def forward(self, rel_positions, query=None): """Forward function Parameters ---------- rel_positions The relative shifts. Shape (query_length, mem_length). Each element represents the shift between the :math:`i-th` element of query and the :math:`j-th` element of memory. query The query for computing the relative scores. The shape depends on the layout. If we use T5 attention, the query will not be used. Returns ------- rel_scores The relative attention scores Can have shape (batch_size, num_heads, query_length, mem_length) or (num_heads, query_length, mem_length) """ if self._method == 'transformer_xl' or self._method == 'shaw': assert query is not None, 'Must specify query if method={}'.format(self._method) if self._bidirectional: if self._max_distance is not None: rel_positions = np.clip(rel_positions, a_min=-self._max_distance, a_max=self._max_distance) else: if self._max_distance is not None: rel_positions = np.clip(rel_positions, a_min=0, a_max=self._max_distance) # uniq_rel.shape = (#uniq,), rev_index.shape = (L_q, L_m) uniq_rel, rev_index = np.unique(rel_positions, return_inverse=True) uniq_rel_pos_embed = self._rel_pos_embed(uniq_rel) if self._method == 'transformer_xl': uniq_rel_pos_embed = self._rel_proj(self._dropout_layer(uniq_rel_pos_embed)) # Shape (#uniq, K, C_q) uniq_rel_pos_embed = npx.reshape(uniq_rel_pos_embed, (-2, self._num_heads, self._head_query_units)) # Calculate the dot-product between query and the relative positional embeddings. # After the calculation, rel_score.shape = (L_q, #uniq, N, K) if self._layout == 'NKT': # query_for_rel: (N, K, L_q, C_q) if self._use_einsum: rel_score = np.einsum('bnid,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(query, np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) elif self._layout == 'NTK': # query_for_rel: (N, L_q, K, C_q) if self._use_einsum: rel_score = np.einsum('bind,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(np.swapaxes(query, 1, 2), np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) elif self._layout == 'TNK': # query_for_rel: (L_q, N, K, C_q) if self._use_einsum: rel_score = np.einsum('ibnd,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(np.transpose(query, (1, 2, 0, 3)), np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) else: raise NotImplementedError # We use gather_nd to select the elements # TODO(sxjscience) Use advanced indexing once available rev_index = npx.reshape_like(rev_index, rel_positions).astype(np.int32) query_idx = np.expand_dims(npx.arange_like(rel_positions, axis=0).astype(np.int32), axis=-1) + np.zeros_like(rev_index) rel_score = npx.gather_nd(rel_score, np.stack([query_idx, rev_index])) rel_score = np.transpose(rel_score, (2, 3, 0, 1)) elif self._method == 't5': # shape is (K, L_q, L_m) rel_score = self._rel_pos_embed(rel_positions).transpose((2, 0, 1)) else: raise NotImplementedError return rel_score
def multi_head_dot_attn(query, key, value, mask=None, edge_scores=None, dropout: float = 0.0, scaled: bool = True, normalized: bool = False, eps: float = 1E-6, query_head_units: Optional[int] = None, layout: str = 'NKT', use_einsum: bool = False): """Multihead dot product attention between the query, key, value. scaled is False, normalized is False: D(h_q, h_k) = <h_q, h_k> scaled is True, normalized is False: D(h_q, h_k) = <h_q, h_k> / sqrt(dim_q) scaled is False, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> scaled is True, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> / sqrt(dim_q) If edge_scores is provided, we will calcualte the attention as scores = D(h_q, h_k) + EdgeScore_{q, k} Parameters ---------- query Query. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, query_length, key_dim) - layout is 'NTK' Shape (batch_size, query_length, num_heads, key_dim) - layout is 'TNK' Shape (query_length, batch_size, num_heads, key_dim) key Key. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, key_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, key_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, key_dim) value Value. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, value_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, value_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, value_dim) mask Mask between query and memory. Shape (batch_size, query_length, mem_length) edge_scores The edge attention score. Shape can be any shape that is broadcastable to (batch_size, num_heads, query_length, mem_length) dropout Dropout rate scaled Whether to divide the attention weights by the sqrt of the query dimension. This is first proposed in "[NIPS2017] Attention is all you need.":: .. code-block:: none score = <h_q, h_k> / sqrt(dim_q) normalized If turned on, the cosine distance is used, i.e:: .. code-block:: none score = <h_q / ||h_q||, h_k / ||h_k||> eps The epsilon value used in L2 normalization query_head_units The units of each query head. If it's empty, we will estimate it via the shape_array of the query. layout This stands for the layout of the attention cell. The shape of the input/output will depend on the layout. Currently, we support 'NKT', 'NTK' and 'TNK' in which 'N' means the batch_size, 'K' means the head, and 'T' means the length dimension. use_einsum Whether to use einsum for the computation Returns ------- context_vec - layout is 'NKT' or 'NTK' Shape (batch_size, query_length, num_heads * value_units) - layout is 'TNK' Shape (query_length, batch_size, num_heads * value_units) additional_info scores: Shape (batch_size, num_head, query_length, mem_length) attn_weight: Shape (batch_size, num_head, query_length, mem_length) """ # TODO(sxjscience) Profile layout if normalized: query = l2_normalize(query, axis=-1, eps=eps) key = l2_normalize(key, axis=-1, eps=eps) if scaled: if query_head_units is None: raise NotImplementedError('You will need to specify query_head_units!') else: scale = math.sqrt(query_head_units) else: scale = None if layout == 'NKT': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = np.expand_dims(mask, axis=1).astype(np.bool) # 2. Calculate the attention weights # Score: (B, N, L_query, C_Q) X (B, N, L_mem, C_Q) --> (B, N, L_query, L_mem) scores = npx.batch_dot(query, key, transpose_b=True) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores, mask, axis=-1, temperature=scale) attn_weights = npx.dropout(attn_weights, p=dropout) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (B, N, L_mem, C_V) --> (B, L_query, N * C_V) if use_einsum: context_vec = np.einsum('bnij,bnjc->binc', attn_weights, value) else: context_vec = npx.batch_dot(attn_weights, value).transpose((0, 2, 1, 3)) context_vec = npx.reshape(context_vec, (-2, -2, -1)) elif layout == 'NTK': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = np.expand_dims(mask, axis=1).astype(np.bool) # 2. Calculate the attention weights # Score: (B, L_query, N, C_Q) X (B, L_mem, N, C_Q) --> (B, N, L_query, L_mem) if use_einsum: scores = np.einsum('binc,bjnc->bnij', query, key) else: scores = npx.batch_dot(np.swapaxes(query, 1, 2), np.swapaxes(key, 1, 2), transpose_b=True) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores, mask, axis=-1, temperature=scale) attn_weights = npx.dropout(attn_weights, p=dropout) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (B, L_mem, N, C_V) --> (B, L_query, N * C_V) if use_einsum: context_vec = np.einsum('bnij,bjnc->binc', attn_weights, value) else: context_vec = npx.batch_dot(attn_weights, np.swapaxes(value, 1, 2)).transpose((0, 2, 1, 3)) context_vec = npx.reshape(context_vec, (-2, -2, -1)) elif layout == 'TNK': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = np.expand_dims(mask, axis=1).astype(np.bool) # 2. Calculate the attention weights # Score: (L_query, B, N, C_Q) X (L_mem, B, N, C_Q) --> (B, N, L_query, L_mem) # This layout structure can be implemented very efficiently because B, N are consecutive # to each other. To have a clear picture of what's happening, we may consider the # (i, j)th element of the output # out[i, j, :, :] = query[:, i, j, :] X key[:, i, j, :].T, which is just one GEMM call # We can thus implement the whole kernel via a single call of batched GEMM with stride. if use_einsum: scores = np.einsum('ibnc,jbnc->bnij', query, key) else: scores = npx.batch_dot(query.transpose((1, 2, 0, 3)), key.transpose((1, 2, 3, 0))) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores, mask, axis=-1, temperature=scale) attn_weights = npx.dropout(attn_weights, p=dropout) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (L_mem, B, N, C_V) --> (L_query, B, N * C_V) # Again, we can implement it via a single call to batched GEMM with stride. # Shape (B, N, L_query, C_V) if use_einsum: context_vec = np.einsum('bnij,jbnc->ibnc', attn_weights, value) else: context_vec = npx.batch_dot(attn_weights, value.transpose((1, 2, 0, 3))).transpose((2, 0, 1, 3)) context_vec = npx.reshape(context_vec, (-2, -2, -1)) else: raise NotImplementedError('layout="{}" is not supported! ' 'We only support layout = "NKT", "NTK", and "TNK".' .format(layout)) return context_vec, [scores, attn_weights]