def plotDataAndFit_S(): """ Plot \\xi( |s| ) """ binSize = 4.0 sss = numpy.arange(0.0, 50.0) * 4.0 + 2.0 yyy_dat = numpy.zeros(shape=(50, 2)) yyy_fit = numpy.zeros(shape=(50, 2)) cut = numpy.logical_and((xxx__ != 0.0), (xxx__ < 200.0)) xxx = xxx__[cut] xi_dat = xi_dat__[cut] xi_fit = xi_fit__[cut] xi_err = 1.0 / (xi_err__[cut] ** 2.0) for i in range(0, xxx.size): sIdx = int(xxx[i] / binSize) yyy_dat[sIdx][0] += xi_dat[i] * xi_err[i] yyy_dat[sIdx][1] += xi_err[i] yyy_fit[sIdx][0] += xi_fit[i] * xi_err[i] yyy_fit[sIdx][1] += xi_err[i] yyy_dat[:, 0] /= yyy_dat[:, 1] yyy_dat[:, 1] = numpy.sqrt(1.0 / yyy_dat[:, 1]) yyy_fit[:, 0] /= yyy_fit[:, 1] yyy_fit[:, 1] = numpy.sqrt(1.0 / yyy_fit[:, 1]) ### Plot the results for i in numpy.arange(0, 3): a = "" if i == 1: a += "|s|." elif i == 2: a += "|s|^{2}." coef = numpy.power(sss, 1.0 * i) plt.errorbar( sss, coef * yyy_dat[:, 0], yerr=coef * yyy_dat[:, 1], linestyle="", marker="o", color="blue", label=r"$<Simu>$", ) plt.errorbar(sss, coef * yyy_fit[:, 0], color="red", label=r"$<Fit>$") plt.xlabel(r"$|s| \, [h^{-1} Mpc]$") plt.ylabel(r"$" + a + "\\xi(|s|)$") myTools.deal_with_plot(False, False, True) plt.show() return
def compare_each_simu(): pathSimu = '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v_second_generation/Box_000/Simu_000/Data/' rawPathSimu = '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v_second_generation/' chunckNb = 10 simulNb = 10 ## Distribution redshift QSO nb_qso = numpy.zeros(chunckNb*simulNb) for i in range(0,chunckNb): for j in range(0,simulNb): catSimu = pyfits.open(rawPathSimu+'Box_00'+str(i)+'/Simu_00'+str(j)+'/Data/QSO_withRSD.fits',memmap=True)[1].data nb_qso[i*10+j] = catSimu.size print numpy.mean(nb_qso) ### plt.errorbar(numpy.arange(chunckNb*simulNb),nb_qso,fmt='o') plt.plot(numpy.arange(chunckNb*simulNb), numpy.ones(chunckNb*simulNb)*numpy.mean(nb_qso),color='red',label='Mean') plt.xlabel(r'$Mock \, index$', fontsize=40) plt.ylabel(r'$\# \, nb \, QSO$', fontsize=40) plt.xlim( [-1,chunckNb*simulNb] ) myTools.deal_with_plot(False,False,True) plt.show() ### plt.hist(nb_qso) plt.xlabel(r'$nb \, QSO$', fontsize=40) plt.ylabel(r'$\#$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.show() return
def plot(): if (forest__=='LYA'): lines = LYA_lines names = LYA_lines_names if (forest__=='CIV'): lines = CIV_lines names = CIV_lines_names if (forest__=='MGII'): lines = MGII_lines names = MGII_lines_names if (forest__=='LYB'): lines = LYB_lines names = LYB_lines_names if (forest__=='SIIV'): lines = SIIV_lines names = SIIV_lines_names if (forest__=='LYA_JMC'): lines = numpy.array([]) names = numpy.array([]) path = path__ +'xi_1DlRF_delta_delta_'+forest__+'.txt' print path data = numpy.loadtxt(path) xxx = data[:,1] yyy = data[:,1] yer = data[:,] ### remove empty pixels xxx = data[:,2][ (data[:,5]!=0.) ]/data[:,4][ (data[:,5]!=0.) ] yyy = data[:,0][ (data[:,5]!=0.) ]/data[:,4][ (data[:,5]!=0.) ] yer = numpy.sqrt( (data[:,1][ (data[:,5]!=0.) ]/data[:,4][ (data[:,5]!=0.) ] -yyy**2.)/data[:,5][ (data[:,5]!=0.) ] ) plt.errorbar(xxx, yyy, yerr=yer, marker='o') ### Show lines in the correlation xMax = numpy.amax(xxx) yMin = numpy.amin(yyy) yMax = numpy.amax(yyy) nbLines = lines.size for i in range(0,nbLines): for j in range(0,i): #if (names[i][:3]!=forest__ and names[j][:3]!=forest__): continue line = abs(lines[i]-lines[j]) if (line==0. or line>xMax): continue xLi = [line,line] yLi = [yMin,yMax] name = names[i]+' - '+names[j] plt.plot(xLi,yLi,color='green') plt.text(line, yMax, name, rotation='vertical', fontsize=20) plt.title(r'$1D: \, \delta_{'+forest__+'} \, - \, \delta_{'+forest__+'} $', fontsize=40) plt.xlabel(r'$\Delta \lambda_{R.F.} \, [\AA]$', fontsize=40) plt.ylabel(r'$\xi(\Delta \lambda_{R.F.})$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.xlim([ numpy.min(xxx)-10., numpy.max(xxx)+10. ]) plt.show() return
def loadBootMap(): ''' ''' path = '/home/gpfs/manip/mnt0607/bao/hdumasde/Results/Txt/map.txt' data = numpy.loadtxt(path) re = data[:,0].astype(int) ra = data[:,1] de = data[:,2] for i in range(0,numpy.amax(re)+1): cut = (re==i) plt.plot(ra[cut], de[cut], linestyle="", marker="o") #plt.xlim([0,360.]) #plt.ylim([-90.,90.]) plt.ticklabel_format(style='sci', axis='z', scilimits=(0,0)) plt.grid() plt.xlabel(r'$R.A. (\degree)$') plt.ylabel(r'$Dec. (\degree)$') myTools.deal_with_plot(False,False,True) plt.show() return
def plotWe(rescale): a = ['0.8 < |\mu|', '0.5 < |\mu| \leq 0.8', '|\mu| \leq 0.5'] for i in range(0,3): ### cut = (xiWe_[:,i,2]!=0.) if (xiWe_[:,i,0][cut].size==0): continue xxx = xiWe_[:,i,0][cut] yyy = xiWe_[:,i,1][cut] yer = xiWe_[:,i,2][cut] coef = numpy.power(xxx,rescale) plt.errorbar(xxx, coef*yyy, yerr=coef*yer, fmt='o', label=r'$'+a[i]+'$') if (rescale==0): plt.ylabel(r'$\xi^{qf} (|s|)$', fontsize=40) plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=4) if (rescale==1): plt.ylabel(r'$|s|.\xi^{qf} (|s|) \, [h^{-1}.Mpc]$', fontsize=40) plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=4) if (rescale==2): plt.ylabel(r'$|s|^{2}.\xi^{qf} (|s|) \, [(h^{-1}.Mpc)^{2}]$', fontsize=40) plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=2) plt.title(r'$\delta_{'+forest1__+'} \, - \, '+qso1__+'$', fontsize=40) plt.xlabel(r'$|s| \, [h^{-1}.Mpc]$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.xlim([ numpy.min(xxx)-10., numpy.max(xxx)+10. ]) plt.show()
def plotXi(rescale): xxx = xi1D_[:,0] yyy = xi1D_[:,1] yer = xi1D_[:,2] cut = (yer!=0.) xxx = xxx[ cut ] yyy = yyy[ cut ] yer = yer[ cut ] if (rescale==0): plt.errorbar(xxx, yyy, yerr=yer, fmt='o') plt.ylabel(r'$\xi^{qf} (|s|)$', fontsize=40) if (rescale==1): plt.errorbar(xxx, xxx*yyy, yerr=xxx*yer, fmt='o') plt.ylabel(r'$|s|.\xi^{qf} (|s|) \, [h^{-1}.Mpc]$', fontsize=40) if (rescale==2): plt.errorbar(xxx, xxx*xxx*yyy, yerr=xxx*xxx*yer, fmt='o') plt.ylabel(r'$|s|^{2}.\xi^{qf} (|s|) \, [(h^{-1}.Mpc)^{2}]$', fontsize=40) plt.title(r'$\delta_{'+forest1__+'} \, - \, '+qso1__+'$', fontsize=40) plt.xlabel(r'$|s| \, [h^{-1}.Mpc]$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.xlim([ numpy.min(xxx)-10., numpy.max(xxx)+10. ]) plt.show()
def plotXi(): xxx = xi1D_[:,0] yyy = xi1D_[:,1] yer = xi1D_[:,2] cut = (yer!=0.) xxx = xxx[ cut ] yyy = yyy[ cut ] yer = yer[ cut ] yMin = numpy.min(yyy) yMax = numpy.max(yyy) nbLines = lines.size for i in range(0,nbLines): for j in range(0,i): if ( lines[i]!=lambdaRFLine and lines[j]!=lambdaRFLine ): continue line = max( lines[i]/lines[j], lines[j]/lines[i]) if (line<min1D__ or line>max1D__): continue xLi = [line,line] yLi = [yMin,yMax] name = names[i] + ' - ' + names[j] plt.plot(xLi,yLi,color='green',linewidth=2) plt.text(line, yMax, name, rotation='vertical', fontsize=20) plt.errorbar(xxx, yyy, yerr=yer, fmt='o') plt.ylabel(r'$\xi^{ff}$', fontsize=40) plt.xlabel(r'$\lambda_{Obs.,2}/\lambda_{Obs.,1}$', fontsize=40) plt.xlim([ min1D__-0.01, max1D__+0.01 ]) myTools.deal_with_plot(False,False,False) plt.show()
def plot_1d(self,x_power=0): xxx = self._xi0[:,0] yyy = self._xi0[:,1] coef = numpy.power(xxx,x_power) plt.errorbar(xxx,coef*yyy,fmt='o') xxx = self._xi2[:,0] yyy = self._xi2[:,1] coef = numpy.power(xxx,x_power) plt.errorbar(xxx,coef*yyy,fmt='o') xxx = self._xi4[:,0] yyy = self._xi4[:,1] coef = numpy.power(xxx,x_power) plt.errorbar(xxx,coef*yyy,fmt='o') if (x_power==0): plt.ylabel(r'$ \xi (|s|)$', fontsize=40) if (x_power==1): plt.ylabel(r'$|s|.\xi (|s|) \, [h^{-1}.Mpc]$', fontsize=40) if (x_power==2): plt.ylabel(r'$|s|^{2}.\xi (|s|) \, [(h^{-1}.Mpc)^{2}]$', fontsize=40) plt.xlabel(r'$|s| \, [h^{-1}.Mpc]$', fontsize=40) plt.xlim([ numpy.amin(xxx)-10., numpy.amax(self._xi0[:,0])+10. ]) myTools.deal_with_plot(False,False,False) plt.show() return
def fit_CAMB(self,distortion=False,dic=None): ### Get the data xxx = self._xi[:,0] yyy = self._xi[:,1] yer = self._xi[:,2] xMin = numpy.amin(xxx) xMax = numpy.amax(xxx) ### Get CAMB camb = CAMB.CAMB(dic)._xi0 xxx_Camb = copy.deepcopy(xxx) yyy_Camb = numpy.interp(xxx,camb[:,0],camb[:,1]) if (distortion): path = self._path_to_txt_file_folder + self._prefix + '_distortionMatrix_'+ self._middlefix + '.txt' matrix = numpy.loadtxt(path) xxx_Camb = numpy.append(xxx_Camb,numpy.zeros(2100-xxx.size) ) yyy_Camb = numpy.append(yyy_Camb,numpy.zeros(2100-yyy_Camb.size) ) yyy_Camb = numpy.dot(matrix,yyy_Camb) yyy_Camb = yyy_Camb[(xxx_Camb!=0.)] xxx_Camb = xxx_Camb[(xxx_Camb!=0.)] b = 0.15 #b = 0.05 ''' ### Chi^{2} def chi2(b): model = yyy_Camb*b return numpy.sum( numpy.power( (yyy-model)/yer ,2.) ) ### Init and perform the fit m = Minuit(chi2, b=1.,error_b=0.1,print_level=-1, errordef=0.01) m.migrad() b = m.values['b'] #b = 0.01 print b ''' for i in numpy.arange(1): coef = numpy.power(xxx,i) plt.errorbar(xxx, coef*yyy, yerr=coef*yer, fmt='o',color='blue') coef = numpy.power(xxx_Camb,i) plt.errorbar(xxx_Camb,coef*b*yyy_Camb,color='red') plt.title(r'$'+self._title+'$', fontsize=40) plt.xlabel(r'$'+self._xTitle+'$', fontsize=40) plt.ylabel(r'$'+self._yTitle+'$', fontsize=40) if (self._correlation=='f_f_r' or self._correlation=='f_f2_r' or self._correlation=='f_f_lRF' or self._correlation=='f_f_lRF'): plt.xlim([ numpy.min(xxx)-10., numpy.max(xxx)+10. ]) if (self._correlation=='f_f_lRF_devide' or self._correlation=='f_f2_lRF_devide'): plt.xlim([ 0.99*xMin, 1.01*xMax ]) myTools.deal_with_plot(False,False,False) plt.show() return
def plotXi(rescale): cut = (xi1D_[:,2] != 0.) xxx = xi1D_[:,0][cut] yyy = xi1D_[:,1][cut] yer = xi1D_[:,2][cut] #yyy -= yyy[-1] if (rescale==0): plt.errorbar(xxx, yyy, yerr=yer, fmt='o') plt.ylabel(r'$\xi^{ff} (|s|)$', fontsize=40) if (rescale==1): plt.errorbar(xxx, xxx*yyy, yerr=xxx*yer, fmt='o') plt.ylabel(r'$|s|.\xi^{ff} (|s|) \, [h^{-1}.Mpc]$', fontsize=40) if (rescale==2): plt.errorbar(xxx, xxx*xxx*yyy, yerr=xxx*xxx*yer, fmt='o') plt.ylabel(r'$|s|^{2}.\xi^{ff} (|s|) \, [(h^{-1}.Mpc)^{2}]$', fontsize=40) plt.title(r'$\delta_{'+forest__+'} \, - \, \delta_{'+forest__+'}$', fontsize=40) plt.xlabel(r'$|s| \, [h^{-1}.Mpc]$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.xlim([ numpy.min(xxx)-10., numpy.max(xxx)+10. ]) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.show() return
def difTemplate(): ''' Look at the differences between the templates ''' path = "/home/gpfs/manip/mnt0607/bao/hdumasde/Results/Txt/chain_annalys_delta/" data1 = numpy.loadtxt(path + 'template_0_0.txt') templateData1 = interpolate.interp1d(data1[:,0],data1[:,1],bounds_error=False,fill_value=0) plt.errorbar(data1[:,0], data1[:,1]/templateData1(1150.), fmt='o', label=r'$Simu$',color='red') data = numpy.loadtxt(path + 'template.txt') templateData = interpolate.interp1d(data[:,0],data[:,1],bounds_error=False,fill_value=0) plt.errorbar(data[:,0], data[:,1]/templateData(1150.), fmt='o', label=r'$Data$',color='blue') data3 = numpy.loadtxt(path + 'template_0_0_MocksColab.txt') templateData3 = interpolate.interp1d(data3[:,0],data3[:,1],bounds_error=False,fill_value=0) plt.errorbar(data3[:,0], data3[:,1]/templateData3(1150.), fmt='o', label=r'$Mock \, colab$',color='green') plt.title(r'$Template$', fontsize=40) plt.xlabel(r'$\lambda_{R.F.} \, [\AA]$', fontsize=40) plt.ylabel(r'$f(\lambda_{R.F.}) / f(1150.)$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.show() plt.errorbar(data[:,0], (data1[:,1]/templateData1(1150.)-data[:,1]/templateData(1150.))/(data1[:,1]/templateData1(1150.)) , fmt='o') plt.xlabel(r'$\lambda_{R.F.} \, [\AA]$', fontsize=40) plt.ylabel(r'$( (f(\lambda_{R.F.}) / f(1150.))_{Data} - (f(\lambda_{R.F.}) / f(1150.))_{Simu} ) / (f(\lambda_{R.F.}) / f(1150.))_{Data})$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.show()
def getQsoCatalogueAllObjects(): ''' ''' path = '/home/gpfs/manip/mnt0607/bao/hdumasde/Data/Catalogue/' listPAth = [path+'QSO_DR7_DR12_EBOSS_2016_01_08.fits', path+'DLA_all.fits', path+'all_Britt.fits', path+'VIPERS.fits', path+'QSO_3DHST.fits', path+'LOWZ_all.fits', path+'CMASS_all.fits'] name = ['QSO','DLA','Britt','VIPERS','3DHST','LOWZ','CMASS'] ## Distribution redshift for i in numpy.arange(len(listPAth)): cat = pyfits.open(listPAth[i], memmap=True )[1].data cat = cat[ (cat['Z']>0.1) ] cat = cat[ (cat['Z']<7.) ] if (cat.size==0): continue plt.hist(cat['Z'], bins=100,histtype='step',label=name[i]) plt.xlabel("Z") plt.ylabel("#") myTools.deal_with_plot(False,False,True) plt.show() ### Merge everyThing cat = pyfits.open(listPAth[0], memmap=True )[1].data ra = cat['RA'] de = cat['DEC'] zz = cat['Z'] for i in numpy.arange(1,len(listPAth)): cat = pyfits.open(listPAth[i], memmap=True )[1].data ra = numpy.append(ra, cat['RA']) de = numpy.append(de, cat['DEC']) zz = numpy.append(zz, cat['Z']) ## Map plt.ticklabel_format(style='sci', axis='z', scilimits=(0,0)) plt.grid() plt.plot(ra, de, linestyle="", marker="o") plt.xlabel("Right Ascension (degree)") plt.ylabel("Declination (degree)") plt.show() ## Distribution redshift plt.ticklabel_format(style='sci', axis='z', scilimits=(0,0)) plt.grid() plt.hist(zz, bins=200) plt.xlabel("Z") plt.ylabel("#") plt.show() ### Save col_ra = pyfits.Column(name='RA', format='D', array=ra, unit='deg') col_de = pyfits.Column(name='DEC', format='D', array=de, unit='deg') col_zz = pyfits.Column(name='Z', format='D', array=zz) tbhdu = pyfits.BinTableHDU.from_columns([col_ra, col_de, col_zz]) tbhdu.writeto('/home/gpfs/manip/mnt0607/bao/hdumasde/Data/Catalogue/ALL_EVERY_OBJECTS_2016_01_08.fits', clobber=True)
def plotXi(): xxx = xi1D_[:,0] yyy = xi1D_[:,1] yer = xi1D_[:,2] cut = (yer!=0.) xxx = xxx[ cut ] yyy = yyy[ cut ] yer = yer[ cut ] yMin = numpy.min(yyy) yMax = numpy.max(yyy) nbLines = lines.size for i in range(0,nbLines): line = lines[i]/lambdaRFLine if (line<min1D__ or line>max1D__): continue #print ' || QSO - ', names[i], ' || ', line, ' || ', lambdaRFLine, ' || ', lines[i], ' || ' xLi = [line,line] yLi = [yMin,yMax] name = 'QSO - ' + names[i] plt.plot(xLi,yLi,color='green',linewidth=2) plt.text(line, 0.7*yMin, name, rotation='vertical', fontsize=20) plt.errorbar(xxx, yyy, yerr=yer, fmt='o') plt.ylabel(r'$\xi^{qf} \, (\theta<'+str(maxTheta_)+' \, rad)$', fontsize=40) plt.xlabel(r'$\lambda_{Obs., pix}/\lambda_{Obs., QSO}$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.show()
def plot_histo_residuals(self, other=[]): ### Constants nbBins=100 list_of_fit = numpy.append( [self],other ) ### histo fig = plt.figure() ax = fig.add_subplot(111) for el in list_of_fit: yyy = numpy.array([]) for el in self._listFit: xi2D = el.get_residuals() tmp_yyy = (xi2D[:,:,1][ (xi2D[:,:,2]>0.) ]).flatten() yyy = numpy.append(yyy,tmp_yyy) ax.hist(yyy, bins=nbBins, histtype='step', linewidth=2,alpha=0.6) plt.xlabel(r'$\frac{data-fit}{\sigma_{data}}$') plt.ylabel(r'$\#$') myTools.deal_with_plot(False,False,False) mng = plt.get_current_fig_manager() textstr = '$nb=%u$\n$\mu=%.5e$\n$\sigma=%.5e$'%(yyy.size, numpy.mean(yyy), numpy.std(yyy)) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=30, verticalalignment='top', bbox=props) plt.show() return
def plotDataAndFit_1D(): """ """ if type__ == "1D": xxx = numpy.arange(0.0, nbBin__) * 4.0 + 2.0 xxx[(xxx__ != 0.0)] = xxx__[(xxx__ != 0.0)] b = "|s|" elif type__ == "2D": xxx = numpy.arange(0.0, nbBin__) b = "s" for i in numpy.arange(0, 3): if i == 0: a = "" c = "" elif i == 1: a = "|s|." c = " \, [h^{-1}.Mpc]" else: a = "|s|^{2}." c = " \, [(h^{-1}.Mpc)^{2}]" coef = numpy.power(xxx__, 1.0 * i) plt.errorbar(xxx, coef * xi_dat__, yerr=coef * xi_err__, linestyle="", marker="o", color="blue") plt.errorbar(xxx, coef * xi_fit__, color="red") plt.xlabel(r"$" + b + " \, [h^{-1}.Mpc] $") plt.ylabel(r"$" + a + "\\xi(" + b + ") " + c + "$") myTools.deal_with_plot(False, False, True) plt.show() return
def seePowerSpectrum(): ''' ''' ### Constants pathToPk = '/home/gpfs/manip/mnt0607/bao/hdumasde/Code/Python/CreateRandomField/DR9LyaMocks_matterpower.dat' ### Get the power spectra pk = scipy.loadtxt(pathToPk) pkInterpolate = interpolate.interp1d(pk[:,0],pk[:,1],bounds_error=False,fill_value=0) for i in numpy.arange(3): coef = numpy.power(pk[:,0],i) yLabel = 'P(k)' if (i==1): yLabel = 'k.' + yLabel + '\, [h/Mpc]' elif (i==2): yLabel = 'k^{2}.' + yLabel + '\, [(h/Mpc)^{2}]' plt.plot(pk[:,0],coef*pk[:,1],marker='o') plt.xlabel(r'$k \, [h/Mpc]$', fontsize=40) plt.ylabel(r'$'+yLabel+'$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.show()
def plot(xi1D): if (forest__=='LYA'): lines = LYA_lines names = LYA_lines_names if (forest__=='CIV'): lines = CIV_lines names = CIV_lines_names if (forest__=='MGII'): lines = MGII_lines names = MGII_lines_names if (forest__=='LYB'): lines = LYB_lines names = LYB_lines_names if (forest__=='SIIV'): lines = SIIV_lines names = SIIV_lines_names xxx = xi1D[:,0] yyy = xi1D[:,1] yer = xi1D[:,2] ### Show lines in the correlation xMax = numpy.amax(xxx) yMin = numpy.amin(yyy) yMax = numpy.amax(yyy) nbLines = lines.size for i in range(0,nbLines): for j in range(0,i): #if (names[i][:3]!=forest__ and names[j][:3]!=forest__): continue line = lines[j]/lines[i] #isPresent = False #for k in strongLines_CIV: # if (abs(line-k)<=0.00005): isPresent = True #if (not isPresent): continue line = numpy.abs( find_dist_correlation_lines(meanZ__,lines[j],lines[i]) ) if (line>xMax): continue #print line xLi = [line,line] yLi = [yMin,yMax] name = names[i]+' - '+names[j] plt.plot(xLi,yLi,color='green') plt.text(line, yMax, name, rotation='vertical', fontsize=20) plt.errorbar(xxx,yyy, yerr=yer, fmt='o') plt.title(r'$1D: \, \delta_{'+forest__+'} \, - \, \delta_{'+forest__+'} $', fontsize=40) plt.xlabel(r'$s \, [h^{-1}.Mpc]$', fontsize=40) plt.ylabel(r'$\xi (s)$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.xlim([ numpy.min(xxx)-10., numpy.max(xxx)+10. ]) plt.show()
def plotCovarDifferentMethod(): ''' ''' dim = '1D' path = '/home/gpfs/manip/mnt0607/bao/hdumasde/Results/Txt/FitsFile_DR12_Guy/' listPath = [ path+'subSampling_LYA_QSO_cov_'+dim+'.npy', path+'shuffleQSO_LYA_QSO_cov_'+dim+'.npy', path+'randomQSO_LYA_QSO_cov_'+dim+'.npy', path+'shuffleForest_LYA_QSO_cov_'+dim+'.npy', '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_RandomPosInCell/xi_delta_QSO_result_cov_'+dim+'.npy', '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_RandomPosInCell/xi_delta_QSO_result_cov_'+dim+'_meanSubSampling.npy', ] listPath2 = [ path+'subSampling_LYA_QSO_'+dim+'.npy', path+'shuffleQSO_LYA_QSO_'+dim+'.npy', path+'randomQSO_LYA_QSO_'+dim+'.npy', path+'shuffleForest_LYA_QSO_'+dim+'.npy', '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_RandomPosInCell/xi_delta_QSO_result_'+dim+'.npy', ] listName = ['Data \, subsampling', 'Data \, shuffle \, QSO', 'Data \, random \, QSO', 'Data \, shuffle \, forest', 'Mocks', '< Mock \, subsampling >', ] real = [ numpy.load(i) for i in listPath2 ] cov = [ numpy.load(i) for i in listPath ] ### Plot the realisation for i in numpy.arange(len(real)): print listName[i] for j in numpy.arange(real[i][0,:].size): plt.errorbar(numpy.arange(real[i][:,j].size), real[i][:,j],fmt='o',color='blue',alpha=0.1) plt.errorbar(numpy.arange(real[i][:,j].size), numpy.mean(real[i],axis=1),fmt='o',color='red',label=r'$Mean$') plt.xlabel(r'$bin \, index$', fontsize=40) plt.ylabel(r'$\xi(|s|)$', fontsize=40) plt.title(r'$'+listName[i]+'$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.xlim([ -1., cov[i][0,:].size+1 ]) plt.show() ### Plot diagonal for i in numpy.arange(len(cov)): plt.errorbar(numpy.arange(cov[i][0,:].size), numpy.diag(cov[i]),fmt='o',label=r'$'+listName[i]+'$') plt.xlabel(r'$bin \, index$', fontsize=40) plt.ylabel(r'$Var(|s|)$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.xlim([ -1., cov[i][0,:].size+1 ]) plt.show() myTools.plotCovar(cov,listName) return
def plot_given_2d(self, x_power=0, xi2D=None, label=None): if xi2D is None: print " annalyseBAOFIT::plot_2d:: xi2D==None" xi2D = self._xi2D if label is None: label = self._label origin = "lower" extent = [self._minX2D, self._maxX2D, self._minY2D, self._maxY2D] if self._correlation == "q_f" or self._correlation == "f_f2": origin = "upper" extent = [self._minX2D, self._maxX2D, self._maxY2D, self._minY2D] xxx = numpy.transpose(xi2D[:, :, 0]) yyy = numpy.transpose(xi2D[:, :, 1]) yer = numpy.transpose(xi2D[:, :, 2]) cut = yer == 0 if xxx[cut].size == xxx.size: return yyy[cut] = float("nan") coef = numpy.power(xxx, x_power) fig = plt.figure() ax = fig.add_subplot(111) ax.set_xticks([i for i in numpy.arange(self._minX2D - 50.0, self._maxX2D + 50.0, 50.0)]) ax.set_yticks([i for i in numpy.arange(self._minY2D - 50.0, self._maxY2D + 50.0, 50.0)]) plt.imshow(coef * yyy, origin=origin, extent=extent, interpolation="None") cbar = plt.colorbar() if x_power == 0: cbar.set_label(r"$" + label + "(r_{\parallel},r_{\perp})$", size=40) if x_power == 1: cbar.set_label(r"$r \cdot " + label + "(r_{\parallel},r_{\perp}) \, [\\rm{h}^{-1} \, \\rm{Mpc}]$", size=40) if x_power == 2: cbar.set_label( r"$r^{2} \cdot " + label + "(r_{\parallel},r_{\perp}) \, [(\\rm{h}^{-1} \, \\rm{Mpc})^{2}]$", size=40 ) # plt.plot( [0.,200.],[0.,4*200.],color='white',linewidth=2 ) # plt.plot( [0.,200.],[0.,-4*200.],color='white',linewidth=2 ) # plt.plot( [0.,200.],[0.,200.],color='white',linewidth=2 ) # plt.plot( [0.,200.],[0.,-200.],color='white',linewidth=2 ) # plt.title(r'$'+self._title+'$', fontsize=40) plt.xlabel(r"$r_{\perp} \, [\rm{h}^{-1} \, \rm{Mpc}]$", fontsize=40) plt.ylabel(r"$r_{\parallel} \, [\rm{h}^{-1} \, \rm{Mpc}]$", fontsize=40) plt.grid(True) cbar.formatter.set_powerlimits((0, 0)) cbar.update_ticks() myTools.deal_with_plot(False, False, False) plt.show() return
def haveAlookForest(): cat = pyfits.open('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMc/new_mock_1280_0_0.fits', memmap=True)[1].data print cat.size print numpy.amin(cat['RA']), numpy.amax(cat['RA']) print numpy.amin(cat['DEC']), numpy.amax(cat['DEC']) print numpy.amin(cat['Z_VI']), numpy.amax(cat['Z_VI']) ar_cut = (cat['NORM_FLUX_IVAR']>0.) ar_lambdaObs = cat['LAMBDA_OBS'][ ar_cut ] ar_lambdaRF = cat['LAMBDA_RF'][ ar_cut ] ar_flux = cat['NORM_FLUX'][ ar_cut ] ar_zi = cat['LAMBDA_OBS'][ ar_cut ]/(lambdaRFLine__) -1. ar_weight = cat['DELTA_WEIGHT'][ ar_cut ] #numpy.ones(shape=(cat.size,cat['NORM_FLUX'][0].size))[ ar_cut ] print numpy.amin(ar_zi), numpy.amax(ar_zi) ### deltaLoglambda (mock_JMc) = 0.00023025850929947467 ### deltaLoglambda (data) = 0.00023002222870971423 ### deltaLoglambda (mock Julian) = 0.00023002222870971423, ### delta vs. lambda_RF xxx, yyy, eyyy, nyyy = myTools.Get_TProfile(ar_lambdaRF,ar_flux, lambdaRFTemplateBinEdges__, ar_weight) plt.errorbar(xxx, yyy, yerr=eyyy, marker="o") plt.xlabel(r'$\lambda_{R.F.} \, [\AA]$', fontsize=40) plt.ylabel(r'$flux$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.show() ### delta vs. lambda_RF xxx, yyy, eyyy, nyyy = myTools.Get_TProfile(ar_lambdaObs,ar_flux, lambdaObsBinEdges__, ar_weight) plt.errorbar(xxx, yyy, yerr=eyyy, marker="o") plt.xlabel(r'$\lambda_{R.F.} \, [\AA]$', fontsize=40) plt.ylabel(r'$flux$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.show() ### Distribution redshift plt.hist(ar_zi, bins=50) plt.xlabel(r'$z_{pixel}$') plt.ylabel(r'$\#$') myTools.deal_with_plot(False,False,False) plt.show() ### Map plt.plot(cat['RA'],cat['DEC'], linestyle="", marker="o") plt.xlabel(r'$X [Mpc]$') plt.ylabel(r'$Y [Mpc]$') myTools.deal_with_plot(False,False,False) plt.show() ### Distribution redshift plt.hist(cat['Z_VI'], bins=50) plt.xlabel(r'$z_{qso}$') plt.ylabel(r'$\#$') myTools.deal_with_plot(False,False,False) plt.show() return
def plot_data_and_fit_1d(self,x_power,path_to_mapping_1D): ### Load the mapping from 2D to 1D mapping_2D_to_1D = numpy.load( path_to_mapping_1D ) ### Fit xi1D_data = numpy.zeros(shape=(self._nbBin1D,3)) xi1D_fit = numpy.zeros(shape=(self._nbBin1D,3)) for i in numpy.arange(self._nbBinX2D): for j in numpy.arange(self._nbBinY2D): if (self._xi2D_fit[i,j,8]<=0.): continue ivar = 1./( self._xi2D_fit[i,j,8]*self._xi2D_fit[i,j,8] ) for k in numpy.arange(self._nbBin1D): coef = mapping_2D_to_1D[i,j,k] if (coef==0.): continue xi1D_data[k,0] += coef*ivar*self._xi2D[i,j,0] xi1D_data[k,1] += coef*ivar*self._xi2D[i,j,1] xi1D_data[k,2] += coef*ivar xi1D_fit[k,0] += coef*ivar*self._xi2D_fit[i,j,3] xi1D_fit[k,1] += coef*ivar*self._xi2D_fit[i,j,6] xi1D_fit[k,2] += coef*ivar ### Data cut = (xi1D_data[:,2]>0.) xi1D_data[:,0][cut] /= xi1D_data[:,2][cut] xxx = xi1D_data[:,0][cut] xi1D_data[:,1][cut] /= xi1D_data[:,2][cut] xi1D_data[:,2][cut] = 1./numpy.sqrt(xi1D_data[:,2][cut]) coef = numpy.power(xi1D_data[:,0][cut],x_power) plt.errorbar(xi1D_data[:,0][cut], coef*xi1D_data[:,1][cut], yerr=coef*xi1D_data[:,2][cut], fmt='o', label=r'$'+self._name+'$', markersize=10,linewidth=2) ### Fit cut = (xi1D_fit[:,2]>0.) xi1D_fit[:,0][cut] /= xi1D_fit[:,2][cut] xi1D_fit[:,1][cut] /= xi1D_fit[:,2][cut] xi1D_fit[:,2][cut] = 1./numpy.sqrt(xi1D_fit[:,2][cut]) coef = numpy.power(xi1D_fit[:,0][cut],x_power) plt.errorbar(xi1D_fit[:,0][cut], coef*xi1D_fit[:,1][cut], label=r'$Fit$', color='red',linewidth=2) if (x_power==0): plt.ylabel(r'$'+self._label+' (|s|)$', fontsize=40) if (x_power==1): plt.ylabel(r'$|s|.'+self._label+' (|s|) \, [h^{-1}.Mpc]$', fontsize=40) if (x_power==2): plt.ylabel(r'$|s|^{2}.'+self._label+' (|s|) \, [(h^{-1}.Mpc)^{2}]$', fontsize=40) plt.title(r'$'+self._title+'$', fontsize=40) plt.xlabel(r'$|s| \, [h^{-1}.Mpc]$', fontsize=40) plt.xlim([ numpy.amin(xxx)-10., numpy.amax(xxx)+10. ]) myTools.deal_with_plot(False,False,True) plt.show() return
def plot_1d(self, with_lines=False, other=[], verbose=False): list_corr_to_plot = numpy.append( [self],other ) xMin = numpy.amin(self._xi1D[:,0]) xMax = numpy.amax(self._xi1D[:,0]) yMin = numpy.amin(self._xi1D[:,1]) yMax = numpy.amax(self._xi1D[:,1]) for el in list_corr_to_plot: cut = (el._xi1D[:,2]>0.) xxx = el._xi1D[:,0][cut] yyy = el._xi1D[:,1][cut] yer = el._xi1D[:,2][cut] plt.errorbar(self._line_RF*xxx, yyy, yerr=yer, fmt='o', label=r'$'+el._name+'$') plt.errorbar(self._line_RF*xxx, yyy, color='blue') xMin = min(xMin, numpy.amin(xxx) ) xMax = max(xMax, numpy.amax(xxx) ) yMin = min(yMin, numpy.amin(yyy) ) yMax = max(yMax, numpy.amax(yyy) ) if (with_lines): if (verbose): print ' || name_1 - name_2 || line || lambda_rf_1 || lamnda_rf_2 || ' yLi = [yMin,yMax] nbLines1 = self._lines1.size for i in range(0,nbLines1): nbLines2 = 1 for j in range(0,nbLines2): line = self._lines1[i] #/self._line_RF if (line<self._line_RF*xMin or line>self._line_RF*xMax): continue xLi = [line,line] plt.plot(xLi,yLi,color='green') if (verbose): print ' || ', self._name_line1[i] ,' - QSO || ', line, ' || ', self._lines1[i], ' || ', self._line_RF, ' || ' name = self._name_line1[i]+' - QSO ' plt.text(line, yMax, name, rotation='vertical', fontsize=20) plt.title(r'$'+self._title+'$', fontsize=40) plt.xlabel(r'$'+self._xTitle+'$', fontsize=40) plt.ylabel(r'$'+self._yTitle+'$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.show() return
def plot(): data = numpy.loadtxt("/home/gpfs/manip/mnt0607/bao/hdumasde/Code/Python/All_Spectrum/spectrum.txt") xxx = data[:, 0] yyy = data[:, 1] yer = data[:, 2] plt.errorbar(xxx, yyy, yerr=yer, marker="o") myTools.deal_with_plot(False, False, False) plt.show()
def getChiScan1D(): ''' get the \chi^2 scan 1st line: 2nd line: settings 3rd line: best fit 4-end lines: scan ''' ### idex of the alpha idxAlpha = 11 ### Constants name = '.scan.dat' ### Create a file in /tmp with the scan minus the two first lines idx = 0 f = open(path__+name) tmp_f = open('/tmp/scan.txt','w') for line in f: if (idx>=2): tmp_f.write(line) idx += 1 tmp_f.close() f.close() ### Data data = numpy.loadtxt('/tmp/scan.txt') ### Best Fit alpha_bestFit = data[0][idxAlpha] chi2_bestFit = data[0][-1] print data[0][9], data[0][10], param__[idxAlpha,0], param__[idxAlpha,1] ### Scan alpha = data[1:,idxAlpha] chi2 = data[1:,-1]-chi2_bestFit ### Chi^2 scan plt.errorbar(alpha,chi2,fmt='o') ### Best fit plt.errorbar([alpha_bestFit],[0.],xerr=param__[idxAlpha,1],fmt='o',color='red',label='Best fit') ### 1,2,3,4 sigma lines plt.plot(alpha,numpy.ones(alpha.size)*1.,color='green') plt.plot(alpha,numpy.ones(alpha.size)*4.,color='green') plt.plot(alpha,numpy.ones(alpha.size)*9.,color='green') plt.plot(alpha,numpy.ones(alpha.size)*16.,color='green') plt.xlabel(r'$'+paramName__[idxAlpha]+'$', fontsize=40) plt.ylabel(r'$\Delta \chi^{2} = \chi^{2}-\chi^{2}_{best \, fit}$', fontsize=40) plt.ylim([ -2., numpy.amax(chi2)+2. ]) myTools.deal_with_plot(False,False,True) plt.show() return
def plotAllParameters(): """ """ for i in numpy.arange(paramName__.size): ### If the parameter isn't fitted if param__[i, 1, 0] == 0.0: continue ### all: plt.errorbar(numpy.arange(nbMocks__), param__[i, 0, :], yerr=param__[i, 1, :], linestyle="", marker="o") plt.xlabel(r"$index \, mock$") plt.ylabel(r"$" + paramName__[i] + "$") plt.xlim(-1, nbMocks__ + 1) myTools.deal_with_plot(False, False, True) plt.show() ### hist: yyy = param__[i, 0, :] fig = plt.figure() ax = fig.add_subplot(111) ax.hist(yyy, bins=20) myTools.deal_with_plot(False, False, False) plt.xlabel(r"$" + paramName__[i] + "$") plt.ylabel(r"$\#$") textstr = "$Nb=%d$ \n $\mu=%.5e +/- %.2e$ \n $\sigma=%.5e$" % ( yyy.size, numpy.mean(yyy), numpy.std(yyy) / numpy.sqrt(yyy.size), numpy.std(yyy), ) props = dict(boxstyle="round", facecolor="wheat", alpha=0.5) ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=30, verticalalignment="top", bbox=props) plt.show() """ ### hist pull: yyy = (param__[i,0,:]-1.)/param__[i,1,:] fig = plt.figure() ax = fig.add_subplot(111) ax.hist(yyy, bins=20) myTools.deal_with_plot(False,False,False) plt.xlabel(r'$('+paramName__[i]+'-1)/err$') plt.ylabel(r'$\#$') textstr = '$Nb=%d$ \n $\mu=%.5e +/- %.2e$ \n $\sigma=%.5e$'%(yyy.size,numpy.mean(yyy),numpy.std(yyy)/numpy.sqrt(yyy.size),numpy.std(yyy)) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=30, verticalalignment='top', bbox=props) plt.show() """ return
def plotWe(rescale): a = ["theta < 0.0001", "0.0001 < theta < 0.0002"] yMin = 0. yMax = 0.005 nbLines = lines.size for i in range(0,nbLines): for j in range(0,i): #if ( lines[i]!=1550.77845 and lines[j]!=1550.77845 and lines[i]!=1548.2049 and lines[j]!=1548.2049 ): continue #if ( lines[i]!=1402.77291 and lines[j]!=1402.77291 and lines[i]!=1393.76018 and lines[j]!=1393.76018 ): continue if ( lines[i]!=1215.67 and lines[j]!=1215.67): continue line = max( lines[i]/lines[j], lines[j]/lines[i]) if (line<min1D__ or line>max1D__): continue xLi = [line,line] yLi = [yMin,yMax] name = names[i] + ' - ' + names[j] plt.plot(xLi,yLi,color='green',linewidth=2) plt.text(line, yMax, name, rotation='vertical', fontsize=20) for i in range(0,2): #if (i>=1): # xiWe_[:,i,1] += 0.05 #if (i>=2): # xiWe_[:,i,1] += 0.05 ### cut = (xiWe_[:,i,2]!=0.) if (xiWe_[:,i,0][cut].size==0): continue xxx = xiWe_[:,i,0][cut] yyy = xiWe_[:,i,1][cut] yer = xiWe_[:,i,2][cut] coef = numpy.power(xxx,rescale) plt.errorbar(xxx, coef*yyy, yerr=coef*yer, marker='o', label=r'$'+a[i]+'$') plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=1) plt.ylabel(r'$\xi^{ff}$', fontsize=40) plt.xlabel(r'$\lambda_{Obs.,2}/\lambda_{Obs.,1}$', fontsize=40) plt.xlim([ min1D__-0.01, max1D__+0.01 ]) myTools.deal_with_plot(False,False,False) plt.show()
def plotCorrelationFunction(): #################################################################### ### Simu ### for i in range(0, nbMocks__): plt.errorbar(numpy.arange(nbBin__), xi_dat__[:, i], fmt="o") plt.xlabel(r"$index \, bin$") plt.ylabel(r"$\xi_{Simu}(s)$") myTools.deal_with_plot(False, False, True) plt.show() ### mean: meanXi2D = numpy.mean(xi_dat__, axis=1) plt.errorbar(numpy.arange(nbBin__), meanXi2D, fmt="o") plt.xlabel(r"$index \, bin$") plt.ylabel(r"$<\xi_{Simu}(s)>$") myTools.deal_with_plot(False, False, True) plt.show() ### 2D: meanXi2D = myTools.convert1DTo2D(meanXi2D, nbBinY2D__, nbBinX2D__) myTools.plot2D( meanXi2D, [minX2D__, maxX2D__, minY2D__, maxY2D__], "s_{\perp} \, [h^{-1} Mpc]", "s_{\parallel} \, [h^{-1} Mpc]", "\\xi_{Simu}^{qf}", ) #################################################################### ### Fit ### for i in range(0, nbMocks__): plt.errorbar(numpy.arange(nbBin__), xi_fit__[:, i], fmt="o") plt.xlabel(r"$index \, bin$") plt.ylabel(r"$\xi_{Fit}(s)$") myTools.deal_with_plot(False, False, True) plt.show() ### mean: meanXi2D = numpy.mean(xi_fit__, axis=1) plt.errorbar(numpy.arange(nbBin__), meanXi2D, fmt="o") plt.xlabel(r"$index \, bin$") plt.ylabel(r"$<\xi_{Fit}(s)>$") myTools.deal_with_plot(False, False, True) plt.show() ### 2D: meanXi2D = myTools.convert1DTo2D(meanXi2D, nbBinY2D__, nbBinX2D__) myTools.plot2D( meanXi2D, [minX2D__, maxX2D__, minY2D__, maxY2D__], "s_{\perp} \, [h^{-1} Mpc]", "s_{\parallel} \, [h^{-1} Mpc]", "\\xi_{Fit}^{qf}", )
def plot_function(self,function_index): """ Plot the F1 and F2 function """ if (function_index==0): func = self._F1 elif (function_index==1): func = self._F2 ### Plot selection function def func2(x): return numpy.exp(-0.5*numpy.power(x/self._sigma_gauss,2.))/(numpy.sqrt(2.*numpy.pi)*self._sigma_gauss) xxx = numpy.arange(-10.,10.,0.01) yyy = func(xxx) plt.plot(xxx,yyy, markersize=10,linewidth=2,label=r'$Selection$') yyy = func2(xxx) plt.plot(xxx,yyy, markersize=10,linewidth=2,label=r'$Gauss$') plt.xlabel(r'$\delta$') plt.ylabel(r'$Proba$') myTools.deal_with_plot(False,False,True) plt.show() ### Plot results meanF = self.get_mean_function(function_index) def func2(x): return func(x)*numpy.exp(-0.5*numpy.power(x/self._sigma_gauss,2.))/(numpy.sqrt(2.*numpy.pi)*self._sigma_gauss) xxx = numpy.arange(-10.,10.,0.01) yyy = func2(xxx) def func2(x): return numpy.exp(-0.5*numpy.power(x/self._sigma_gauss,2.))/(numpy.sqrt(2.*numpy.pi)*self._sigma_gauss) meanF = scipy.integrate.quad(func2,-numpy.inf,numpy.inf)[0] xxx2 = numpy.arange(-10.,10.,0.01) yyy2 = func2(xxx) plt.plot(xxx2,yyy2, markersize=10,linewidth=2) plt.plot(xxx,yyy, markersize=10,linewidth=2) plt.xlabel(r'$\delta$') plt.ylabel(r'$F(\delta) \cdot Gauss$') myTools.deal_with_plot(False,False,False) plt.show() return
def plot_data_and_fit_we(self, we_index, x_power, path_to_mapping, title=True): xi1D_data, xi1D_fit = self.get_data_and_fit_we(path_to_mapping) cut = self._xiWe[:, we_index, 2] > 0.0 if self._xiWe[:, we_index, 0][cut].size == 0: return cut = xi1D_data[:, we_index, 2] > 0.0 xxx = xi1D_data[:, we_index, 0][cut] yyy = xi1D_data[:, we_index, 1][cut] yer = xi1D_data[:, we_index, 2][cut] coef = numpy.power(xxx, x_power) plt.errorbar( xxx, coef * yyy, yerr=coef * yer, fmt="o", label=r"$" + self._label_wedge[we_index] + "$", color="red", markersize=10, linewidth=2, ) cut = xi1D_fit[:, we_index, 2] > 0.0 xxxF = xi1D_fit[:, we_index, 0][cut] yyyF = xi1D_fit[:, we_index, 1][cut] yerF = xi1D_fit[:, we_index, 2][cut] coefF = numpy.power(xxxF, x_power) plt.errorbar(xxxF, coefF * yyyF, color="blue", linewidth=2) if x_power == 0: plt.ylabel(r"$" + self._label + " (r)$", fontsize=40) if x_power == 1: plt.ylabel(r"$r \cdot " + self._label + " (r) \, [\\rm{h}^{-1} \, \\rm{Mpc}]$", fontsize=40) if x_power == 2: plt.ylabel(r"$r^{2} \cdot " + self._label + " (r) \, [(\\rm{h}^{-1} \, \\rm{Mpc})^{2}]$", fontsize=40) if title: plt.title(r"$" + self._title + "$", fontsize=40) plt.xlabel(r"$r \, [\rm{h}^{-1} \, \rm{Mpc}]$", fontsize=40) plt.xlim([numpy.amin(xxx) - 10.0, numpy.amax(xxx) + 10.0]) myTools.deal_with_plot(False, False, False) plt.legend(fontsize=40, numpoints=1, ncol=1, loc=0) plt.show() return
def plotWe(rescale): ### cut = (xiWe_[:,0,2]!=0.) xxx0 = xiWe_[:,0,0][cut] yyy0 = xiWe_[:,0,1][cut] yer0 = xiWe_[:,0,2][cut] #yyy0 -= yyy0[-1] ### cut = (xiWe_[:,1,2]!=0.) xxx1 = xiWe_[:,1,0][cut] yyy1 = xiWe_[:,1,1][cut] yer1 = xiWe_[:,1,2][cut] #yyy1 -= yyy1[-1] ### cut = (xiWe_[:,2,2]!=0.) xxx2 = xiWe_[:,2,0][cut] yyy2 = xiWe_[:,2,1][cut] yer2 = xiWe_[:,2,2][cut] #yyy2 -= yyy2[-1] if (rescale==0): plt.errorbar(xxx0, yyy0, yerr=yer0, fmt='o', label=r'$0.8 < |\mu|$') plt.errorbar(xxx1, yyy1, yerr=yer1, fmt='o', label=r'$0.5 < |\mu| \leq 0.8$') plt.errorbar(xxx2, yyy2, yerr=yer2, fmt='o', label=r'$|\mu| \leq 0.5$') plt.ylabel(r'$\xi (|s|)$', fontsize=40) plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=4) if (rescale==1): plt.errorbar(xxx0, xxx0*yyy0, yerr=xxx0*yer0, fmt='o', label=r'$0.8 < |\mu|$') plt.errorbar(xxx1, xxx1*yyy1, yerr=xxx1*yer1, fmt='o', label=r'$0.5 < |\mu| \leq 0.8$') plt.errorbar(xxx2, xxx2*yyy2, yerr=xxx2*yer2, fmt='o', label=r'$|\mu| \leq 0.5$') plt.ylabel(r'$|s|.\xi (|s|) \, [h^{-1}.Mpc]$', fontsize=40) plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=4) if (rescale==2): plt.errorbar(xxx0, xxx0*xxx0*yyy0, yerr=xxx0*xxx0*yer0, fmt='o', label=r'$0.8 < |\mu|$') plt.errorbar(xxx1, xxx1*xxx1*yyy1, yerr=xxx1*xxx1*yer1, fmt='o', label=r'$0.5 < |\mu| \leq 0.8$') plt.errorbar(xxx2, xxx2*xxx2*yyy2, yerr=xxx2*xxx2*yer2, fmt='o', label=r'$|\mu| \leq 0.5$') plt.ylabel(r'$|s|^{2}.\xi (|s|) \, [(h^{-1}.Mpc)^{2}]$', fontsize=40) plt.legend(fontsize=30, frameon=False, numpoints=1,ncol=2, loc=2) plt.title(r'$\delta_{'+forest1+'} \, - \, \delta_{'+forest2+'}$', fontsize=40) plt.xlabel(r'$|s| \, [h^{-1}.Mpc]$', fontsize=40) myTools.deal_with_plot(False,False,False) plt.xlim([ numpy.min(xxx0)-10., numpy.max(xxx0)+10. ]) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.show()