Esempio n. 1
0
        def test_safe_idx_sequence_from_idx(data,
                                            idx=None,
                                            data_seq=1,
                                            target_seq=0,
                                            target_shift=0):

            safe_idx = get_safe_idx(data,
                                    idx=idx,
                                    data_seq=data_seq,
                                    target_seq=target_seq,
                                    target_shift=target_shift)
            print_ndarray(
                f'safe_idx = get_safe_idx({np.shape(data)}, idx={idx}, data_seq={data_seq}, target_seq={target_seq}, target_shift={target_shift})',
                safe_idx)

            x, y = sequence_from_idx(data,
                                     data,
                                     safe_idx,
                                     data_seq=data_seq,
                                     target_seq=target_seq,
                                     target_shift=target_shift)
            print_ndarray(
                f'x, _ = sequence_from_idx({np.shape(data)}, {np.shape(data)}, safe_idx, data_seq={data_seq}, target_seq={target_seq}, target_shift={target_shift})',
                x)
            print_ndarray(
                f'_, y = sequence_from_idx({np.shape(data)}, {np.shape(data)}, safe_idx, data_seq={data_seq}, target_seq={target_seq}, target_shift={target_shift})',
                y)

            pass  # test_safe_idx_batch_from_seq()
Esempio n. 2
0
    def test_prep(data,
                  config,
                  idx=[28799, 35999],
                  data_seq=0,
                  target_seq=0,
                  target_shift=0):

        data.set_params(data_seq=data_seq,
                        target_seq=target_seq,
                        target_shift=target_shift)
        print(data)

        x, y = data.get_dataset(idx)
        print_ndarray('\nx = data.get_dataset({})'.format(idx),
                      x,
                      10,
                      frm='8.3f')
        print_ndarray('y = data.get_dataset({})\n'.format(idx),
                      y,
                      10,
                      frm='8.3f')

        nbins = 15
        p_range = [5, 95]
        treshold = 0.050

        if not tf.executing_eagerly():
            data_shape = np.shape(x)[1:]
            model = Preproces.build(data_shape,
                                    name=model_name,
                                    config=config,
                                    nbins=nbins,
                                    p_range=p_range,
                                    treshold=treshold)
            logdir = 'C:\logs'
            tf.compat.v1.summary.FileWriter(
                logdir, graph=tf.compat.v1.get_default_graph()).close()
            assert False, 'write graph'

        output = prep(x,
                      config,
                      nbins=nbins,
                      p_range=p_range,
                      treshold=treshold)
        print_ndarray('\noutput\n', output, 0)  # (2,16,16,36)

        return output
Esempio n. 3
0
if __name__ == "__main__":

    import numpy as np
    from mylib import print_ndarray

    print('\ntensorflow helper functions')
    print('tensorflow version: {0}'.format(tf.__version__))
    print('tf.executing_eagerly(): {0}'.format(tf.executing_eagerly()))

    # define test random array
    np.random.seed(seed=111)
    mu = np.array([0, 2, 5, -5], dtype=np.float32).reshape(-1, 1)
    mu = np.array([0, 0, 0, 0], dtype=np.float32).reshape(-1, 1)
    sigma = np.array([1, 2, 3, 3], dtype=np.float32).reshape(-1, 1)
    logvar = np.log(np.square(sigma))
    print_ndarray('mu', mu)
    print_ndarray('sigma', sigma)

    a_shape = (4, 11000)
    n = a_shape[0]
    a = np.random.normal(size=a_shape) * sigma + mu
    print_ndarray('a = np.random.normal(size={}) * sigma + mu'.format(a.shape),
                  a)

    a = np.cumsum(a, axis=1)
    print_ndarray('a = np.cumsum(a, np.float32)'.format(a.shape),
                  a,
                  frm='8.2f')

    q = [25, 50, 75]
    percentile = np.percentile(a, q, axis=-1)
Esempio n. 4
0
        print(details['device_name'])
    print('---\n')

    input_shape = (16, 16, 36)
    config = get_mixer_s4_config()

    if not tf.executing_eagerly():
        logdir = 'C:\logs'
        m = MlpMix2.build(input_shape, config, name='test_model')
        tf.compat.v1.summary.FileWriter(
            logdir, graph=tf.compat.v1.get_default_graph()).close()
        assert False, 'write graph'

    m = MlpMix2.build(input_shape, config)

    size = (1024, 16, 16, 36)
    x = np.random.normal(size=size)
    print_ndarray(f'x = np.random.normal(size={size})', x)

    log_prob, value, feature = m(x)
    print_ndarray('log_prob', log_prob)
    print_ndarray('value', value)
    print_ndarray(
        'feature, mean, var',
        np.concatenate([
            feature,
            np.mean(feature, axis=-1, keepdims=True),
            np.var(feature, axis=-1, keepdims=True)
        ],
                       axis=-1))
Esempio n. 5
0
            tf.math.exp(hard_positives - hard_negatives))
    else:
        triplet_loss = tf.maximum(hard_positives - hard_negatives + margin,
                                  0.0)

    return triplet_loss  # tf.reduce_mean(triplet_loss)


if __name__ == "__main__":
    import numpy as np
    from mylib import print_ndarray

    size = (128, 128)
    labels = np.random.randint(0, high=2, size=size[0])
    feature = np.random.normal(loc=1, scale=1, size=size)
    print_ndarray(f'\nlabels (y_true)', labels)
    print_ndarray(f'feature (y_pred)', feature)

    angular_dist = angular_distance(feature)
    print_ndarray(f'angular_dist', angular_dist)

    pairwise_dist = pairwise_distance(feature, squared=False)
    print_ndarray(f'pairwise_dist', pairwise_dist)

    pairwise_dist = pairwise_distance(feature,
                                      squared=False,
                                      L2_normalize=True)
    print_ndarray(f'pairwise_dist', pairwise_dist)

    t = triplet_semihard_loss(
        labels,
Esempio n. 6
0
    output = test_prep(dr_train,
                       config256,
                       idx=idx,
                       data_seq=256,
                       target_seq=0,
                       target_shift=0)
    for image in output:
        draw_img(image, n_cols=9, n_rows=4)

    # test prepare_data()
    x, y = dr_train.get_dataset(idx,
                                data_seq=7200,
                                target_seq=0,
                                target_shift=0)
    print_ndarray('\nx = .get_dataset({})'.format(idx), x, 20, frm='8.3f')

    y = x[0, :, :4]
    a = prepare_data(y, config256)
    print_ndarray(' = .prepare_data({})'.format(np.shape(y)),
                  a,
                  20,
                  frm='8.3f')

    #data_list = ['Open', 'High', 'Low', 'Close', 'AD1', 'AH4', 'AH1', 'AM15', 'AM5', 'LVW1', 'LVD1', 'LVH4', 'LVH1', 'LVM15', 'LVM5', 'LVM2', 'Idx']
    config1024 = get_prep1024_config(data_file='hilo66_logvar_2020.csv',
                                     target_file='reward_100_2020~.csv')
    dr_train = get_data(config1024, data_path=data_path)

    output = test_prep(dr_train,
                       config1024,
Esempio n. 7
0
                                     target_seq=target_seq,
                                     target_shift=target_shift)
            print_ndarray(
                f'x, _ = sequence_from_idx({np.shape(data)}, {np.shape(data)}, safe_idx, data_seq={data_seq}, target_seq={target_seq}, target_shift={target_shift})',
                x)
            print_ndarray(
                f'_, y = sequence_from_idx({np.shape(data)}, {np.shape(data)}, safe_idx, data_seq={data_seq}, target_seq={target_seq}, target_shift={target_shift})',
                y)

            pass  # test_safe_idx_batch_from_seq()

        size = 12
        data = np.arange(size, dtype=np.float32)
        data = np.reshape(data, (-1, 1))
        data = np.concatenate([data + 0.1, data + 0.2], axis=-1)
        print_ndarray('data', data)

        test_safe_idx_sequence_from_idx(data,
                                        idx=None,
                                        data_seq=0,
                                        target_seq=0,
                                        target_shift=0)
        test_safe_idx_sequence_from_idx(data,
                                        idx=None,
                                        data_seq=1,
                                        target_seq=0,
                                        target_shift=0)
        test_safe_idx_sequence_from_idx(data,
                                        idx=None,
                                        data_seq=2,
                                        target_seq=0,
Esempio n. 8
0
if __name__ == "__main__":

    import numpy as np
    from mylib import print_ndarray

    print('\nnumpy helper functions')
    print('numpy version: {0}'.format(np.__version__))

    # define test random array
    np.random.seed(seed=111)
    mu = np.array([0, 2, 5, -5], dtype=np.float32).reshape(-1, 1)
    mu = np.array([0, 0, 0, 0], dtype=np.float32).reshape(-1, 1)
    sigma = np.array([1, 2, 3, 3], dtype=np.float32).reshape(-1, 1)
    logvar = np.log(np.square(sigma))
    print_ndarray('mu', mu)
    print_ndarray('sigma', sigma)

    a_shape = (4, 11000)
    n = a_shape[0]
    a = np.random.normal(size=a_shape) * sigma + mu
    a = np.asarray(a, dtype=np.float32)
    print_ndarray('a = np.random.normal(size={}) * sigma + mu'.format(a.shape),
                  a)

    a = np.cumsum(a, axis=1)
    print_ndarray('a = np.cumsum(a, np.float32)'.format(a.shape),
                  a,
                  frm='8.2f')

    q = [25, 50, 75]