Esempio n. 1
0
def test_layer_norm():
    A = np.ones((2, INT_OVERFLOW))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.layer_norm(A, gamma=np.ones((2)), beta=np.zeros((2)), axis=0)
    assert B.shape == (2, INT_OVERFLOW)
    assert B[0][0] == 0
    B.backward()
    assert A.grad.shape == (2, INT_OVERFLOW)
    assert A.grad[0][0] == 0
Esempio n. 2
0
def get_conv_data_mxnet(oc, ic, n, k, p, s):
    mpx.random.seed(0)
    data = mp.random.normal(size=(1, ic, n, n))
    weight = mp.random.normal(size=(oc, ic, k, k))
    bias = mp.zeros((oc, ))
    on = conv_out_size(n, k, p, s)
    out = mp.empty((1, oc, on, on))
    # Wait data are generated to make later benchmarking accurate
    mpx.waitall()
    return data, weight, bias, out
Esempio n. 3
0
def test_reshape_like():
    A = np.ones((INT_OVERFLOW, 2))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.reshape_like(A, np.zeros((2, INT_OVERFLOW)))
    assert B.shape == (2, INT_OVERFLOW)
    assert B[0][0] == 1
    B.backward()
    assert A.grad.shape == (INT_OVERFLOW, 2)
    assert A.grad[0][0] == 1
Esempio n. 4
0
def test_one_hot():
    A = np.zeros((INT_OVERFLOW))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.one_hot(A, 2)
    assert B.shape == (INT_OVERFLOW, 2)
    assert B[0][0] == 1
    B.backward()
    assert A.grad.shape == (INT_OVERFLOW, )
    assert A.grad[0] == 0
Esempio n. 5
0
def test_arange_like():
    A = np.zeros((INT_OVERFLOW, 2))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.arange_like(A)
    assert B.shape == (INT_OVERFLOW, 2)
    assert B[100][0] == 200
    B.backward()
    assert A.grad.shape == (INT_OVERFLOW, 2)
    assert A.grad[0][0] == 0
Esempio n. 6
0
def test_sign():
    inp = np.zeros((INT_OVERFLOW, 2))
    inp[-1, -1], inp[-2, -1] = 2, -2
    inp.attach_grad()
    with mx.autograd.record():
        out = np.sign(inp)
        out.backward()
    assert out.shape == inp.shape
    assert out[0, 0] == 0 and out[-1, -1] == 1 and out[-2, -1] == -1
    assert inp.grad.shape == inp.shape
    assert inp.grad[-1, -1] == 0
Esempio n. 7
0
def encoder(en_in, num_classes, c_len, ctx):
    vector = np.zeros((en_in.shape[0], c_len * num_classes), ctx=ctx)
    div_arr = []
    for k in range(c_len-1, -1, -1):
        div_arr.append(10**k)
    for i, src in enumerate(en_in):
        for j, d in enumerate(div_arr):
            ss = (src/d).astype(np.int32)
            src -= ss*d
            vector[i, j*num_classes+ss] = 1
    return vector
def test_sigmoid():
    A = np.zeros((INT_OVERFLOW, 2))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.sigmoid(A)
    assert B.shape == (INT_OVERFLOW, 2)
    assert B[0][0] == 0.5
    B.backward()
    assert A.grad.shape == (INT_OVERFLOW, 2)
    assert_almost_equal(A.grad[0][0], np.array([0.25]), \
                rtol=1e-3, atol=1e-5)
def test_argmax():
    A = np.zeros((INT_OVERFLOW, 2))
    A[10][1] = 1
    A.attach_grad()
    with mx.autograd.record():
        B = np.argmax(A)
    print(B)
    assert B == 21
    B.backward()
    assert A.grad.shape == (INT_OVERFLOW, 2)
    assert A.grad[0][0] == 0
Esempio n. 10
0
def n_dim_array():
    x = np.arange(12)
    print(x, type(x))
    x = x.reshape(-1, 3)
    print(" x {} of type '{}' with shape '{}'".format(x, type(x), x.shape))
    y = np.zeros((2, 3, 4))
    print(" y {} with shape {}".format(y, y.shape))
    z = np.random.normal(10, 1, size=(3, 4))
    print("z {} with shape {}".format(z, z.shape))
    a = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
    print("a {} with shape {}".format(a, a.shape))
Esempio n. 11
0
def test_np_minimum():
    # TODO(junwu): Add more test cases
    x1, x2 = mx.sym.var('x1').as_np_ndarray(), mx.sym.var('x2').as_np_ndarray()
    ret = mx.sym.np.minimum(x1, x2)
    assert type(ret) == mx.sym.np._Symbol

    def check_minimum(x1, x2):
        mx_out = np.minimum(x1, x2)
        if isinstance(x1, np.ndarray) or isinstance(x2, np.ndarray):
            assert type(mx_out) == np.ndarray
        np_out = _np.minimum(
            x1.asnumpy() if isinstance(x1, np.ndarray) else x1,
            x2.asnumpy() if isinstance(x2, np.ndarray) else x2)
        assert same(
            mx_out.asnumpy() if isinstance(mx_out, np.ndarray) else mx_out,
            np_out)

    check_minimum(np.zeros((2, 1)), np.ones((5, 1, 4)))
    check_minimum(np.zeros((2, 0)), np.ones((5, 1, 1)))
    check_minimum(np.zeros(()), np.ones((5, 1, 4)))
def test_nonzero():
    A = np.zeros((2, INT_OVERFLOW))
    A[0][0] = 1
    A.attach_grad()
    with mx.autograd.record():
        B = npx.nonzero(A)
    assert B.shape == (1, 2)
    assert B[0][0] == 0
    B.backward()
    assert A.grad.shape == (2, INT_OVERFLOW)
    assert A.grad[0][0] == 0
Esempio n. 13
0
def test_invert():
    inp = np.zeros((2, INT_OVERFLOW), dtype='uint8')
    inp[-1, -1] = 1
    inp.attach_grad()
    with mx.autograd.record():
        out = np.invert(inp)
        out.backward()
    assert out.shape == inp.shape
    assert out[0, 0] == 255 and out[-1, -1] == 254
    assert inp.grad.shape == inp.shape
    assert inp.grad[-1, -1] == 0
Esempio n. 14
0
    def _params_init(self, ctx):
        w_ih = self._w_normal_init(self.i_shape, ctx=ctx)
        w_ir = self._w_normal_init(self.i_shape, ctx=ctx)
        w_iu = self._w_normal_init(self.i_shape, ctx=ctx)

        w_hh = self._w_normal_init(self.h_shape, ctx=ctx)
        w_hr = self._w_normal_init(self.h_shape, ctx=ctx)
        w_hu = self._w_normal_init(self.h_shape, ctx=ctx)

        b_h = mxnp.zeros(shape=self.num_hiddens, dtype=mxnp.float32, ctx=ctx)
        b_r = mxnp.zeros(shape=self.num_hiddens, dtype=mxnp.float32, ctx=ctx)
        b_u = mxnp.zeros(shape=self.num_hiddens, dtype=mxnp.float32, ctx=ctx)

        w_ho = self._w_normal_init(self.o_shape, ctx=ctx)
        b_o = mxnp.zeros(shape=self.num_outputs, dtype=mxnp.float32, ctx=ctx)

        params = [w_ih, w_ir, w_iu, w_hh, w_hr, w_hu, b_h, b_r, b_u, w_ho, b_o]
        for param in params:
            param.attach_grad()
        return params
Esempio n. 15
0
def test_rint():
    inp = np.zeros((INT_OVERFLOW, 2))
    inp[0, 0], inp[-1, -1] = 2.1,  2.9
    inp.attach_grad()
    with mx.autograd.record():
        out = np.rint(inp)
        out.backward()
    assert out.shape == inp.shape
    assert out[0, 0] == 2 and out[-1, -1] == 3
    assert inp.grad.shape == inp.shape
    assert inp.grad[-1, -1] == 0
Esempio n. 16
0
def test_flipud():
    inp = np.zeros((2, 1, INT_OVERFLOW))
    inp[0, 0, 0] = 2
    inp.attach_grad()
    with mx.autograd.record():
        out = np.flipud(inp)
        out.backward()
    assert out.shape == inp.shape
    assert out[1, 0, 0] == 2
    assert inp.grad.shape == inp.shape
    assert inp.grad[0, 0, 0] == 1
Esempio n. 17
0
def test_ctc_loss():
    def test_ctc_loss_size_check(A, label):
        assertRaises(ValueError, npx.ctc_loss, A, label)

    L_SEQ, L_ALP, L_LAB, BAT = 2**10, 2**20, 2**6, 2
    A = np.zeros((L_SEQ, BAT, L_ALP))
    label = np.random.randint(0, L_ALP, (BAT, L_LAB))
    # test for expected exception
    test_ctc_loss_size_check(A, label)
    # now we shrink the size a little bit and test for an allowed case
    L_ALP = 2**20 - 1
    A = np.zeros((L_SEQ, BAT, L_ALP))
    label = np.random.randint(0, L_ALP, (BAT, L_LAB))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.ctc_loss(A, label)
    assert B.shape == (BAT, )
    assert type(B[0]).__name__ == 'ndarray'
    B.backward()
    assert A.grad.shape == (L_SEQ, BAT, L_ALP)
    assert type(A[0]).__name__ == 'ndarray'
Esempio n. 18
0
def test_abs():
    # abs absolute and fabs are the same thing
    inp = np.zeros((INT_OVERFLOW, 2))
    inp[-1, -1] = -1
    inp.attach_grad()
    with mx.autograd.record():
        out = np.abs(inp)
        out.backward()
    assert out.shape == (INT_OVERFLOW, 2)
    assert out[-1, -1] == 1
    assert inp.grad.shape == (INT_OVERFLOW, 2)
    assert inp.grad[-1, -1] == -1
Esempio n. 19
0
def test_index_update():
    A = np.zeros((2, INT_OVERFLOW))
    ind = np.array([[0, 0], [0, 1]], dtype='int32')
    val = np.array([100, 200])
    A.attach_grad()
    with mx.autograd.record():
        B = npx.index_update(A, ind, val)
    assert B.shape == (2, INT_OVERFLOW)
    assert B[0][0] == 100 and B[0][1] == 200
    B.backward()
    assert A.grad.shape == (2, INT_OVERFLOW)
    assert A.grad[0][0] == 0
Esempio n. 20
0
def bilinear_kernel(in_channels, out_channels, kernel_size):
    factor = (kernel_size + 1) // 2
    if kernel_size % 2 == 1:
        center = factor - 1
    else:
        center = factor - 0.5
    og = (np.arange(kernel_size).reshape(-1, 1),
          np.arange(kernel_size).reshape(1, -1))
    filt = (1 - np.abs(og[0] - center) / factor) * \
           (1 - np.abs(og[1] - center) / factor)
    weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size))
    weight[range(in_channels), range(out_channels), :, :] = filt
    return np.array(weight)
Esempio n. 21
0
def test_flip():
    inp = np.zeros((2, INT_OVERFLOW))
    inp[0, 0] = 2
    inp.attach_grad()
    with mx.autograd.record():
        out = np.flip(inp, axis=0)
        out.backward()
    assert out.shape == inp.shape
    assert out[1, 0] == 2
    assert inp.grad.shape == inp.shape
    assert inp.grad[0, 0] == 1
    out2 = np.flip(inp, axis=1)
    assert out2[0, -1] == 2
Esempio n. 22
0
def test_atleast_xd_family():
    def batch_check(x, funcs, shapes):
        for f, s in zip(funcs, shapes):
            x.attach_grad()
            with mx.autograd.record():
                y = f(x)
            assert y.shape == s
            y.backward()
            assert x.grad.shape == (INT_OVERFLOW, )
            assert x.grad[0] == 0
    A = np.zeros((INT_OVERFLOW))
    batch_check(A, [np.atleast_1d, np.atleast_2d, np.atleast_3d], \
            [(INT_OVERFLOW, ), (1, INT_OVERFLOW), (1, INT_OVERFLOW, 1)])
def _add_workload_inner():
    OpArgMngr.add_workload('inner', np.zeros(shape=(1, 80), dtype=np.float64), np.zeros(shape=(1, 80), dtype=np.float64))
    for dt in [np.float32, np.float64]:
        # OpArgMngr.add_workload('inner', np.array(3, dtype=dt)[()], np.array([1, 2], dtype=dt))
        # OpArgMngr.add_workload('inner', np.array([1, 2], dtype=dt), np.array(3, dtype=dt)[()])
        A = np.array([[1, 2], [3, 4]], dtype=dt)
        B = np.array([[1, 3], [2, 4]], dtype=dt)
        C = np.array([1, 1], dtype=dt)
        OpArgMngr.add_workload('inner', A.T, C)
        OpArgMngr.add_workload('inner', C, A.T)
        OpArgMngr.add_workload('inner', B, C)
        OpArgMngr.add_workload('inner', C, B)
        OpArgMngr.add_workload('inner', A, B)
        OpArgMngr.add_workload('inner', A, A)
        OpArgMngr.add_workload('inner', A, A.copy())
        a = np.arange(5).astype(dt)
        b = a[::-1]
        OpArgMngr.add_workload('inner', b, a)
        a = np.arange(24).reshape(2,3,4).astype(dt)
        b = np.arange(24, 48).reshape(2,3,4).astype(dt)
        OpArgMngr.add_workload('inner', a, b)
        OpArgMngr.add_workload('inner', b, a)
Esempio n. 24
0
def test_nonzero():
    A = np.zeros((2, INT_OVERFLOW))
    A[0, 1] = 1
    A[0, -2] = 1
    A.attach_grad()
    with mx.autograd.record():
        B = npx.nonzero(A)
    assert B.shape == (2, 2)
    assert B[0, 0] == 0 and B[0, 1] == 1
    assert B[1, 0] == 0 and B[1, 1] == int(INT_OVERFLOW - 2)
    B.backward()
    assert A.grad.shape == (2, INT_OVERFLOW)
    assert A.grad[0][0] == 0
Esempio n. 25
0
    def init_state_from_encoder(
            self,
            encoder_outputs: np.ndarray,
            encoder_valid_length: Optional[np.ndarray] = None,
            target_embed: Optional[np.ndarray] = None) -> List[np.ndarray]:
        """
        Returns the initial states given encoder output. States for teacher-forced training are encoder outputs
        and a valid length mask for encoder outputs.
        At inference, this method returns the following state tuple:
        valid length bias, step state,
        [projected encoder attention keys, projected encoder attention values] * num_layers,
        [autoregressive state dummies] * num_layers.

        :param encoder_outputs: Encoder outputs. Shape: (batch, source_length, encoder_dim).
        :param encoder_valid_length: Valid lengths of encoder outputs. Shape: (batch,).
        :param target_embed: Target-side embedding layer output. Shape: (batch, target_length, target_embedding_dim).
        :return: Initial states.
        """
        if target_embed is None:  # Inference: initial step = 0. Shape: (batch_size, 1)
            steps = np.expand_dims(np.zeros_like(encoder_valid_length), axis=1)
        else:  # Training: steps up to target length. Shape: (1, target_length)
            steps = np.expand_dims(npx.arange_like(target_embed, axis=1),
                                   axis=0)

        if self.inference_only:
            # Encoder projection caching, therefore we don't pass the encoder_outputs
            states = [steps, encoder_valid_length]

            for layer in self.layers:
                enc_att_kv = layer.enc_attention.ff_kv(encoder_outputs)
                states.append(np.transpose(enc_att_kv, axes=(1, 0, 2)))
        else:
            # NO encoder projection caching
            states = [
                steps,
                np.transpose(encoder_outputs, axes=(1, 0, 2)),
                encoder_valid_length
            ]

        _batch_size = encoder_outputs.shape[0]
        _ctx = encoder_outputs.ctx
        _dtype = encoder_outputs.dtype
        dummy_autoregr_states = [
            np.zeros(layer.get_states_shape(_batch_size),
                     ctx=_ctx,
                     dtype=_dtype) for layer in self.layers
            for _ in range(layer.num_state_tensors)
        ]

        states += dummy_autoregr_states
        return states
Esempio n. 26
0
def load_data_ml100k(data, num_users, num_items, feedback='explicit'):
    users, items, scores = [], [], []
    inter = np.zeros((num_items, num_users)) if feedback == 'explicit' else {}
    for line in data.itertuples():
        user_index, item_index = int(line[1] - 1), int(line[2] - 1)
        score = int(line[3]) if feedback == 'explicit' else 1
        users.append(user_index)
        items.append(item_index)
        scores.append(score)
        if feedback == 'implicit':
            inter.setdefault(user_index, []).append(item_index)
        else:
            inter[item_index, user_index] = score
    return users, items, scores, inter
Esempio n. 27
0
    def test_boolean_catch_exception():
        # adapted from numpy's test_indexing.py
        arr = np.ones((5, 4, 3))

        index = np.array([True], dtype=np.bool_)
        assert_exception(arr.__getitem__, IndexError, index)

        index = np.array([False] * 6, dtype=np.bool_)
        assert_exception(arr.__getitem__, IndexError, index)

        index = np.zeros((4, 4), dtype=bool)
        assert_exception(arr.__getitem__, IndexError, index)

        assert_exception(arr.__getitem__, TypeError, (slice(None), index))
Esempio n. 28
0
def test_batch_norm():
    A = np.ones((2, INT_OVERFLOW))
    gamma = np.ones((2))
    beta = np.zeros((2))
    mov_mean = np.ones((2))
    mov_var = np.ones((2))
    A.attach_grad()
    with mx.autograd.record():
        B = npx.batch_norm(A, gamma, beta, mov_mean, mov_var)
    assert B.shape == (2, INT_OVERFLOW)
    assert B[0][0] == 0
    B.backward()
    assert A.grad.shape == (2, INT_OVERFLOW)
    assert A.grad[0][0] == 0
Esempio n. 29
0
def test_fmin():
    inp1 = np.ones((INT_OVERFLOW, 2))
    inp1[-1, -1] = -1
    inp2 = np.zeros((INT_OVERFLOW, 1))
    inp1.attach_grad()
    inp2.attach_grad()
    with mx.autograd.record():
        out = np.fmin(inp1, inp2)
        out.backward()
    assert out.shape == inp1.shape
    assert out[-1, -1] == -1
    assert inp1.grad.shape == inp1.shape
    assert inp1.grad[-1, -1] == 1 and inp1.grad[0, 0] == 0
    assert inp2.grad.shape == inp2.shape
    assert inp2.grad[-1] == 1 and inp2.grad[0] == 2
def test_subtract():
    A = np.zeros((INT_OVERFLOW, 2))
    B = np.ones((INT_OVERFLOW, 2))
    A[-1, -1] = 3
    A.attach_grad()
    B.attach_grad()
    with mx.autograd.record():
        C = np.subtract(A, B)
        C.backward()
    assert C.shape == (INT_OVERFLOW, 2)
    assert C[0, 0] == -1 and C[-1][-1] == 2
    assert A.grad.shape == (INT_OVERFLOW, 2)
    assert A.grad[0][0] == 1
    assert B.grad.shape == (INT_OVERFLOW, 2)
    assert B.grad[0][0] == -1