Esempio n. 1
0
def merge_result():
    y_test = readData(save_work_file, 'y_test_n0')
    reject = readData(save_work_file, 'reject_n0')
    for i in range(1, count_thread):
        y_test = np.concatenate(
            (y_test, readData(save_work_file, 'y_test_n' + str(i))), axis=0)
        reject = np.concatenate(
            (reject, readData(save_work_file, 'reject_n' + str(i))), axis=0)

    saveData(save_work_file, 'y_test', y_test)
    saveData(save_work_file, 'reject', reject)
def merging(n_files = count_thread):        
    points = np.zeros( (0, count_pair_points, count_shifts, count_pixels, count_pixels) )
    rej = np.zeros( (0, count_pair_points, count_shifts))
    res = np.zeros( (0, count_pair_points, count_shifts))
    for i in range(n_files):
        points = np.concatenate( (points,readData(os.path.join(path,'points_05_09_2018_'+str(0)), 'points_' + str(0))), axis = 0 )
        rej = np.concatenate( (rej, readData(os.path.join(path,'reject_05_09_2018_'+str(0)), 'reject_' + str(0))), axis = 0)
        res = np.concatenate( (res, readData(os.path.join(path,'results_05_09_2018_'+str(0)), 'results_' + str(0))), axis = 0)
    points = np.expand_dims(points, axis = -1)
    landscapes = X_data.copy()  
    landscapes = np.expand_dims(landscapes, axis=-1)
    input_data = np.concatenate( (landscapes, points), axis = -1)
    divided_train_test(input_data, res, rej) 
Esempio n. 3
0
def get_and_show_reject():
    reject = readData('reject.hdf5', 'reject')
    print(reject.shape)
    rej_test = reject.reshape((reject.shape[0] * reject.shape[1] * reject.shape[2], -1))[count_train:]
    rej_test = rej_test.reshape(-1)
    print(rej_test.shape)
    plt.hist(rej_test, bins=[-3, -2, -1, 0, 1, 2, 3])
    plt.title("histogram")
    plt.show()
    return rej_test
Esempio n. 4
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug  6 19:16:52 2018

@author: andrey
"""
# %% когда y_test = 0; reject <0, если y_test = 1, reject > 0
from myUtils import readData, saveData
import numpy as np
import os

work_file = '/home/andrey/datasetsNN/landScapes/landScape_3000_32/mix_fixed/dataset_30_07_2018'
save_work_file = '/home/andrey/datasetsNN/landScapes/landScape_3000_32/mix_fixed/dataset_07_08_2018'
y_test = readData(work_file, 'y_test')
x_test = readData(work_file, 'x_test')
count_points = 2
count_thread = 4
nThread = np.arange(count_thread)
count_el_one_thread = len(x_test) // count_thread
if (len(x_test) % count_thread != 0):
    print('WARNING, len(x_test)%count_thread != 0 ')

print(x_test.shape)
print(y_test.shape)


# %%
def separate_landscape_and_points(matrix):
    print(matrix.shape)
    mod_matrix = np.moveaxis(matrix, 3, 0)
"""
# %%
import numpy as np
from myUtils import readData, saveData

count_landscapes = 3000
count_tuples = 15  # количество комбанаций в данном случае трех точек на одном ландшафте
count_shifts = 8
count_pixels = 32
count_points = 3
count_train = 300000

# %%
first_dim = count_landscapes * count_tuples * count_shifts
# %%
data = readData('dataset.hdf5', 'input')
print(data.shape)
# %%
data = np.reshape(data, (first_dim, 4, count_pixels, count_pixels))
print(data.shape)
np.moveaxis
data = np.moveaxis(data, 1, -2)  # recheck
print(data.shape)

# %%
result = readData('result.hdf5', 'result')
print(result.shape)
# %%
result = np.reshape(result, (first_dim, 3))
print(result.shape)
# %%
Esempio n. 6
0
    distAll = getDistance_arrays(ind_all, matrixData)
    vectorAll = hist_dist(distAll)
    distFP = getDistance_arrays(ind_FP, matrixData)
    distFN = getDistance_arrays(ind_FN, matrixData)
    vectorFN = hist_dist(distFN)
    vectorFP = hist_dist(distFP)
    relFP = vectorFP[0] / vectorAll[0]
    print('relFP= ', relFP)
    relFN = vectorFN[0] / vectorAll[0]
    print('relFN= ', relFN)


# %%

if __name__ == "__main__":
    x_test = readData(path_to_dataset, name_x_test)
    y_test = readData(path_to_dataset, name_y_test)
    rej_test = readData(path_to_dataset, name_rej_test)
    print('x_test shape: ', x_test.shape)
    print('y_test shape: ', y_test.shape)
    print('rej_test shape: ', rej_test.shape)
    

    model = load_model(path_to_model)
    print(model.summary())

    #    для graphCNN
    #        p_test = getPoints(x_test)
    #        x_test = x_test[:,:,:,:1] # 360000*32*32*4 ->360000*32*32*1 (убираем матрицы точек)

    res_predict = model.predict([x_test, ])
Esempio n. 7
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 16 14:40:15 2018

@author: andrey
"""
# %%
from myUtils import readData
import numpy as np

data = readData('ready3PointTestData.hdf5', 'testData')
result = readData('ready3PointTestResult.hdf5', 'testResult')
reject = readData('reject.hdf5', 'reject')
reject = reject.reshape(
    (reject.shape[0] * reject.shape[1] * reject.shape[2], -1))[300000:]
print(reject.shape)

# %%
print(reject.shape)
print(result.shape)
# %%
ind_clear = np.where(((reject < 0) & (result == 1)))[0]
print(ind_clear[:10])
ind_clear = np.unique(ind_clear)
print(len(ind_clear))
print(ind_clear)
# %%
#
clData = np.empty(
    (len(ind_clear), data.shape[1], data.shape[2], data.shape[3]))
Esempio n. 8
0
import math
from IterativeAlgorithmWithAnswer import calculateResult as calcRes_2points
from myUtils import readData, saveData
from multiprocessing import Pool

count_thr = 15
# %%
count_landscapes = 3000
count_tuples = 5  # количество комбанаций в данном случае трех точек на одном ландшафте
count_shifts = 8
count_pixels = 32
count_points = 3

path = 'Landscapes_3000_32x32_clear.hdf5'
name_dataset = 'Landscapes'
X_data = readData(path, name_dataset)
print(X_data.shape)


# %%
def norm2(p1, p2):
    return math.sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) *
                     (p2[1] - p1[1]))


def random_points():
    p1 = (random.randint(0, count_pixels - 1),
          random.randint(0, count_pixels - 1))
    p2 = p1
    while (norm2(p1, p2) < math.sqrt(8)):
        p2 = (random.randint(0, count_pixels - 1),
from numpy import linalg as LA
from IterativeAlgorithmWithAnswer import calculateResult
import os
from myUtils import saveData
from multiprocessing import Pool
count_landscapes = 270
count_pair_points = 15
count_shifts = 8
count_pixels = 32
shift = 2 # cдвиг от границы при рандомной генерации точек
min_reject = 1e-03 # минимальный доступимый отклонение.
count_thread = 20
count_train = 2700 # count unequal landscapes
path = ''
save_path = 'train/'
X_data = readData(os.path.join(path,'Landscapes_05_09_2018.hdf5'), 'Landscapes')
print(X_data.shape)
#%%

def random_points():
    p1 = np.random.randint(shift, count_pixels - shift - 1, 2)
    p2 = p1
    while (LA.norm(p1-p2) < math.sqrt(8)): # чтобы точки не были близки друг к другу
        p2 = np.random.randint(shift, count_pixels - shift - 1, 2)
    return p1, p2


#point_data = np.zeros((count_landscapes, count_pair_points, count_shifts, count_pixels, count_pixels))
#result = np.zeros((count_landscapes, count_pair_points, count_shifts))
#
#
Esempio n. 10
0
    plt.scatter(data0[:, 0], data0[:, 1], color='red', marker='o')
    plt.scatter(data1[:, 0], data1[:, 1], color='blue', marker='x')
    x1_line_point = [-7, 0, 7]  # для линии раздленеия
    x2_line_point = x1_line_point
    x2_line_point[0] = (-w[0] - w[1] * x1_line_point[0]) / w[2]
    x2_line_point[1] = (-w[0] - w[1] * x1_line_point[1]) / w[2]
    x2_line_point[2] = (-w[0] - w[1] * x1_line_point[2]) / w[2]
    print(x2_line_point)
    plt.plot(x1_line_point, x2_line_point)
    #    plt.plot([-10,10], [-25.23456990138067, 22.200020415768552])
    plt.show()


#%%
if __name__ == "__main__":
    data0 = readData(os.path.join(path_save, LS), 'data0')
    data1 = readData(os.path.join(path_save, LS), 'data1')
    label0 = np.full(len(data0), 0)  # -1 для adaline, у остальных - 0
    label1 = np.full(len(data0), 1)
    data, label = merge_and_mix_train_data(data0, data1, label0, label1)
    count_train = len(data) // 2
    x_train, y_train, x_test, y_test = data[:
                                            count_train], label[:count_train], data[
                                                count_train:], label[
                                                    count_train:]
    w = train(x_train, y_train)
    evaluate(x_test, y_test, w)
    evaluate(data, label, w)
    show_results(data0, data1, w)
#%%
Esempio n. 11
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr  4 19:46:16 2018

@author: andrey
"""

# %%
work_dir = '/home/andrey/datasetsNN/landScapes/landScape_3000_32/mix_fixed/'
from myUtils import readData

x_train = readData(work_dir + 'dataset_30_07_2018', 'x_train')
x_test = readData(work_dir + 'dataset_30_07_2018', 'x_test')
y_train = readData(work_dir + 'dataset_30_07_2018', 'y_train')
y_test = readData(work_dir + 'dataset_30_07_2018', 'y_test')
# %%
import keras
import math
import keras.initializers as ki
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, BatchNormalization
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 256
epochs = 100


def getModel(input_shape=(32, 32, 2)):
    model = Sequential()
Esempio n. 12
0
    Points = np.zeros((len(data), 6))
    for i in range(len(data)):
        matrixes = np.reshape(data[i], (4, 32, 32))
        p = np.zeros((6))
        indp = 0
        indm = 1
        while (indp < 5):
            p[indp], p[indp + 1] = getIndexNonZeroInMatrix(matrixes[indm])
            indp += 2
            indm += 1
        Points[i] = p
    return Points


# %%
x_train = readData('clearTrainData.hdf5', 'input')
x_test = readData('clearTestData.hdf5', 'input')

y_train = readData('clearTrainResult.hdf5', 'result')
y_test = readData('clearTestResult.hdf5', 'result')

p_train = getPoints(x_train)
p_test = getPoints(x_test)

x_train = x_train[:, :, :, :1]  # 360000*32*32*4 ->360000*32*32*1
x_test = x_test[:, :, :, :1]  # 360000*32*32*4 ->360000*32*32*1

print("x")
print(x_train.shape)
print(x_test.shape)
print("y")