# plt.rcParams['figure.figsize'] = (15.0, 8.0) # set default size of plots # plt.rcParams['image.interpolation'] = 'nearest' # plt.rcParams['image.cmap'] = 'gray' # # for auto-reloading extenrnal modules # # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython # %load_ext autoreload # %autoreload 2 # set up fransform parameters to find the bounding box, crop and resize the images # transfrom parameters pad_inf = 1 # infimum scale pad_sup = 1.5 # supremum scale size = 100 # resize size shift = 3 # radomly shift the bounding box lcn = True # local contrast normalization trans = Transform(pad_inf, pad_sup, size=size, shift=shift, lcn=lcn) # set up the model and trainer for training data_dir = 'data/FLIC-full' # store image data_info_file = '%s/train_joints.csv' % data_dir # store corrdinates of joints for training data model = LinearNet_flic(size) trainer = NetworkTrainer(data_dir=data_dir, data_info_file=data_info_file, model=model, trans=trans) if __name__ == '__main__': best_model, train_loss_history, val_loss_history = trainer.train_bgd()
help='mode sgd or bgd') args = parser.parse_args() # set up fransform parameters to find bounding box, crop and resize images # transfrom parameters pad_inf = 1.5 # infimum scale pad_sup = 2.0 # supremum scale size = 100 # resize size shift = 3 # radomly shift the bounding box lcn = True # local contrast normalization trans = Transform(pad_inf, pad_sup, size=size, shift=shift, lcn=lcn) # set up the model and trainer for training data_dir = 'data/FLIC-full' # store image # store corrdinates of joints for training datas data_info_file = '%s/train_joints.csv' % data_dir model = LinearNet_flic(size) trainer = NetworkTrainer(data_dir=data_dir, data_info_file=data_info_file, model=model, num_epochs=100, trans=trans) if args.mode == 'sgd': results = trainer.train() results_file = 'results/sgd_trained_resutls.chainer' elif args.mode == 'bgd': results = trainer.train_bgd() results_file = 'results/bgd_trained_resutls.chainer' else: raise Exception('Unrecognized mode type "%s"' % args.mode) # best_model, train_loss_batch_history, # train_loss_epoch_history, val_loss_epoch_history with open(results_file, 'wb', pickle.HIGHEST_PROTOCOL) as pickle_file: pickle.dump(results, pickle_file)