# test my_io.py import my_io import numpy as np import logging # test setUp my_io.setUp('digit/') startLog(__name__) logger = logging.getLogger(__name__) """# test read data my_io.readCsv() a = [1,2,3] my_io.writeCsv(a) my_io.startLog(__name__) logger = logging.getLogger(__name__) """ a = [['1','2.2','3.3'],['3.1','2.3','2']] b = a[0] print my_io.toFloat(a) print my_io.toZeroOne(b) logger.info('pass test :) ')
# svm_bench.py import logging import my_io import classification_baseline from sklearn import svm import numpy as np from sklearn.metrics import classification from numpy import linalg as LA my_io.setUp('./biological_response/') my_io.startLog(__name__) logger = logging.getLogger(__name__) y,X,trainData,testData = my_io.readCsv() portion = 0.2 seed = 1 X_test, X_train, y_train, y_test = classification_baseline.splitData(X,y,portion,seed) logger.info('init svm classifier') svc = svm.SVC(probability = True) logger.info('fitting svc') svc.fit(X_train, y_train) logger.info('start predict') predict_probs = svc.predict_proba(X_test) predict = my_io.toZeroOne(predict_probs) # error = classification.zero_one_loss(y_test, predict) loss = np.subtract(predict,y_test) error = LA.norm(loss)