def test_set_inputs_property(): in0 = Constant(0) in1 = Constant(1) value = Apply([in0], Graph()) value.inputs = [in1] assert in0.uses == set() assert in1.uses == {(value, 0)}
def test_set_inputs(index): in0 = Constant(0) in1 = Constant(1) value = Apply([in0], Graph()) value.inputs[index] = in1 assert value.inputs[0] is in1 assert in0.uses == set() assert in1.uses == {(value, 0)}
def test_slice_inputs(): in0 = Constant(0) in1 = Constant(1) value = Apply([in0, in1], Graph()) assert value.inputs[:] == [in0, in1] with pytest.raises(ValueError): del value.inputs[:] with pytest.raises(ValueError): value.inputs[:] = [in0]
def test_toposort2(): g0 = Graph() g0.output = Constant(33) g1 = Graph() in0 = Constant(g0) in1 = Constant(1) v1 = Apply([in0, in1], g1) v2 = Apply([in0, v1, in1], g1) g1.output = v2 order = list(toposort(g1.return_)) _check_toposort(order, g1.return_, succ_incoming)
def test_graph(): """Construct a small graph. Note that this graph is strictly speaking nonsensical, because it doesn't use any actual primitive operations. """ g = Graph() x = Parameter(g) assert x.value is PARAMETER one = Constant(1) add = Constant('add') return_ = Constant('return') value = Apply([add, x, one], g) return_ = Apply([return_, value], g) g.return_ = return_ g.parameters.append(x)
def process_Subscript(self, block: 'Block', node: ast.Subscript) -> ANFNode: """Process subscripts: `x[y]`.""" op = self.environment.map(operator.getitem) value = self.process_node(block, node.value) slice = self.process_node(block, node.slice) return Apply([op, value, slice], block.graph)
def process_Compare(self, block: 'Block', node: ast.Compare) -> ANFNode: """Process comparison operators: `a == b`, `a > b`, etc.""" ops = [self._resolve_ast_type(op) for op in node.ops] assert len(ops) == 1 left = self.process_node(block, node.left) right = self.process_node(block, node.comparators[0]) return Apply([ops[0], left, right], block.graph)
def test_dfs_graphs(): g0 = Graph() in0 = Constant(g0) in1 = Constant(1) g0.return_ = in1 value = Apply([in0], Graph()) assert set(dfs(value)) == {value, in0} assert set(dfs(value, follow_graph=True)) == {value, in0, in1}
def test_del_inputs(index): in0 = Constant(0) in1 = Constant(1) value = Apply([in0, in1], Graph()) del value.inputs[index] assert in0.uses == set() assert in1.uses == {(value, 0)} assert value.inputs[0] is in1
def test_insert_inputs(index): in0 = Constant(0) in1 = Constant(1) value = Apply([in1], Graph()) value.inputs.insert(index, in0) assert value.inputs[0] is in0 assert value.inputs[1] is in1 assert in0.uses == {(value, 0)} assert in1.uses == {(value, 1)}
def test_copy(): in0 = Constant(0) value0 = Apply([in0], Graph()) value1 = copy.copy(value0) in1 = copy.copy(in0) assert value1.inputs == value0.inputs assert value1.inputs is not value0.inputs assert in0.uses == {(value0, 0), (value1, 0)} assert in1.uses == set()
def process_Return(self, block: 'Block', node: ast.Return) -> 'Block': """Process a return statement.""" inputs = [ Constant(primops.return_), self.process_node(block, node.value) ] return_ = Apply(inputs, block.graph) block.graph.return_ = return_ return block
def jump(self, target: 'Block') -> Apply: """Jumping from one block to the next becomes a tail call. This method will generate the tail call by calling the graph corresponding to the target block using an `Apply` node, and returning its value with a `Return` node. It will update the predecessor blocks of the target appropriately. Args: target: The block to jump to from this statement. """ jump = Apply([self.parser.get_block_function(target)], self.graph) self.jumps[target] = jump target.preds.append(self) inputs = [Constant(primops.return_), jump] return_ = Apply(inputs, self.graph) self.graph.return_ = return_ return return_
def test_toposort(): g0 = Graph() g0.output = Constant(1) g1 = Graph() in0 = Constant(g0) value = Apply([in0], g1) g1.output = value order = list(toposort(g1.return_)) _check_toposort(order, g1.return_, succ_incoming)
def test_helpers(): g = Graph() cg = Constant(g) assert is_constant_graph(cg) one = Constant(1) assert not is_constant_graph(one) assert is_constant(one) a = Apply([cg, one], g) assert is_apply(a) p = Parameter(g) assert is_parameter(p)
def cond(self, cond: ANFNode, true: 'Block', false: 'Block') -> Apply: """Perform a conditional jump. This method will generate the call to the if expression and return its value. The predecessor blocks of the branches will be updated appropriately. Args: cond: The node representing the condition (true or false). true: The block to jump to if the condition is true. false: The block to jump to if the condition is false. """ inputs = [ Constant(primops.if_), cond, self.parser.get_block_function(true), self.parser.get_block_function(false) ] if_ = Apply(inputs, self.graph) inputs = [Constant(primops.return_), if_] return_ = Apply(inputs, self.graph) self.graph.return_ = return_ return return_
def test_str_coverage(): """Just a coverage test for __str__ and __repr__ Doesn't check that they take particular values since that could change easily. """ g = Graph() p = Parameter(g) p.name = 'param' objects = [g, Apply([], g), p, Parameter(g), Constant(0), Constant(g)] for o in objects: str(o) repr(o) o.debug.debug_name
def write(targ, anf_node): if isinstance(targ, ast.Name): # CASE: x = value anf_node.debug.name = targ.id block.write(targ.id, anf_node) elif isinstance(targ, ast.Tuple): # CASE: x, y = value for i, elt in enumerate(targ.elts): op = self.environment.map(operator.getitem) new_node = Apply([op, anf_node, Constant(i)], block.graph) write(elt, new_node) else: raise NotImplementedError(node.targets) # pragma: no cover
def process_Attribute(self, block: 'Block', node: ast.Attribute) -> ANFNode: """Process attributes: `x.y`.""" op = self.environment.map(getattr) value = self.process_node(block, node.value) return Apply([op, value, Constant(node.attr)], block.graph)
def test_append_inputs(): in0 = Constant(0) value = Apply([], Graph()) value.inputs.append(in0) assert in0.uses == {(value, 0)}
def test_outgoing(): in0 = Constant(0) value = Apply([in0], Graph()) assert list(value.outgoing) == [] assert list(in0.outgoing) == [value]
def test_get_inputs(index): in0 = Constant(0) value = Apply([in0], Graph()) assert value.inputs[index] == in0
def test_incoming(): in0 = Constant(0) value = Apply([in0], Graph()) assert list(value.incoming) == [in0] assert list(in0.incoming) == []
def process_BinOp(self, block: 'Block', node: ast.BinOp) -> ANFNode: """Process binary operators: `a + b`, `a | b`, etc.""" func = self._resolve_ast_type(node.op) left = self.process_node(block, node.left) right = self.process_node(block, node.right) return Apply([func, left, right], block.graph)
def test_len_inputs(): in0 = Constant(0) in1 = Constant(1) value = Apply([in0, in1], Graph()) assert len(value.inputs) == 2
def test_dfs(): in0 = Constant(0) in1 = Constant(1) value = Apply([in0, in1], Graph()) assert next(dfs(value)) == value assert set(dfs(value)) == {value, in0, in1}
def cons(elts): if len(elts) == 0: return Constant(()) else: x, *rest = elts return Apply([op, x, cons(rest)], block.graph)
def test_init_inputs(): in0 = Constant(0) value = Apply([in0], Graph()) assert in0.uses == {(value, 0)}
def process_UnaryOp(self, block: 'Block', node: ast.UnaryOp) -> ANFNode: """Process unary operators: `+a`, `-a`, etc.""" func = self._resolve_ast_type(node.op) operand = self.process_node(block, node.operand) return Apply([func, operand], block.graph)
def process_Call(self, block: 'Block', node: ast.Call) -> ANFNode: """Process function calls: `f(x)`, etc.""" func = self.process_node(block, node.func) args = [self.process_node(block, arg) for arg in node.args] return Apply([func] + args, block.graph)