"beta1": beta1, }) data_dir = './../../mxnet/example/image-classification/cifar10/' train = mx.io.ImageRecordIter(path_imgrec=data_dir + "train.rec", data_shape=data_shape[1:], batch_size=batch_size, shuffle=True) metric_acc = mx.metric.CustomMetric(ferr) for epoch in range(num_epoch): train.reset() metric_acc.reset() for t, batch in enumerate(train): batch.data[0] = batch.data[0] * (1.0 / 255.0) - 0.5 gmod.update(batch) gmod.temp_label[:] = 0.0 metric_acc.update([gmod.temp_label], gmod.outputs_fake) gmod.temp_label[:] = 1.0 metric_acc.update([gmod.temp_label], gmod.outputs_real) if t % 50 == 0: logging.info("epoch: %d, iter %d, metric=%s", epoch, t, metric_acc.get()) viz.imshow("gout", gmod.temp_outG[0].asnumpy() + 0.5, 2, flip=True) diff = gmod.temp_diffD[0].asnumpy() diff = (diff - diff.mean()) / diff.std() + 0.5 viz.imshow("diff", diff, flip=True) viz.imshow("data", batch.data[0].asnumpy() + 0.5, 2, flip=True)
}) data_dir = './../../mxnet/example/image-classification/mnist/' train = mx.io.MNISTIter(image=data_dir + "train-images-idx3-ubyte", label=data_dir + "train-labels-idx1-ubyte", input_shape=data_shape[1:], batch_size=batch_size, shuffle=True) metric_acc = mx.metric.CustomMetric(ferr) for epoch in range(num_epoch): train.reset() metric_acc.reset() for t, batch in enumerate(train): gmod.update(batch) gmod.temp_label[:] = 0.0 metric_acc.update([gmod.temp_label], gmod.outputs_fake) gmod.temp_label[:] = 1.0 metric_acc.update([gmod.temp_label], gmod.outputs_real) if t % 100 == 0: logging.info("epoch: %d, iter %d, metric=%s", epoch, t, metric_acc.get()) continue viz.imshow("gout", gmod.temp_outG[0].asnumpy(), 2) diff = gmod.temp_diffD[0].asnumpy() diff = (diff - diff.mean()) / diff.std() + 0.5 viz.imshow("diff", diff) viz.imshow("data", batch.data[0].asnumpy(), 2)
"beta1": beta1, }) data_dir = './../../mxnet/example/image-classification/cifar10/' train = mx.io.ImageRecordIter( path_imgrec = data_dir + "train.rec", data_shape = data_shape[1:], batch_size = batch_size, shuffle=True) metric_acc = mx.metric.CustomMetric(ferr) for epoch in range(num_epoch): train.reset() metric_acc.reset() for t, batch in enumerate(train): batch.data[0] = batch.data[0] * (1.0 / 255.0) - 0.5 gmod.update(batch, is_labeled=True) gmod.temp_label[:] = 0.0 metric_acc.update([gmod.temp_label], gmod.outputs_fake) gmod.temp_label[:] = 1.0 metric_acc.update([gmod.temp_label], gmod.outputs_real) if t % 50 == 0: logging.info("epoch: %d, iter %d, metric=%s", epoch, t, metric_acc.get()) viz.imshow("gout", gmod.temp_outG[0].asnumpy() + 0.5 , 2, flip=True) diff = gmod.temp_diffD[0].asnumpy() diff = (diff - diff.mean()) / diff.std() + 0.5 viz.imshow("diff", diff, flip=True) viz.imshow("data", batch.data[0].asnumpy() + 0.5, 2, flip=True)
}) data_dir = './../../mxnet/example/image-classification/mnist/' train = mx.io.MNISTIter( image = data_dir + "train-images-idx3-ubyte", label = data_dir + "train-labels-idx1-ubyte", input_shape = data_shape[1:], batch_size = batch_size, shuffle = True) metric_acc = mx.metric.CustomMetric(ferr) for epoch in range(num_epoch): train.reset() metric_acc.reset() for t, batch in enumerate(train): gmod.update(batch) gmod.temp_label[:] = 0.0 metric_acc.update([gmod.temp_label], gmod.outputs_fake) gmod.temp_label[:] = 1.0 metric_acc.update([gmod.temp_label], gmod.outputs_real) if t % 100 == 0: logging.info("epoch: %d, iter %d, metric=%s", epoch, t, metric_acc.get()) continue viz.imshow("gout", gmod.temp_outG[0].asnumpy(), 2) diff = gmod.temp_diffD[0].asnumpy() diff = (diff - diff.mean()) / diff.std() + 0.5 viz.imshow("diff", diff) viz.imshow("data", batch.data[0].asnumpy(), 2)
data_dir = '/Users/tornadomeet/project/dmlc/mxNet/example/image-classification/data/' train = mx.io.MNISTIter( image = data_dir + "train-images-idx3-ubyte", label = data_dir + "train-labels-idx1-ubyte", input_shape = data_shape[1:], batch_size = batch_size, shuffle = True) metric_acc = mx.metric.CustomMetric(ferr) for epoch in range(num_epoch): train.reset() metric_acc.reset() for t, batch in enumerate(train): gmod.update(batch) gmod.temp_label[:] = 0.0 metric_acc.update([gmod.temp_label], gmod.outputs_fake) gmod.temp_label[:] = 1.0 metric_acc.update([gmod.temp_label], gmod.outputs_real) if t % 100 == 0: logging.info("epoch: %d, iter %d, metric=%s", epoch, t, metric_acc.get()) gdata = gmod.temp_outG[0].asnumpy() viz.imshow("gout", gdata, 2) diff = gmod.temp_diffD[0].asnumpy() diff = (diff - diff.mean()) / diff.std() + 0.5 viz.imshow("diff", diff) viz.imshow("data", batch.data[0].asnumpy(), 2) if epoch == num_epoch -1: cv2.imsave("epcho-{}-iter-{}".format(epoch, t), gdata)