image=numpy.asarray(image) #keep only one dimension image=image[:,:,0] #most needed type casting image=image.astype(numpy.uint8) #crop the center image=myTools.cropCenter1(image, 83.1) #split image to 4 splits=myTools.augmentData(image.reshape(1,1,image.shape[0],image.shape[1]), numOfTiles=4, overlap=False, imageWidth=image.shape[0], imageHeight=image.shape[1]) #another vital type casting splits=splits.astype(numpy.float32) #keep only the 4 original tiles splits=splits[0:4,:,:,:] #setting parameters for the network data_size=(None,1,splits[0][0].shape[0],splits[0][0].shape[1]) #load the pretrained network myNet=myTools.createPretrainedNN(data_size) #make predictions for the 4 tiles print(splits.dtype) res=myNet(splits) #crop the center of the predictions res=myTools.cropCenter(res, 93) #concatenate on the x axis top=np.concatenate((res[0][0],res[2][0]),axis=1) bot=np.concatenate((res[1][0],res[3][0]),axis=1) #concatenate the two halves to get the full image res=np.concatenate((top,bot),axis=0) plt.show(plt.imshow(res, cmap=cm.binary)) scipy.misc.imsave(outName, res)
import matplotlib.pyplot as plt import numpy as np import matplotlib.cm as cm from PIL import Image import numpy import numpy as np import sys import myTools import scipy myTools.createPretrainedNN((None,1,100,100))
#open the image image = Image.open(imagePath) #image as numpy array image = numpy.asarray(image) #keep only one dimension image = image[:, :, 0] #most needed type casting image = image.astype(numpy.uint8) #crop the center image = myTools.cropCenter1(image, 100) #this step is mysteriously needed image = myTools.augmentMasks(image.reshape(1, 1, image.shape[0], image.shape[1]), numOfTiles=1, overlap=False, imageWidth=image.shape[0], imageHeight=image.shape[1]) #another vital type casting image = image.astype(numpy.float32) #setting parameters for the network data_size = (None, 1, image[0][0].shape[0], image[0][0].shape[1]) #load the pretrained network myNet = myTools.createPretrainedNN(data_size) #make predictions for the image res = myNet(image) #crop the center of the mask res = myTools.cropCenter(res, 80) plt.show(plt.imshow(res[0][0], cmap=cm.binary)) scipy.misc.imsave(outName, res[0][0])
import matplotlib.pyplot as plt import numpy as np import matplotlib.cm as cm from PIL import Image import numpy import numpy as np import sys import myTools import scipy myTools.createPretrainedNN((None, 1, 100, 100))