Esempio n. 1
0
def avgqtn(set_q, weight, sigma=0.0001):
    '''import set quaternion and set weight, error sigma, starting point
    #q1 = euler.euler2quat(0, 0, 170/180*math.pi)
    #q2 = euler.euler2quat(0, 0, -101/180*math.pi)
    #q3 = euler.euler2quat(0, 0, 270/180*math.pi)

    #set_q = [q1, q2, q3]
    #weight = [1/3, 1/3, 1/3]

    #a = avgqtn(set_q, weight)
    #k = euler.quat2euler(a)
    '''
    qt_bar = set_q[0]

    #weight = [0, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6]
    n = len(weight) #size of weight

    while True:
        ev = np.zeros((n, 3)) # n is the size of the set of Q n*3
        for q, w, i in zip(set_q, weight, range(len(weight))):
            qi_e = mul(inv(qt_bar), q)
            qie = np.array(qi_e)/norm(qi_e)
            e = np.array(2)* log(qie.tolist()) #  4 dimension
            ev_i = e[1:4] # 3 dimension
            if norm(ev_i) != 0:
                ev_fi = (-math.pi + math.fmod(norm(ev_i) + math.pi, math.pi * 2)) / \
                        norm(ev_i) * np.array(ev_i) * w
                ev[i, :] = ev_fi

        E = np.sum(ev, axis=0) #final ev after summation 1*n
        qt1_bar = mul(qt_bar, exp([0, E[0]/2, E[1]/2, E[2]/2]))
        qt_bar = qt1_bar #list
        if norm(E) < sigma:
            break
    return qt_bar
Esempio n. 2
0
def prediction(qt, E, step):
	'''where Rq_imu_step is the quaternion rotation for each step
	based on t predict t+1
	this function is based on sigma point, noise added
	'''
	#motion model
	qt1 = []
	e = [] #error vector for qt+1   7
	for Ei in E: #predict each sigma point from time t to t+1
		qt1_i = qtn.mul(qt, qtn.mul(qtn.exp
			([0, 0.5 * Ei[0], 0.5 * Ei[1], 0.5 * Ei[2]]), qtn.exp(step)))
		qt1.append(qt1_i) #qt1 means at qt+1 state there is 7 sigma points
		#in qt+1 the first element is the sigma point transformed from estimated qt mean

	#calculate the mean and covariance
	weight = [0, 1 / 6, 1 / 6, 1 / 6, 1 / 6, 1 / 6, 1 / 6]
	qt_1_bar = avgqtn(qt1, weight) #mean value of the predicted sigma point, a list value
	cov = np.zeros((3, 3)) #covariance is 3*3 matrix since quaternion is shrinked from 4 to 3
	for qt1_i, i in zip(qt1, range(len(qt1))):
		#q = qtn.mul(qt1_i, qtn.inv(qt_1_bar))
		q = qtn.mul(qtn.inv(qt_1_bar), qt1_i)
		ei = qtn.d4tod3(q)  # ei is a 3 dimension list
		eiv = np.array(ei).reshape((3,1))
		e.append(eiv)
		if i == 0:
			cov = 2 * np.dot(eiv, eiv.T)
		else:
			cov = cov + 1/6 * np.dot(eiv, eiv.T) #covariance value of the predicted sigma point
	return qt_1_bar, cov, qt1, e # where the qt1bar is the mean of the state qt+1 predicted
Esempio n. 3
0
def update(kt1, imu_acc_t1, zt1_bar, cov_vv, Pqt1_bar, cov_predicted):
	'''kt1 is a 3*3 matrix'''
	inov_t1 = np.array (imu_acc_t1 - zt1_bar)
	k_inovt1 = np.dot(kt1, inov_t1)

	qt1_updated = qtn.mul(Pqt1_bar,
		qtn.exp([0, 0.5*k_inovt1[0], 0.5*k_inovt1[1], 0.5*k_inovt1[2]]))
	k_Pvv = np.dot(kt1 , cov_vv)
	covt1_updated = cov_predicted - np.dot(k_Pvv, kt1.T)
	return qt1_updated, covt1_updated
Esempio n. 4
0
def measurement (qt1):
	'''with predicted qt+1, and imu_acc at this qt+1 step'''
	#measurement
	zt1 = [] #which is my measurement
	#noise_t = np.array(imu_acc_step) - np.array(zt_bar) # zt - zt_bar
	for qt1_i in qt1: # seven element
		qzt1_i = qtn.mul(qtn.mul(qtn.cjgt(qt1_i), [0, 0, 0, 1]), qt1_i)
		#world to body frame qt-1 *v * qt, if it is body to world qt * v * qt-1
		zt1_i = np.array(qzt1_i[1:4])  #+ noise_t #noise is 3d
		zt1.append(zt1_i.tolist())
	zt1_bar = 1/6 * np.sum(zt1[1:7], axis = 0) + 0 * np.array(zt1[0])
	covzz = np.zeros((3,3))
	for zt1_i, i in zip(zt1, range(len(zt1))):
		z = np.array(zt1_i) - zt1_bar
		zt1_iv = np.array(z).reshape((3, 1))
		if i == 0:
			covzz = 2 * np.dot(zt1_iv, zt1_iv.T)
		else:
			covzz = covzz + 1/6 * np.dot(zt1_iv, zt1_iv.T) #covariance
	cov_vv = covzz + 0.0001*np.eye(3)
	return zt1_bar, cov_vv, zt1
Esempio n. 5
0
for i in range(num - 1):
    accx_imu = -1 * (imu_values[0, i + 1] - biasacc[0]) * scale_factorg
    accy_imu = -1 * (imu_values[1, i + 1] - biasacc[1]) * scale_factorg
    accz_imu = (imu_values[2, i + 1] - biasacc[2]) * scale_factorg
    acc_imu = [accx_imu, accy_imu, accz_imu]  #each imu step for acc

    Wz_imu = 0.5 * (imu_values[3, i] - biasW[0]) * scale_factor * (
        imu_ts[0, i + 1] - imu_ts[0, i])
    Wx_imu = 0.5 * (imu_values[4, i] - biasW[1]) * scale_factor * (
        imu_ts[0, i + 1] - imu_ts[0, i])
    Wy_imu = 0.5 * (imu_values[5, i] - biasW[2]) * scale_factor * (
        imu_ts[0, i + 1] - imu_ts[0, i])
    W_imu = [Wx_imu, Wy_imu, Wz_imu]
    Rq_imu = [0] + W_imu  # rotaion in quaternion

    qt_1 = qtn.mul(qt, qtn.exp(Rq_imu))  # orientation at state t_1
    qt = qt_1
    euler_qt_1 = quat2euler(qt_1)  # xyz
    imu_orienstate.append(
        euler_qt_1)  # transform the quaternion orientation in to euler states
    ypr = mat2euler(
        vic_rots[:, :, i])  # xyz transform the rotation matrix into euler
    vic_orienstate.append(ypr)  # get series of the euler state of vicomn

    E = PM.sigma(covt_t, Q)
    Pqt_1_bar, Pcov, Pqt1, e = PM.prediction(ut_t, E, Rq_imu)
    #qt+1 bar is the predicted mean, cov is the predicted mean, Pqt1 is the predicted 7 sigma points
    #measurement
    zt1_bar, cov_vv, zt1 = PM.measurement(Pqt1)
    #E_qt1 = PM.sigma(Pcov, Q)
    #kalem gain