def test_numpy(): # Generate 10,000 uniformly distributed random numbers with numpy. num_list = np.random.uniform(0, 1, 10000) # Test that your mean is a proper numerical match to the numpy one. obs = mean(num_list) exp = np.mean(num_list) np.testing.assert_almost_equal(obs, exp)
def test_complex(): # given that complex numbers are an unordered field # the arithmetic mean of complex numbers is meaningless num_list = [2 + 3j, 3 + 4j, -32 - 2j] obs = mean(num_list) exp = NotImplemented assert obs == exp
def test_numpy(): # testing with numpy import numpy as np num_list = np.random.uniform(0, 10, 10000) obs = mean(num_list) exp = np.mean(num_list) np.testing.assert_almost_equal(obs, exp, decimal=10)
def test_uniform(): # test the mean of 10,000 uniforms import numpy as np np.random.seed(259) unif_list = np.random.uniform(size=10000) obs = mean(unif_list) exp = np.mean(unif_list) assert np.isclose(obs, exp)
def test_ints(): num_list = [1, 2, 3, 4, 5] obs = mean(num_list) exp = 3 assert obs == exp
def test_mean(): assert mean([1]) == 1
def test_rand(): x = np.random.uniform(size=10000) # npt.assert_almost_equal(mean(x), np.mean(x)) npt.assert_allclose(mean(x), np.mean(x), rtol=1e-12)
def test_long(): big = 100000000 obs = mean(range(1, big)) exp = big / 2.0 assert obs == exp
def test_double(): # This one will fail in Python 2 num_list = [1, 2, 3, 4] obs = mean(num_list) exp = 2.5 assert obs == exp
def test_zero(): num_list = [0, 2, 4, 6] obs = mean(num_list) exp = 3 assert obs == exp
def test_mean_random(): data = np.random.rand(10000) npm = np.mean(data) mea = mean(data) assert np.isclose(npm,mea)
def test_npmean(): np_list = np.random.uniform(size=10_000) obs = mean(np_list) exp = np.mean(np_list) np.testing.assert_allclose(obs, exp, rtol=1e-12)
def test_np_mean(): uni = np.random.uniform(size=10_000) npt.assert_allclose(mean(uni), np.mean(uni))
def test_numpy(): import numpy as np nums = np.random.uniform(0, 1, 10000) np.testing.assert_allclose(np.mean(nums), mean(nums), atol=1e-07)
def test_mean(): array = np.random.uniform(0, 100, 10000) assert np.mean(array) == mean(array)
def test_numpy(): "Test against numpy's mean with a reasonably large array" npr = np.random.uniform(size=10_000) npm = npr.mean() mym = mean(npr) npt.assert_allclose(mym, npm, rtol=1e-12)