def test04_wkbwriter(self): wkb_w = WKBWriter() # Representations of 'POINT (5 23)' in hex -- one normal and # the other with the byte order changed. g = GEOSGeometry('POINT (5 23)') hex1 = '010100000000000000000014400000000000003740' wkb1 = buffer(binascii.a2b_hex(hex1)) hex2 = '000000000140140000000000004037000000000000' wkb2 = buffer(binascii.a2b_hex(hex2)) self.assertEqual(hex1, wkb_w.write_hex(g)) self.assertEqual(wkb1, wkb_w.write(g)) # Ensuring bad byteorders are not accepted. for bad_byteorder in (-1, 2, 523, 'foo', None): # Equivalent of `wkb_w.byteorder = bad_byteorder` self.assertRaises(ValueError, wkb_w._set_byteorder, bad_byteorder) # Setting the byteorder to 0 (for Big Endian) wkb_w.byteorder = 0 self.assertEqual(hex2, wkb_w.write_hex(g)) self.assertEqual(wkb2, wkb_w.write(g)) # Back to Little Endian wkb_w.byteorder = 1 # Now, trying out the 3D and SRID flags. g = GEOSGeometry('POINT (5 23 17)') g.srid = 4326 hex3d = '0101000080000000000000144000000000000037400000000000003140' wkb3d = buffer(binascii.a2b_hex(hex3d)) hex3d_srid = '01010000A0E6100000000000000000144000000000000037400000000000003140' wkb3d_srid = buffer(binascii.a2b_hex(hex3d_srid)) # Ensuring bad output dimensions are not accepted for bad_outdim in (-1, 0, 1, 4, 423, 'foo', None): # Equivalent of `wkb_w.outdim = bad_outdim` self.assertRaises(ValueError, wkb_w._set_outdim, bad_outdim) # These tests will fail on 3.0.0 because of a bug that was fixed in 3.1: # http://trac.osgeo.org/geos/ticket/216 if not geos_version_info()['version'].startswith('3.0.'): # Now setting the output dimensions to be 3 wkb_w.outdim = 3 self.assertEqual(hex3d, wkb_w.write_hex(g)) self.assertEqual(wkb3d, wkb_w.write(g)) # Telling the WKBWriter to inlcude the srid in the representation. wkb_w.srid = True self.assertEqual(hex3d_srid, wkb_w.write_hex(g)) self.assertEqual(wkb3d_srid, wkb_w.write(g))
def test03_geom_type(self): "Testing GeometryField's handling of different geometry types." # By default, all geometry types are allowed. fld = forms.GeometryField() for wkt in ('POINT(5 23)', 'MULTIPOLYGON(((0 0, 0 1, 1 1, 1 0, 0 0)))', 'LINESTRING(0 0, 1 1)'): self.assertEqual(GEOSGeometry(wkt), fld.clean(wkt)) pnt_fld = forms.GeometryField(geom_type='POINT') self.assertEqual(GEOSGeometry('POINT(5 23)'), pnt_fld.clean('POINT(5 23)')) self.assertRaises(forms.ValidationError, pnt_fld.clean, 'LINESTRING(0 0, 1 1)')
def test01_srid(self): "Testing GeometryField with a SRID set." # Input that doesn't specify the SRID is assumed to be in the SRID # of the input field. fld = forms.GeometryField(srid=4326) geom = fld.clean('POINT(5 23)') self.assertEqual(4326, geom.srid) # Making the field in a different SRID from that of the geometry, and # asserting it transforms. fld = forms.GeometryField(srid=32140) tol = 0.0000001 xform_geom = GEOSGeometry('POINT (951640.547328465 4219369.26171664)', srid=32140) # The cleaned geometry should be transformed to 32140. cleaned_geom = fld.clean('SRID=4326;POINT (-95.363151 29.763374)') self.assertTrue(xform_geom.equals_exact(cleaned_geom, tol))
def test02_wktwriter(self): # Creating a WKTWriter instance, testing its ptr property. wkt_w = WKTWriter() self.assertRaises(TypeError, wkt_w._set_ptr, WKTReader.ptr_type()) ref = GEOSGeometry('POINT (5 23)') ref_wkt = 'POINT (5.0000000000000000 23.0000000000000000)' self.assertEqual(ref_wkt, wkt_w.write(ref))
def test03a_union(self): "Testing the Union aggregate of 3D models." # PostGIS query that returned the reference EWKT for this test: # `SELECT ST_AsText(ST_Union(point)) FROM geo3d_city3d;` ref_ewkt = 'SRID=4326;MULTIPOINT(-123.305196 48.462611 15,-104.609252 38.255001 1433,-97.521157 34.464642 380,-96.801611 32.782057 147,-95.363151 29.763374 18,-95.23506 38.971823 251,-87.650175 41.850385 181,174.783117 -41.315268 14)' ref_union = GEOSGeometry(ref_ewkt) union = City3D.objects.aggregate(Union('point'))['point__union'] self.assertTrue(union.hasz) self.assertEqual(ref_union, union)
def get_geoms(self, geos=False): """ Returns a list containing the OGRGeometry for every Feature in the Layer. """ if geos: from my_django.contrib.gis.geos import GEOSGeometry return [GEOSGeometry(feat.geom.wkb) for feat in self] else: return [feat.geom for feat in self]
def test01_3d(self): "Test the creation of 3D models." # 3D models for the rest of the tests will be populated in here. # For each 3D data set create model (and 2D version if necessary), # retrieve, and assert geometry is in 3D and contains the expected # 3D values. for name, pnt_data in city_data: x, y, z = pnt_data pnt = Point(x, y, z, srid=4326) City3D.objects.create(name=name, point=pnt) city = City3D.objects.get(name=name) self.assertTrue(city.point.hasz) self.assertEqual(z, city.point.z) # Interstate (2D / 3D and Geographic/Projected variants) for name, line, exp_z in interstate_data: line_3d = GEOSGeometry(line, srid=4269) # Using `hex` attribute because it omits 3D. line_2d = GEOSGeometry(line_3d.hex, srid=4269) # Creating a geographic and projected version of the # interstate in both 2D and 3D. Interstate3D.objects.create(name=name, line=line_3d) InterstateProj3D.objects.create(name=name, line=line_3d) Interstate2D.objects.create(name=name, line=line_2d) InterstateProj2D.objects.create(name=name, line=line_2d) # Retrieving and making sure it's 3D and has expected # Z values -- shouldn't change because of coordinate system. interstate = Interstate3D.objects.get(name=name) interstate_proj = InterstateProj3D.objects.get(name=name) for i in [interstate, interstate_proj]: self.assertTrue(i.line.hasz) self.assertEqual(exp_z, tuple(i.line.z)) # Creating 3D Polygon. bbox2d, bbox3d = gen_bbox() Polygon2D.objects.create(name='2D BBox', poly=bbox2d) Polygon3D.objects.create(name='3D BBox', poly=bbox3d) p3d = Polygon3D.objects.get(name='3D BBox') self.assertTrue(p3d.poly.hasz) self.assertEqual(bbox3d, p3d.poly)
def test06_make_line(self): "Testing the `make_line` GeoQuerySet method." # Ensuring that a `TypeError` is raised on models without PointFields. self.assertRaises(TypeError, State.objects.make_line) self.assertRaises(TypeError, Country.objects.make_line) # Reference query: # SELECT AsText(ST_MakeLine(geoapp_city.point)) FROM geoapp_city; ref_line = GEOSGeometry( 'LINESTRING(-95.363151 29.763374,-96.801611 32.782057,-97.521157 34.464642,174.783117 -41.315268,-104.609252 38.255001,-95.23506 38.971823,-87.650175 41.850385,-123.305196 48.462611)', srid=4326) self.assertEqual(ref_line, City.objects.make_line())
def render(self, name, value, attrs=None): # Update the template parameters with any attributes passed in. if attrs: self.params.update(attrs) # Defaulting the WKT value to a blank string -- this # will be tested in the JavaScript and the appropriate # interface will be constructed. self.params['wkt'] = '' # If a string reaches here (via a validation error on another # field) then just reconstruct the Geometry. if isinstance(value, basestring): try: value = GEOSGeometry(value) except (GEOSException, ValueError): value = None if value and value.geom_type.upper() != self.geom_type: value = None # Constructing the dictionary of the map options. self.params['map_options'] = self.map_options() # Constructing the JavaScript module name using the name of # the GeometryField (passed in via the `attrs` keyword). # Use the 'name' attr for the field name (rather than 'field') self.params['name'] = name # note: we must switch out dashes for underscores since js # functions are created using the module variable js_safe_name = self.params['name'].replace('-','_') self.params['module'] = 'geodjango_%s' % js_safe_name if value: # Transforming the geometry to the projection used on the # OpenLayers map. srid = self.params['srid'] if value.srid != srid: try: ogr = value.ogr ogr.transform(srid) wkt = ogr.wkt except OGRException: wkt = '' else: wkt = value.wkt # Setting the parameter WKT with that of the transformed # geometry. self.params['wkt'] = wkt return loader.render_to_string(self.template, self.params, context_instance=geo_context)
def clean(self, value): """ Validates that the input value can be converted to a Geometry object (which is returned). A ValidationError is raised if the value cannot be instantiated as a Geometry. """ if not value: if self.null and not self.required: # The geometry column allows NULL and is not required. return None else: raise forms.ValidationError(self.error_messages['no_geom']) # Trying to create a Geometry object from the form value. try: geom = GEOSGeometry(value) except: raise forms.ValidationError(self.error_messages['invalid_geom']) # Ensuring that the geometry is of the correct type (indicated # using the OGC string label). if str(geom.geom_type).upper( ) != self.geom_type and not self.geom_type == 'GEOMETRY': raise forms.ValidationError( self.error_messages['invalid_geom_type']) # Transforming the geometry if the SRID was set. if self.srid: if not geom.srid: # Should match that of the field if not given. geom.srid = self.srid elif self.srid != -1 and self.srid != geom.srid: try: geom.transform(self.srid) except: raise forms.ValidationError( self.error_messages['transform_error']) return geom
def test01_wktreader(self): # Creating a WKTReader instance wkt_r = WKTReader() wkt = 'POINT (5 23)' # read() should return a GEOSGeometry ref = GEOSGeometry(wkt) g1 = wkt_r.read(wkt) g2 = wkt_r.read(unicode(wkt)) for geom in (g1, g2): self.assertEqual(ref, geom) # Should only accept basestring objects. self.assertRaises(TypeError, wkt_r.read, 1) self.assertRaises(TypeError, wkt_r.read, buffer('foo'))
def test14_collect(self): "Testing the `collect` GeoQuerySet method and `Collect` aggregate." # Reference query: # SELECT AsText(ST_Collect("relatedapp_location"."point")) FROM "relatedapp_city" LEFT OUTER JOIN # "relatedapp_location" ON ("relatedapp_city"."location_id" = "relatedapp_location"."id") # WHERE "relatedapp_city"."state" = 'TX'; ref_geom = GEOSGeometry('MULTIPOINT(-97.516111 33.058333,-96.801611 32.782057,-95.363151 29.763374,-96.801611 32.782057)') c1 = City.objects.filter(state='TX').collect(field_name='location__point') c2 = City.objects.filter(state='TX').aggregate(Collect('location__point'))['location__point__collect'] for coll in (c1, c2): # Even though Dallas and Ft. Worth share same point, Collect doesn't # consolidate -- that's why 4 points in MultiPoint. self.assertEqual(4, len(coll)) self.assertEqual(ref_geom, coll)
def test06_f_expressions(self): "Testing F() expressions on GeometryFields." # Constructing a dummy parcel border and getting the City instance for # assigning the FK. b1 = GEOSGeometry('POLYGON((-97.501205 33.052520,-97.501205 33.052576,-97.501150 33.052576,-97.501150 33.052520,-97.501205 33.052520))', srid=4326) pcity = City.objects.get(name='Aurora') # First parcel has incorrect center point that is equal to the City; # it also has a second border that is different from the first as a # 100ft buffer around the City. c1 = pcity.location.point c2 = c1.transform(2276, clone=True) b2 = c2.buffer(100) p1 = Parcel.objects.create(name='P1', city=pcity, center1=c1, center2=c2, border1=b1, border2=b2) # Now creating a second Parcel where the borders are the same, just # in different coordinate systems. The center points are also the # same (but in different coordinate systems), and this time they # actually correspond to the centroid of the border. c1 = b1.centroid c2 = c1.transform(2276, clone=True) p2 = Parcel.objects.create(name='P2', city=pcity, center1=c1, center2=c2, border1=b1, border2=b1) # Should return the second Parcel, which has the center within the # border. qs = Parcel.objects.filter(center1__within=F('border1')) self.assertEqual(1, len(qs)) self.assertEqual('P2', qs[0].name) if not mysql: # This time center2 is in a different coordinate system and needs # to be wrapped in transformation SQL. qs = Parcel.objects.filter(center2__within=F('border1')) self.assertEqual(1, len(qs)) self.assertEqual('P2', qs[0].name) # Should return the first Parcel, which has the center point equal # to the point in the City ForeignKey. qs = Parcel.objects.filter(center1=F('city__location__point')) self.assertEqual(1, len(qs)) self.assertEqual('P1', qs[0].name) if not mysql: # This time the city column should be wrapped in transformation SQL. qs = Parcel.objects.filter(border2__contains=F('city__location__point')) self.assertEqual(1, len(qs)) self.assertEqual('P1', qs[0].name)
def test03a_distance_method(self): "Testing the `distance` GeoQuerySet method on projected coordinate systems." # The point for La Grange, TX lagrange = GEOSGeometry('POINT(-96.876369 29.905320)', 4326) # Reference distances in feet and in meters. Got these values from # using the provided raw SQL statements. # SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 32140)) FROM distapp_southtexascity; m_distances = [ 147075.069813, 139630.198056, 140888.552826, 138809.684197, 158309.246259, 212183.594374, 70870.188967, 165337.758878, 139196.085105 ] # SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 2278)) FROM distapp_southtexascityft; # Oracle 11 thinks this is not a projected coordinate system, so it's s # not tested. ft_distances = [ 482528.79154625, 458103.408123001, 462231.860397575, 455411.438904354, 519386.252102563, 696139.009211594, 232513.278304279, 542445.630586414, 456679.155883207 ] # Testing using different variations of parameters and using models # with different projected coordinate systems. dist1 = SouthTexasCity.objects.distance(lagrange, field_name='point') dist2 = SouthTexasCity.objects.distance( lagrange) # Using GEOSGeometry parameter if spatialite or oracle: dist_qs = [dist1, dist2] else: dist3 = SouthTexasCityFt.objects.distance( lagrange.ewkt) # Using EWKT string parameter. dist4 = SouthTexasCityFt.objects.distance(lagrange) dist_qs = [dist1, dist2, dist3, dist4] # Original query done on PostGIS, have to adjust AlmostEqual tolerance # for Oracle. if oracle: tol = 2 else: tol = 5 # Ensuring expected distances are returned for each distance queryset. for qs in dist_qs: for i, c in enumerate(qs): self.assertAlmostEqual(m_distances[i], c.distance.m, tol) self.assertAlmostEqual(ft_distances[i], c.distance.survey_ft, tol)
def test03_wkbreader(self): # Creating a WKBReader instance wkb_r = WKBReader() hex = '000000000140140000000000004037000000000000' wkb = buffer(binascii.a2b_hex(hex)) ref = GEOSGeometry(hex) # read() should return a GEOSGeometry on either a hex string or # a WKB buffer. g1 = wkb_r.read(wkb) g2 = wkb_r.read(hex) for geom in (g1, g2): self.assertEqual(ref, geom) bad_input = (1, 5.23, None, False) for bad_wkb in bad_input: self.assertRaises(TypeError, wkb_r.read, bad_wkb)
def test03_transform_related(self): "Testing the `transform` GeoQuerySet method on related geographic models." # All the transformations are to state plane coordinate systems using # US Survey Feet (thus a tolerance of 0 implies error w/in 1 survey foot). tol = 0 def check_pnt(ref, pnt): self.assertAlmostEqual(ref.x, pnt.x, tol) self.assertAlmostEqual(ref.y, pnt.y, tol) self.assertEqual(ref.srid, pnt.srid) # Each city transformed to the SRID of their state plane coordinate system. transformed = (('Kecksburg', 2272, 'POINT(1490553.98959621 314792.131023984)'), ('Roswell', 2257, 'POINT(481902.189077221 868477.766629735)'), ('Aurora', 2276, 'POINT(2269923.2484839 7069381.28722222)'), ) for name, srid, wkt in transformed: # Doing this implicitly sets `select_related` select the location. # TODO: Fix why this breaks on Oracle. qs = list(City.objects.filter(name=name).transform(srid, field_name='location__point')) check_pnt(GEOSGeometry(wkt, srid), qs[0].location.point)
def gen_bbox(): bbox_2d = GEOSGeometry(bbox_wkt, srid=32140) bbox_3d = Polygon(tuple( (x, y, z) for (x, y), z in zip(bbox_2d[0].coords, bbox_z)), srid=32140) return bbox_2d, bbox_3d
class DistanceTest(TestCase): # A point we are testing distances with -- using a WGS84 # coordinate that'll be implicitly transormed to that to # the coordinate system of the field, EPSG:32140 (Texas South Central # w/units in meters) stx_pnt = GEOSGeometry('POINT (-95.370401017314293 29.704867409475465)', 4326) # Another one for Australia au_pnt = GEOSGeometry('POINT (150.791 -34.4919)', 4326) def get_names(self, qs): cities = [c.name for c in qs] cities.sort() return cities def test01_init(self): "Test initialization of distance models." self.assertEqual(9, SouthTexasCity.objects.count()) self.assertEqual(9, SouthTexasCityFt.objects.count()) self.assertEqual(11, AustraliaCity.objects.count()) self.assertEqual(4, SouthTexasZipcode.objects.count()) self.assertEqual(4, CensusZipcode.objects.count()) self.assertEqual(1, Interstate.objects.count()) self.assertEqual(1, SouthTexasInterstate.objects.count()) @no_spatialite def test02_dwithin(self): "Testing the `dwithin` lookup type." # Distances -- all should be equal (except for the # degree/meter pair in au_cities, that's somewhat # approximate). tx_dists = [(7000, 22965.83), D(km=7), D(mi=4.349)] au_dists = [(0.5, 32000), D(km=32), D(mi=19.884)] # Expected cities for Australia and Texas. tx_cities = ['Downtown Houston', 'Southside Place'] au_cities = ['Mittagong', 'Shellharbour', 'Thirroul', 'Wollongong'] # Performing distance queries on two projected coordinate systems one # with units in meters and the other in units of U.S. survey feet. for dist in tx_dists: if isinstance(dist, tuple): dist1, dist2 = dist else: dist1 = dist2 = dist qs1 = SouthTexasCity.objects.filter(point__dwithin=(self.stx_pnt, dist1)) qs2 = SouthTexasCityFt.objects.filter(point__dwithin=(self.stx_pnt, dist2)) for qs in qs1, qs2: self.assertEqual(tx_cities, self.get_names(qs)) # Now performing the `dwithin` queries on a geodetic coordinate system. for dist in au_dists: if isinstance(dist, D) and not oracle: type_error = True else: type_error = False if isinstance(dist, tuple): if oracle: dist = dist[1] else: dist = dist[0] # Creating the query set. qs = AustraliaCity.objects.order_by('name') if type_error: # A ValueError should be raised on PostGIS when trying to pass # Distance objects into a DWithin query using a geodetic field. self.assertRaises( ValueError, AustraliaCity.objects.filter(point__dwithin=(self.au_pnt, dist)).count) else: self.assertEqual( au_cities, self.get_names( qs.filter(point__dwithin=(self.au_pnt, dist)))) def test03a_distance_method(self): "Testing the `distance` GeoQuerySet method on projected coordinate systems." # The point for La Grange, TX lagrange = GEOSGeometry('POINT(-96.876369 29.905320)', 4326) # Reference distances in feet and in meters. Got these values from # using the provided raw SQL statements. # SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 32140)) FROM distapp_southtexascity; m_distances = [ 147075.069813, 139630.198056, 140888.552826, 138809.684197, 158309.246259, 212183.594374, 70870.188967, 165337.758878, 139196.085105 ] # SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 2278)) FROM distapp_southtexascityft; # Oracle 11 thinks this is not a projected coordinate system, so it's s # not tested. ft_distances = [ 482528.79154625, 458103.408123001, 462231.860397575, 455411.438904354, 519386.252102563, 696139.009211594, 232513.278304279, 542445.630586414, 456679.155883207 ] # Testing using different variations of parameters and using models # with different projected coordinate systems. dist1 = SouthTexasCity.objects.distance(lagrange, field_name='point') dist2 = SouthTexasCity.objects.distance( lagrange) # Using GEOSGeometry parameter if spatialite or oracle: dist_qs = [dist1, dist2] else: dist3 = SouthTexasCityFt.objects.distance( lagrange.ewkt) # Using EWKT string parameter. dist4 = SouthTexasCityFt.objects.distance(lagrange) dist_qs = [dist1, dist2, dist3, dist4] # Original query done on PostGIS, have to adjust AlmostEqual tolerance # for Oracle. if oracle: tol = 2 else: tol = 5 # Ensuring expected distances are returned for each distance queryset. for qs in dist_qs: for i, c in enumerate(qs): self.assertAlmostEqual(m_distances[i], c.distance.m, tol) self.assertAlmostEqual(ft_distances[i], c.distance.survey_ft, tol) @no_spatialite def test03b_distance_method(self): "Testing the `distance` GeoQuerySet method on geodetic coordnate systems." if oracle: tol = 2 else: tol = 5 # Testing geodetic distance calculation with a non-point geometry # (a LineString of Wollongong and Shellharbour coords). ls = LineString(((150.902, -34.4245), (150.87, -34.5789))) if oracle or connection.ops.geography: # Reference query: # SELECT ST_distance_sphere(point, ST_GeomFromText('LINESTRING(150.9020 -34.4245,150.8700 -34.5789)', 4326)) FROM distapp_australiacity ORDER BY name; distances = [ 1120954.92533513, 140575.720018241, 640396.662906304, 60580.9693849269, 972807.955955075, 568451.8357838, 40435.4335201384, 0, 68272.3896586844, 12375.0643697706, 0 ] qs = AustraliaCity.objects.distance(ls).order_by('name') for city, distance in zip(qs, distances): # Testing equivalence to within a meter. self.assertAlmostEqual(distance, city.distance.m, 0) else: # PostGIS 1.4 and below is limited to disance queries only # to/from point geometries, check for raising of ValueError. self.assertRaises(ValueError, AustraliaCity.objects.distance, ls) self.assertRaises(ValueError, AustraliaCity.objects.distance, ls.wkt) # Got the reference distances using the raw SQL statements: # SELECT ST_distance_spheroid(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326), 'SPHEROID["WGS 84",6378137.0,298.257223563]') FROM distapp_australiacity WHERE (NOT (id = 11)); # SELECT ST_distance_sphere(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326)) FROM distapp_australiacity WHERE (NOT (id = 11)); st_distance_sphere if connection.ops.postgis and connection.ops.proj_version_tuple() >= ( 4, 7, 0): # PROJ.4 versions 4.7+ have updated datums, and thus different # distance values. spheroid_distances = [ 60504.0628957201, 77023.9489850262, 49154.8867574404, 90847.4358768573, 217402.811919332, 709599.234564757, 640011.483550888, 7772.00667991925, 1047861.78619339, 1165126.55236034 ] sphere_distances = [ 60580.9693849267, 77144.0435286473, 49199.4415344719, 90804.7533823494, 217713.384600405, 709134.127242793, 639828.157159169, 7786.82949717788, 1049204.06569028, 1162623.7238134 ] else: spheroid_distances = [ 60504.0628825298, 77023.948962654, 49154.8867507115, 90847.435881812, 217402.811862568, 709599.234619957, 640011.483583758, 7772.00667666425, 1047861.7859506, 1165126.55237647 ] sphere_distances = [ 60580.7612632291, 77143.7785056615, 49199.2725132184, 90804.4414289463, 217712.63666124, 709131.691061906, 639825.959074112, 7786.80274606706, 1049200.46122281, 1162619.7297006 ] # Testing with spheroid distances first. hillsdale = AustraliaCity.objects.get(name='Hillsdale') qs = AustraliaCity.objects.exclude(id=hillsdale.id).distance( hillsdale.point, spheroid=True) for i, c in enumerate(qs): self.assertAlmostEqual(spheroid_distances[i], c.distance.m, tol) if postgis: # PostGIS uses sphere-only distances by default, testing these as well. qs = AustraliaCity.objects.exclude(id=hillsdale.id).distance( hillsdale.point) for i, c in enumerate(qs): self.assertAlmostEqual(sphere_distances[i], c.distance.m, tol) @no_oracle # Oracle already handles geographic distance calculation. def test03c_distance_method(self): "Testing the `distance` GeoQuerySet method used with `transform` on a geographic field." # Normally you can't compute distances from a geometry field # that is not a PointField (on PostGIS 1.4 and below). if not connection.ops.geography: self.assertRaises(ValueError, CensusZipcode.objects.distance, self.stx_pnt) # We'll be using a Polygon (created by buffering the centroid # of 77005 to 100m) -- which aren't allowed in geographic distance # queries normally, however our field has been transformed to # a non-geographic system. z = SouthTexasZipcode.objects.get(name='77005') # Reference query: # SELECT ST_Distance(ST_Transform("distapp_censuszipcode"."poly", 32140), ST_GeomFromText('<buffer_wkt>', 32140)) FROM "distapp_censuszipcode"; dists_m = [3553.30384972258, 1243.18391525602, 2186.15439472242] # Having our buffer in the SRID of the transformation and of the field # -- should get the same results. The first buffer has no need for # transformation SQL because it is the same SRID as what was given # to `transform()`. The second buffer will need to be transformed, # however. buf1 = z.poly.centroid.buffer(100) buf2 = buf1.transform(4269, clone=True) ref_zips = ['77002', '77025', '77401'] for buf in [buf1, buf2]: qs = CensusZipcode.objects.exclude( name='77005').transform(32140).distance(buf) self.assertEqual(ref_zips, self.get_names(qs)) for i, z in enumerate(qs): self.assertAlmostEqual(z.distance.m, dists_m[i], 5) def test04_distance_lookups(self): "Testing the `distance_lt`, `distance_gt`, `distance_lte`, and `distance_gte` lookup types." # Retrieving the cities within a 20km 'donut' w/a 7km radius 'hole' # (thus, Houston and Southside place will be excluded as tested in # the `test02_dwithin` above). qs1 = SouthTexasCity.objects.filter( point__distance_gte=(self.stx_pnt, D(km=7))).filter( point__distance_lte=(self.stx_pnt, D(km=20))) # Can't determine the units on SpatiaLite from PROJ.4 string, and # Oracle 11 incorrectly thinks it is not projected. if spatialite or oracle: dist_qs = (qs1, ) else: qs2 = SouthTexasCityFt.objects.filter( point__distance_gte=(self.stx_pnt, D(km=7))).filter( point__distance_lte=(self.stx_pnt, D(km=20))) dist_qs = (qs1, qs2) for qs in dist_qs: cities = self.get_names(qs) self.assertEqual(cities, ['Bellaire', 'Pearland', 'West University Place']) # Doing a distance query using Polygons instead of a Point. z = SouthTexasZipcode.objects.get(name='77005') qs = SouthTexasZipcode.objects.exclude(name='77005').filter( poly__distance_lte=(z.poly, D(m=275))) self.assertEqual(['77025', '77401'], self.get_names(qs)) # If we add a little more distance 77002 should be included. qs = SouthTexasZipcode.objects.exclude(name='77005').filter( poly__distance_lte=(z.poly, D(m=300))) self.assertEqual(['77002', '77025', '77401'], self.get_names(qs)) def test05_geodetic_distance_lookups(self): "Testing distance lookups on geodetic coordinate systems." # Line is from Canberra to Sydney. Query is for all other cities within # a 100km of that line (which should exclude only Hobart & Adelaide). line = GEOSGeometry('LINESTRING(144.9630 -37.8143,151.2607 -33.8870)', 4326) dist_qs = AustraliaCity.objects.filter(point__distance_lte=(line, D(km=100))) if oracle or connection.ops.geography: # Oracle and PostGIS 1.5 can do distance lookups on arbitrary geometries. self.assertEqual(9, dist_qs.count()) self.assertEqual([ 'Batemans Bay', 'Canberra', 'Hillsdale', 'Melbourne', 'Mittagong', 'Shellharbour', 'Sydney', 'Thirroul', 'Wollongong' ], self.get_names(dist_qs)) else: # PostGIS 1.4 and below only allows geodetic distance queries (utilizing # ST_Distance_Sphere/ST_Distance_Spheroid) from Points to PointFields # on geometry columns. self.assertRaises(ValueError, dist_qs.count) # Ensured that a ValueError was raised, none of the rest of the test is # support on this backend, so bail now. if spatialite: return # Too many params (4 in this case) should raise a ValueError. self.assertRaises( ValueError, len, AustraliaCity.objects.filter(point__distance_lte=('POINT(5 23)', D(km=100), 'spheroid', '4'))) # Not enough params should raise a ValueError. self.assertRaises( ValueError, len, AustraliaCity.objects.filter( point__distance_lte=('POINT(5 23)', ))) # Getting all cities w/in 550 miles of Hobart. hobart = AustraliaCity.objects.get(name='Hobart') qs = AustraliaCity.objects.exclude(name='Hobart').filter( point__distance_lte=(hobart.point, D(mi=550))) cities = self.get_names(qs) self.assertEqual(cities, ['Batemans Bay', 'Canberra', 'Melbourne']) # Cities that are either really close or really far from Wollongong -- # and using different units of distance. wollongong = AustraliaCity.objects.get(name='Wollongong') d1, d2 = D(yd=19500), D(nm=400) # Yards (~17km) & Nautical miles. # Normal geodetic distance lookup (uses `distance_sphere` on PostGIS. gq1 = Q(point__distance_lte=(wollongong.point, d1)) gq2 = Q(point__distance_gte=(wollongong.point, d2)) qs1 = AustraliaCity.objects.exclude(name='Wollongong').filter(gq1 | gq2) # Geodetic distance lookup but telling GeoDjango to use `distance_spheroid` # instead (we should get the same results b/c accuracy variance won't matter # in this test case). if postgis: gq3 = Q(point__distance_lte=(wollongong.point, d1, 'spheroid')) gq4 = Q(point__distance_gte=(wollongong.point, d2, 'spheroid')) qs2 = AustraliaCity.objects.exclude( name='Wollongong').filter(gq3 | gq4) querysets = [qs1, qs2] else: querysets = [qs1] for qs in querysets: cities = self.get_names(qs) self.assertEqual( cities, ['Adelaide', 'Hobart', 'Shellharbour', 'Thirroul']) def test06_area(self): "Testing the `area` GeoQuerySet method." # Reference queries: # SELECT ST_Area(poly) FROM distapp_southtexaszipcode; area_sq_m = [ 5437908.90234375, 10183031.4389648, 11254471.0073242, 9881708.91772461 ] # Tolerance has to be lower for Oracle and differences # with GEOS 3.0.0RC4 tol = 2 for i, z in enumerate(SouthTexasZipcode.objects.area()): self.assertAlmostEqual(area_sq_m[i], z.area.sq_m, tol) def test07_length(self): "Testing the `length` GeoQuerySet method." # Reference query (should use `length_spheroid`). # SELECT ST_length_spheroid(ST_GeomFromText('<wkt>', 4326) 'SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]]'); len_m1 = 473504.769553813 len_m2 = 4617.668 if spatialite: # Does not support geodetic coordinate systems. self.assertRaises(ValueError, Interstate.objects.length) else: qs = Interstate.objects.length() if oracle: tol = 2 else: tol = 5 self.assertAlmostEqual(len_m1, qs[0].length.m, tol) # Now doing length on a projected coordinate system. i10 = SouthTexasInterstate.objects.length().get(name='I-10') self.assertAlmostEqual(len_m2, i10.length.m, 2) @no_spatialite def test08_perimeter(self): "Testing the `perimeter` GeoQuerySet method." # Reference query: # SELECT ST_Perimeter(distapp_southtexaszipcode.poly) FROM distapp_southtexaszipcode; perim_m = [ 18404.3550889361, 15627.2108551001, 20632.5588368978, 17094.5996143697 ] if oracle: tol = 2 else: tol = 7 for i, z in enumerate(SouthTexasZipcode.objects.perimeter()): self.assertAlmostEqual(perim_m[i], z.perimeter.m, tol) # Running on points; should return 0. for i, c in enumerate( SouthTexasCity.objects.perimeter(model_att='perim')): self.assertEqual(0, c.perim.m) def test09_measurement_null_fields(self): "Testing the measurement GeoQuerySet methods on fields with NULL values." # Creating SouthTexasZipcode w/NULL value. SouthTexasZipcode.objects.create(name='78212') # Performing distance/area queries against the NULL PolygonField, # and ensuring the result of the operations is None. htown = SouthTexasCity.objects.get(name='Downtown Houston') z = SouthTexasZipcode.objects.distance( htown.point).area().get(name='78212') self.assertEqual(None, z.distance) self.assertEqual(None, z.area)
def test05_geodetic_distance_lookups(self): "Testing distance lookups on geodetic coordinate systems." # Line is from Canberra to Sydney. Query is for all other cities within # a 100km of that line (which should exclude only Hobart & Adelaide). line = GEOSGeometry('LINESTRING(144.9630 -37.8143,151.2607 -33.8870)', 4326) dist_qs = AustraliaCity.objects.filter(point__distance_lte=(line, D(km=100))) if oracle or connection.ops.geography: # Oracle and PostGIS 1.5 can do distance lookups on arbitrary geometries. self.assertEqual(9, dist_qs.count()) self.assertEqual([ 'Batemans Bay', 'Canberra', 'Hillsdale', 'Melbourne', 'Mittagong', 'Shellharbour', 'Sydney', 'Thirroul', 'Wollongong' ], self.get_names(dist_qs)) else: # PostGIS 1.4 and below only allows geodetic distance queries (utilizing # ST_Distance_Sphere/ST_Distance_Spheroid) from Points to PointFields # on geometry columns. self.assertRaises(ValueError, dist_qs.count) # Ensured that a ValueError was raised, none of the rest of the test is # support on this backend, so bail now. if spatialite: return # Too many params (4 in this case) should raise a ValueError. self.assertRaises( ValueError, len, AustraliaCity.objects.filter(point__distance_lte=('POINT(5 23)', D(km=100), 'spheroid', '4'))) # Not enough params should raise a ValueError. self.assertRaises( ValueError, len, AustraliaCity.objects.filter( point__distance_lte=('POINT(5 23)', ))) # Getting all cities w/in 550 miles of Hobart. hobart = AustraliaCity.objects.get(name='Hobart') qs = AustraliaCity.objects.exclude(name='Hobart').filter( point__distance_lte=(hobart.point, D(mi=550))) cities = self.get_names(qs) self.assertEqual(cities, ['Batemans Bay', 'Canberra', 'Melbourne']) # Cities that are either really close or really far from Wollongong -- # and using different units of distance. wollongong = AustraliaCity.objects.get(name='Wollongong') d1, d2 = D(yd=19500), D(nm=400) # Yards (~17km) & Nautical miles. # Normal geodetic distance lookup (uses `distance_sphere` on PostGIS. gq1 = Q(point__distance_lte=(wollongong.point, d1)) gq2 = Q(point__distance_gte=(wollongong.point, d2)) qs1 = AustraliaCity.objects.exclude(name='Wollongong').filter(gq1 | gq2) # Geodetic distance lookup but telling GeoDjango to use `distance_spheroid` # instead (we should get the same results b/c accuracy variance won't matter # in this test case). if postgis: gq3 = Q(point__distance_lte=(wollongong.point, d1, 'spheroid')) gq4 = Q(point__distance_gte=(wollongong.point, d2, 'spheroid')) qs2 = AustraliaCity.objects.exclude( name='Wollongong').filter(gq3 | gq4) querysets = [qs1, qs2] else: querysets = [qs1] for qs in querysets: cities = self.get_names(qs) self.assertEqual( cities, ['Adelaide', 'Hobart', 'Shellharbour', 'Thirroul'])
def geos(self): "Returns a GEOSGeometry object from this OGRGeometry." from my_django.contrib.gis.geos import GEOSGeometry return GEOSGeometry(self.wkb, self.srid)