samples_rt.dtype == dtype

        from scipy.stats import multivariate_normal
        if plot:
            plot_bivariate(samples=rv_samples_rt, dist=multivariate_normal, mean=mean, cov=covariance)

        # mean_est, scale_est = multivariate_normal.fit(rv_samples_rt.asnumpy().ravel())
        mean_est = np.mean(rv_samples_rt.asnumpy(), axis=0)
        cov_est = np.cov(rv_samples_rt.asnumpy(), rowvar=False)
        mean_tol = 1e-1
        covariance_tol = 1e-1
        assert np.allclose(mean, mean_est, atol=mean_tol)
        assert np.allclose(covariance, cov_est, covariance_tol)
Esempio n. 20
0
    def test_log_pdf_with_broadcast(self, dtype, mean, mean_is_samples, precision, precision_is_samples,
                        rv, rv_is_samples, num_samples):

        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_is_samples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        mean = mean_mx.asnumpy()

        precision_mx = mx.nd.array(precision, dtype=dtype)
        if not precision_is_samples:
            precision_mx = add_sample_dimension(mx.nd, precision_mx)
        precision = precision_mx.asnumpy()

        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        rv = rv_mx.asnumpy()

        is_samples_any = any([mean_is_samples, precision_is_samples, rv_is_samples])
        rv_shape = rv.shape[1:]

        n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)
        mean_np = np.broadcast_to(mean, (5, 3, 2))
        precision_np = np.broadcast_to(precision,  (5, 3, 2, 2))
        rv_np = numpy_array_reshape(rv, is_samples_any, n_dim)

        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        r = []
        for s in range(len(rv_np)):
            a = []
            for i in range(len(rv_np[s])):
                a.append(multivariate_normal.logpdf(rv_np[s][i], mean_np[s][i], np.linalg.inv(precision_np[s][i])))
            r.append(a)
        log_pdf_np = np.array(r)

        normal = MultivariateNormalMeanPrecision.define_variable(shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {
            normal.mean.uuid: mean_mx, normal.precision.uuid: precision_mx, normal.random_variable.uuid: rv_mx}
        log_pdf_rt = normal.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == is_samples_any
        if is_samples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples, (get_num_samples(mx.nd, log_pdf_rt), num_samples)
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())
Esempio n. 21
0
    def test_draw_samples(self, dtype, prob_true, prob_true_is_samples,
                          rv_shape, num_samples):
        rv_full_shape = (num_samples, ) + rv_shape

        rand_np = np.random.normal(size=rv_full_shape) > 0
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand_np.flatten(), dtype=dtype))

        rv_samples_np = rand_np

        var = Bernoulli.define_variable(0,
                                        shape=rv_shape,
                                        rand_gen=rand_gen,
                                        dtype=dtype).factor
        prob_true_mx = mx.nd.array(prob_true, dtype=dtype)
        if not prob_true_is_samples:
            prob_true_mx = add_sample_dimension(mx.nd, prob_true_mx)
        variables = {var.prob_true.uuid: prob_true_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd,
                                         variables=variables,
                                         num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert np.array_equal(rv_samples_np,
                              rv_samples_rt.asnumpy().astype(bool))

        # Also make sure the non-mock sampler works
        rand_gen = None
        var = Bernoulli.define_variable(0,
                                        shape=rv_shape,
                                        rand_gen=rand_gen,
                                        dtype=dtype).factor
        prob_true_mx = mx.nd.array(prob_true, dtype=dtype)
        if not prob_true_is_samples:
            prob_true_mx = add_sample_dimension(mx.nd, prob_true_mx)
        variables = {var.prob_true.uuid: prob_true_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd,
                                         variables=variables,
                                         num_samples=num_samples)

        assert array_has_samples(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples
        assert rv_samples_rt.dtype == dtype
Esempio n. 22
0
    def test_clone_gp(self, dtype, X, X_isSamples, rbf_lengthscale,
                      rbf_lengthscale_isSamples, rbf_variance,
                      rbf_variance_isSamples, rv, rv_isSamples, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)

        m = Model()
        m.X_var = Variable(shape=(5, 2))
        m.Y = GaussianProcess.define_variable(X=m.X_var,
                                              kernel=rbf,
                                              shape=rv_shape,
                                              dtype=dtype)

        gp = m.clone().Y.factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=None, cov=K_np))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
Esempio n. 23
0
    def test_log_pdf_with_broadcast(self, dtype, a, a_is_samples, rv, rv_is_samples, num_samples):
        # Add sample dimension if varaible is not samples
        a_mx = mx.nd.array(a, dtype=dtype)
        if not a_is_samples:
            a_mx = add_sample_dimension(mx.nd, a_mx)
        a = a_mx.asnumpy()

        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        rv = rv_mx.asnumpy()

        is_samples_any = a_is_samples or rv_is_samples
        rv_shape = rv.shape[1:]

        n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)
        a_np = np.broadcast_to(a, (num_samples, 3, 2))
        rv_np = numpy_array_reshape(rv, is_samples_any, n_dim)

        # Initialize rand_gen
        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        # Calculate correct Dirichlet logpdf
        r = []
        for s in range(len(rv_np)):
            a = []
            for i in range(len(rv_np[s])):
                a.append(scipy_dirichlet.logpdf(rv_np[s][i]/sum(rv_np[s][i]), a_np[s][i]))
            r.append(a)
        log_pdf_np = np.array(r)

        dirichlet = Dirichlet.define_variable(alpha=Variable(), shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {dirichlet.alpha.uuid: a_mx, dirichlet.random_variable.uuid: rv_mx}
        log_pdf_rt = dirichlet.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == is_samples_any
        if is_samples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples, (get_num_samples(mx.nd, log_pdf_rt), num_samples)
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())
Esempio n. 24
0
    def test_draw_samples_mean_variance(self, dtype, mean, mean_isSamples,
                                        variance, variance_isSamples, rv_shape,
                                        num_samples):
        n_dim = 1 + len(rv_shape)
        out_shape = (num_samples, ) + rv_shape
        mean_np = mx.nd.array(np.broadcast_to(numpy_array_reshape(
            mean, mean_isSamples, n_dim),
                                              shape=out_shape),
                              dtype=dtype)
        variance_np = mx.nd.array(np.broadcast_to(numpy_array_reshape(
            variance, variance_isSamples, n_dim),
                                                  shape=out_shape),
                                  dtype=dtype)

        gamma = GammaMeanVariance.define_variable(shape=rv_shape,
                                                  dtype=dtype).factor
        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        variance_mx = mx.nd.array(variance, dtype=dtype)
        if not variance_isSamples:
            variance_mx = add_sample_dimension(mx.nd, variance_mx)
        variables = {
            gamma.mean.uuid: mean_mx,
            gamma.variance.uuid: variance_mx
        }

        mx.random.seed(0)
        rv_samples_rt = gamma.draw_samples(F=mx.nd,
                                           variables=variables,
                                           num_samples=num_samples)

        mx.random.seed(0)
        beta_np = mean_np / variance_np
        alpha_np = mean_np * beta_np
        rv_samples_mx = mx.nd.random.gamma(alpha=alpha_np,
                                           beta=beta_np,
                                           dtype=dtype)

        assert np.issubdtype(rv_samples_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples

        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(rv_samples_mx.asnumpy(),
                           rv_samples_rt.asnumpy(),
                           rtol=rtol,
                           atol=atol)
Esempio n. 25
0
    def test_log_pdf_mean_variance(self, dtype, mean, mean_isSamples, variance,
                                   variance_isSamples, rv, rv_isSamples,
                                   num_samples):
        import scipy as sp

        isSamples_any = any([mean_isSamples, variance_isSamples, rv_isSamples])
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape
        n_dim = 1 + len(
            rv.shape) if isSamples_any and not rv_isSamples else len(rv.shape)
        mean_np = numpy_array_reshape(mean, mean_isSamples, n_dim)
        variance_np = numpy_array_reshape(variance, variance_isSamples, n_dim)
        rv_np = numpy_array_reshape(rv, rv_isSamples, n_dim)
        beta_np = mean_np / variance_np
        alpha_np = mean_np * beta_np
        log_pdf_np = sp.stats.gamma.logpdf(rv_np,
                                           a=alpha_np,
                                           loc=0,
                                           scale=1. / beta_np)

        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        variance_mx = mx.nd.array(variance, dtype=dtype)
        if not variance_isSamples:
            variance_mx = add_sample_dimension(mx.nd, variance_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_isSamples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        gamma = GammaMeanVariance.define_variable(mean=mean_mx,
                                                  variance=variance_mx,
                                                  shape=rv_shape,
                                                  dtype=dtype).factor
        variables = {
            gamma.mean.uuid: mean_mx,
            gamma.variance.uuid: variance_mx,
            gamma.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gamma.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        if np.issubdtype(dtype, np.float64):
            rtol, atol = 1e-7, 1e-10
        else:
            rtol, atol = 1e-4, 1e-5
        assert np.allclose(log_pdf_np,
                           log_pdf_rt.asnumpy(),
                           rtol=rtol,
                           atol=atol)
Esempio n. 26
0
    def test_draw_samples(self, dtype, X, X_isSamples, rbf_lengthscale,
                          rbf_lengthscale_isSamples, rbf_variance,
                          rbf_variance_isSamples, rv_shape, num_samples):
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        gp = GaussianProcess.define_variable(X=X_var,
                                             kernel=rbf,
                                             shape=rv_shape,
                                             dtype=dtype,
                                             rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            L_np = np.linalg.cholesky(K_np)
            sample_np = L_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np)

        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)
Esempio n. 27
0
    def test_draw_samples_no_broadcast(self, dtype, mean, mean_isSamples, var,
                                       var_isSamples, rv_shape, num_samples):

        mean_mx = mx.nd.array(mean, dtype=dtype)
        if not mean_isSamples:
            mean_mx = add_sample_dimension(mx.nd, mean_mx)
        var_mx = mx.nd.array(var, dtype=dtype)
        if not var_isSamples:
            var_mx = add_sample_dimension(mx.nd, var_mx)
        var = var_mx.asnumpy()
        # var = (var[:,:,:,None]*var[:,None,:,:]).sum(-2)+np.eye(2)
        # var_mx = mx.nd.array(var, dtype=dtype)

        isSamples_any = any([mean_isSamples, var_isSamples])
        # n_dim = 1 + len(rv.shape) if isSamples_any else len(rv.shape)
        # mean_np = numpy_array_reshape(mean, mean_isSamples, n_dim)
        # var_np = numpy_array_reshape(var, var_isSamples, n_dim)
        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))
        rand_exp = np.expand_dims(rand, axis=-1)
        lmat = np.linalg.cholesky(var)
        temp1 = np.matmul(lmat, rand_exp).sum(-1)
        rv_samples_np = mean + temp1

        normal = MultivariateNormal.define_variable(shape=rv_shape,
                                                    dtype=dtype,
                                                    rand_gen=rand_gen).factor

        variables = {normal.mean.uuid: mean_mx, normal.covariance.uuid: var_mx}
        draw_samples_rt = normal.draw_samples(F=mx.nd, variables=variables)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, draw_samples_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(
                mx.nd, draw_samples_rt) == num_samples, (get_num_samples(
                    mx.nd, draw_samples_rt), num_samples)
Esempio n. 28
0
    def test_draw_samples_no_broadcast(self, dtype_dof, dtype, degrees_of_freedom, scale,
                                       scale_is_samples, rv_shape, num_samples):

        degrees_of_freedom_mx = mx.nd.array([degrees_of_freedom], dtype=dtype_dof)
        scale_mx = mx.nd.array(scale, dtype=dtype)
        if not scale_is_samples:
            scale_mx = add_sample_dimension(mx.nd, scale_mx)

        # n_dim = 1 + len(rv.shape) if isSamples_any else len(rv.shape)
        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))
        # rand_exp = np.expand_dims(rand, axis=-1)
        # lmat = np.linalg.cholesky(var)
        # temp1 = np.matmul(lmat, rand_exp).sum(-1)
        # rv_samples_np = mean + temp1

        var = Wishart.define_variable(shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {var.degrees_of_freedom.uuid: degrees_of_freedom_mx, var.scale.uuid: scale_mx}
        draw_samples_rt = var.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, draw_samples_rt)
        assert get_num_samples(mx.nd, draw_samples_rt) == num_samples, (get_num_samples(mx.nd, draw_samples_rt),
                                                                        num_samples)
Esempio n. 29
0
    def test_draw_samples(self, dtype, a_shape, a_is_samples, b_shape,
                          b_is_samples, rv_shape, num_samples):
        # Note: Tests above have been commented as they are very slow to run.
        # Note: Moved random number generation to here as the seed wasn't set if used above
        a = np.random.uniform(0.5, 2, size=a_shape)
        b = np.random.uniform(0.5, 2, size=b_shape)

        n_dim = 1 + len(rv_shape)
        a_np = numpy_array_reshape(a, a_is_samples, n_dim)
        b_np = numpy_array_reshape(b, b_is_samples, n_dim)

        rv_samples_np = np.random.beta(a_np,
                                       b_np,
                                       size=(num_samples, ) + rv_shape)

        var = Beta.define_variable(shape=rv_shape, dtype=dtype,
                                   rand_gen=None).factor

        a_mx = mx.nd.array(a, dtype=dtype)
        if not a_is_samples:
            a_mx = add_sample_dimension(mx.nd, a_mx)

        b_mx = mx.nd.array(b, dtype=dtype)
        if not b_is_samples:
            b_mx = add_sample_dimension(mx.nd, b_mx)

        variables = {var.a.uuid: a_mx, var.b.uuid: b_mx}
        rv_samples_rt = var.draw_samples(F=mx.nd,
                                         variables=variables,
                                         num_samples=num_samples)

        assert np.issubdtype(rv_samples_rt.dtype, dtype)
        assert is_sampled_array(mx.nd, rv_samples_rt)
        assert get_num_samples(mx.nd, rv_samples_rt) == num_samples

        rtol, atol = 1e-1, 1e-1

        from itertools import product
        fits_np = [
            beta.fit(rv_samples_np[:, i, j])[0:2]
            for i, j in (product(*map(range, rv_shape)))
        ]
        fits_rt = [
            beta.fit(rv_samples_rt.asnumpy()[:, i, j])[0:2]
            for i, j in (product(*map(range, rv_shape)))
        ]

        assert np.allclose(fits_np, fits_rt, rtol=rtol, atol=atol)
Esempio n. 30
0
    def test_log_pdf(self, dtype, log_prob, log_prob_isSamples, rv,
                     rv_isSamples, num_samples, one_hot_encoding,
                     normalization):

        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape
        n_dim = 1 + len(rv.shape) if not rv_isSamples else len(rv.shape)
        log_prob_np = numpy_array_reshape(log_prob, log_prob_isSamples, n_dim)
        rv_np = numpy_array_reshape(rv, rv_isSamples, n_dim)
        rv_full_shape = (num_samples, ) + rv_shape
        rv_np = np.broadcast_to(rv_np, rv_full_shape)
        log_prob_np = np.broadcast_to(log_prob_np, rv_full_shape[:-1] + (3, ))

        if normalization:
            log_pdf_np = np.log(
                np.exp(log_prob_np) /
                np.exp(log_prob_np).sum(-1, keepdims=True)).reshape(-1, 3)
        else:
            log_pdf_np = log_prob_np.reshape(-1, 3)
        if one_hot_encoding:
            log_pdf_np = (rv_np.reshape(-1, 3) * log_pdf_np).sum(-1).reshape(
                rv_np.shape[:-1])
        else:
            bool_idx = np.arange(3)[None, :] == rv_np.reshape(-1, 1)
            log_pdf_np = log_pdf_np[bool_idx].reshape(rv_np.shape[:-1])

        cat = Categorical.define_variable(0,
                                          num_classes=3,
                                          one_hot_encoding=one_hot_encoding,
                                          normalization=normalization,
                                          shape=rv_shape,
                                          dtype=dtype).factor
        log_prob_mx = mx.nd.array(log_prob, dtype=dtype)
        if not log_prob_isSamples:
            log_prob_mx = add_sample_dimension(mx.nd, log_prob_mx)
        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_isSamples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        variables = {
            cat.log_prob.uuid: log_prob_mx,
            cat.random_variable.uuid: rv_mx
        }
        log_pdf_rt = cat.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())