Esempio n. 1
0
def infer_decorator_signature_if_simple(
        dec: Decorator, analyzer: SemanticAnalyzerInterface) -> None:
    """Try to infer the type of the decorated function.

    This lets us resolve additional references to decorated functions
    during type checking. Otherwise the type might not be available
    when we need it, since module top levels can't be deferred.

    This basically uses a simple special-purpose type inference
    engine just for decorators.
    """
    if dec.var.is_property:
        # Decorators are expected to have a callable type (it's a little odd).
        if dec.func.type is None:
            dec.var.type = CallableType(
                [AnyType(TypeOfAny.special_form)], [ARG_POS], [None],
                AnyType(TypeOfAny.special_form),
                analyzer.named_type('builtins.function'),
                name=dec.var.name)
        elif isinstance(dec.func.type, CallableType):
            dec.var.type = dec.func.type
        return
    decorator_preserves_type = True
    for expr in dec.decorators:
        preserve_type = False
        if isinstance(expr, RefExpr) and isinstance(expr.node, FuncDef):
            if expr.node.type and is_identity_signature(expr.node.type):
                preserve_type = True
        if not preserve_type:
            decorator_preserves_type = False
            break
    if decorator_preserves_type:
        # No non-identity decorators left. We can trivially infer the type
        # of the function here.
        dec.var.type = function_type(dec.func,
                                     analyzer.named_type('builtins.function'))
    if dec.decorators:
        return_type = calculate_return_type(dec.decorators[0])
        if return_type and isinstance(return_type, AnyType):
            # The outermost decorator will return Any so we know the type of the
            # decorated function.
            dec.var.type = AnyType(TypeOfAny.from_another_any,
                                   source_any=return_type)
        sig = find_fixed_callable_return(dec.decorators[0])
        if sig:
            # The outermost decorator always returns the same kind of function,
            # so we know that this is the type of the decorated function.
            orig_sig = function_type(dec.func,
                                     analyzer.named_type('builtins.function'))
            sig.name = orig_sig.items[0].name
            dec.var.type = sig
Esempio n. 2
0
def analyze_instance_member_access(name: str, typ: Instance, mx: MemberContext,
                                   override_info: Optional[TypeInfo]) -> Type:
    if name == '__init__' and not mx.is_super:
        # Accessing __init__ in statically typed code would compromise
        # type safety unless used via super().
        mx.msg.fail(message_registry.CANNOT_ACCESS_INIT, mx.context)
        return AnyType(TypeOfAny.from_error)

    # The base object has an instance type.

    info = typ.type
    if override_info:
        info = override_info

    if (state.find_occurrences and info.name == state.find_occurrences[0]
            and name == state.find_occurrences[1]):
        mx.msg.note("Occurrence of '{}.{}'".format(*state.find_occurrences),
                    mx.context)

    # Look up the member. First look up the method dictionary.
    method = info.get_method(name)
    if method:
        if method.is_property:
            assert isinstance(method, OverloadedFuncDef)
            first_item = cast(Decorator, method.items[0])
            return analyze_var(name, first_item.var, typ, info, mx)
        if mx.is_lvalue:
            mx.msg.cant_assign_to_method(mx.context)
        signature = function_type(method, mx.builtin_type('builtins.function'))
        signature = freshen_function_type_vars(signature)
        if name == '__new__':
            # __new__ is special and behaves like a static method -- don't strip
            # the first argument.
            pass
        else:
            if isinstance(signature, FunctionLike) and name != '__call__':
                # TODO: use proper treatment of special methods on unions instead
                #       of this hack here and below (i.e. mx.self_type).
                dispatched_type = meet.meet_types(mx.original_type, typ)
                signature = check_self_arg(signature, dispatched_type,
                                           method.is_class, mx.context, name,
                                           mx.msg)
            signature = bind_self(signature,
                                  mx.self_type,
                                  is_classmethod=method.is_class)
        typ = map_instance_to_supertype(typ, method.info)
        member_type = expand_type_by_instance(signature, typ)
        freeze_type_vars(member_type)
        return member_type
    else:
        # Not a method.
        return analyze_member_var_access(name, typ, info, mx)
Esempio n. 3
0
def analyze_decorator_or_funcbase_access(
    defn: Union[Decorator, FuncBase],
    itype: Instance,
    info: TypeInfo,
    self_type: Optional[Type],
    name: str,
    mx: MemberContext,
) -> Type:
    """Analyzes the type behind method access.

    The function itself can possibly be decorated.
    See: https://github.com/python/mypy/issues/10409
    """
    if isinstance(defn, Decorator):
        return analyze_var(name, defn.var, itype, info, mx)
    return bind_self(
        function_type(defn, mx.chk.named_type('builtins.function')),
        original_type=self_type,
    )
Esempio n. 4
0
def type_object_type(info: TypeInfo,
                     builtin_type: Callable[[str], Instance]) -> ProperType:
    """Return the type of a type object.

    For a generic type G with type variables T and S the type is generally of form

      Callable[..., G[T, S]]

    where ... are argument types for the __init__/__new__ method (without the self
    argument). Also, the fallback type will be 'type' instead of 'function'.
    """

    # We take the type from whichever of __init__ and __new__ is first
    # in the MRO, preferring __init__ if there is a tie.
    init_method = info.get('__init__')
    new_method = info.get('__new__')
    if not init_method or not is_valid_constructor(init_method.node):
        # Must be an invalid class definition.
        return AnyType(TypeOfAny.from_error)
    # There *should* always be a __new__ method except the test stubs
    # lack it, so just copy init_method in that situation
    new_method = new_method or init_method
    if not is_valid_constructor(new_method.node):
        # Must be an invalid class definition.
        return AnyType(TypeOfAny.from_error)

    # The two is_valid_constructor() checks ensure this.
    assert isinstance(new_method.node, (SYMBOL_FUNCBASE_TYPES, Decorator))
    assert isinstance(init_method.node, (SYMBOL_FUNCBASE_TYPES, Decorator))

    init_index = info.mro.index(init_method.node.info)
    new_index = info.mro.index(new_method.node.info)

    fallback = info.metaclass_type or builtin_type('builtins.type')
    if init_index < new_index:
        method = init_method.node  # type: Union[FuncBase, Decorator]
        is_new = False
    elif init_index > new_index:
        method = new_method.node
        is_new = True
    else:
        if init_method.node.info.fullname == 'builtins.object':
            # Both are defined by object.  But if we've got a bogus
            # base class, we can't know for sure, so check for that.
            if info.fallback_to_any:
                # Construct a universal callable as the prototype.
                any_type = AnyType(TypeOfAny.special_form)
                sig = CallableType(arg_types=[any_type, any_type],
                                   arg_kinds=[ARG_STAR, ARG_STAR2],
                                   arg_names=["_args", "_kwds"],
                                   ret_type=any_type,
                                   fallback=builtin_type('builtins.function'))
                return class_callable(sig, info, fallback, None, is_new=False)

        # Otherwise prefer __init__ in a tie. It isn't clear that this
        # is the right thing, but __new__ caused problems with
        # typeshed (#5647).
        method = init_method.node
        is_new = False
    # Construct callable type based on signature of __init__. Adjust
    # return type and insert type arguments.
    if isinstance(method, FuncBase):
        t = function_type(method, fallback)
    else:
        assert isinstance(method.type, ProperType)
        assert isinstance(method.type,
                          FunctionLike)  # is_valid_constructor() ensures this
        t = method.type
    return type_object_type_from_function(t, info, method.info, fallback,
                                          is_new)
Esempio n. 5
0
def analyze_class_attribute_access(
        itype: Instance,
        name: str,
        mx: MemberContext,
        override_info: Optional[TypeInfo] = None,
        original_vars: Optional[List[TypeVarDef]] = None) -> Optional[Type]:
    """Analyze access to an attribute on a class object.

    itype is the return type of the class object callable, original_type is the type
    of E in the expression E.var, original_vars are type variables of the class callable
    (for generic classes).
    """
    info = itype.type
    if override_info:
        info = override_info

    node = info.get(name)
    if not node:
        if info.fallback_to_any:
            return AnyType(TypeOfAny.special_form)
        return None

    is_decorated = isinstance(node.node, Decorator)
    is_method = is_decorated or isinstance(node.node, FuncBase)
    if mx.is_lvalue:
        if is_method:
            mx.msg.cant_assign_to_method(mx.context)
        if isinstance(node.node, TypeInfo):
            mx.msg.fail(message_registry.CANNOT_ASSIGN_TO_TYPE, mx.context)

    # If a final attribute was declared on `self` in `__init__`, then it
    # can't be accessed on the class object.
    if node.implicit and isinstance(node.node, Var) and node.node.is_final:
        mx.msg.fail(
            message_registry.CANNOT_ACCESS_FINAL_INSTANCE_ATTR.format(
                node.node.name), mx.context)

    # An assignment to final attribute on class object is also always an error,
    # independently of types.
    if mx.is_lvalue and not mx.chk.get_final_context():
        check_final_member(name, info, mx.msg, mx.context)

    if info.is_enum and not (mx.is_lvalue or is_decorated or is_method):
        enum_literal = LiteralType(name, fallback=itype)
        # When we analyze enums, the corresponding Instance is always considered to be erased
        # due to how the signature of Enum.__new__ is `(cls: Type[_T], value: object) -> _T`
        # in typeshed. However, this is really more of an implementation detail of how Enums
        # are typed, and we really don't want to treat every single Enum value as if it were
        # from type variable substitution. So we reset the 'erased' field here.
        return itype.copy_modified(erased=False, last_known_value=enum_literal)

    t = node.type
    if t:
        if isinstance(t, PartialType):
            symnode = node.node
            assert isinstance(symnode, Var)
            return mx.chk.handle_partial_var_type(t, mx.is_lvalue, symnode,
                                                  mx.context)

        # Find the class where method/variable was defined.
        if isinstance(node.node, Decorator):
            super_info = node.node.var.info  # type: Optional[TypeInfo]
        elif isinstance(node.node, (Var, SYMBOL_FUNCBASE_TYPES)):
            super_info = node.node.info
        else:
            super_info = None

        # Map the type to how it would look as a defining class. For example:
        #     class C(Generic[T]): ...
        #     class D(C[Tuple[T, S]]): ...
        #     D[int, str].method()
        # Here itype is D[int, str], isuper is C[Tuple[int, str]].
        if not super_info:
            isuper = None
        else:
            isuper = map_instance_to_supertype(itype, super_info)

        if isinstance(node.node, Var):
            assert isuper is not None
            # Check if original variable type has type variables. For example:
            #     class C(Generic[T]):
            #         x: T
            #     C.x  # Error, ambiguous access
            #     C[int].x  # Also an error, since C[int] is same as C at runtime
            if isinstance(t, TypeVarType) or has_type_vars(t):
                # Exception: access on Type[...], including first argument of class methods is OK.
                if not isinstance(get_proper_type(mx.original_type),
                                  TypeType) or node.implicit:
                    if node.node.is_classvar:
                        message = message_registry.GENERIC_CLASS_VAR_ACCESS
                    else:
                        message = message_registry.GENERIC_INSTANCE_VAR_CLASS_ACCESS
                    mx.msg.fail(message, mx.context)

            # Erase non-mapped variables, but keep mapped ones, even if there is an error.
            # In the above example this means that we infer following types:
            #     C.x -> Any
            #     C[int].x -> int
            t = erase_typevars(expand_type_by_instance(t, isuper))

        is_classmethod = (
            (is_decorated and cast(Decorator, node.node).func.is_class)
            or (isinstance(node.node, FuncBase) and node.node.is_class))
        t = get_proper_type(t)
        if isinstance(t, FunctionLike) and is_classmethod:
            t = check_self_arg(t, mx.self_type, False, mx.context, name,
                               mx.msg)
        result = add_class_tvars(t,
                                 isuper,
                                 is_classmethod,
                                 mx.self_type,
                                 original_vars=original_vars)
        if not mx.is_lvalue:
            result = analyze_descriptor_access(mx.original_type,
                                               result,
                                               mx.builtin_type,
                                               mx.msg,
                                               mx.context,
                                               chk=mx.chk)
        return result
    elif isinstance(node.node, Var):
        mx.not_ready_callback(name, mx.context)
        return AnyType(TypeOfAny.special_form)

    if isinstance(node.node, TypeVarExpr):
        mx.msg.fail(
            message_registry.CANNOT_USE_TYPEVAR_AS_EXPRESSION.format(
                info.name, name), mx.context)
        return AnyType(TypeOfAny.from_error)

    if isinstance(node.node, TypeInfo):
        return type_object_type(node.node, mx.builtin_type)

    if isinstance(node.node, MypyFile):
        # Reference to a module object.
        return mx.builtin_type('types.ModuleType')

    if (isinstance(node.node, TypeAlias)
            and isinstance(get_proper_type(node.node.target), Instance)):
        return instance_alias_type(node.node, mx.builtin_type)

    if is_decorated:
        assert isinstance(node.node, Decorator)
        if node.node.type:
            return node.node.type
        else:
            mx.not_ready_callback(name, mx.context)
            return AnyType(TypeOfAny.from_error)
    else:
        assert isinstance(node.node, FuncBase)
        typ = function_type(node.node, mx.builtin_type('builtins.function'))
        # Note: if we are accessing class method on class object, the cls argument is bound.
        # Annotated and/or explicit class methods go through other code paths above, for
        # unannotated implicit class methods we do this here.
        if node.node.is_class:
            typ = bind_self(typ, is_classmethod=True)
        return typ
Esempio n. 6
0
def analyze_descriptor_access(instance_type: Type, descriptor_type: Type,
                              builtin_type: Callable[[str], Instance],
                              msg: MessageBuilder, context: Context, *,
                              chk: 'mypy.checker.TypeChecker') -> Type:
    """Type check descriptor access.

    Arguments:
        instance_type: The type of the instance on which the descriptor
            attribute is being accessed (the type of ``a`` in ``a.f`` when
            ``f`` is a descriptor).
        descriptor_type: The type of the descriptor attribute being accessed
            (the type of ``f`` in ``a.f`` when ``f`` is a descriptor).
        context: The node defining the context of this inference.
    Return:
        The return type of the appropriate ``__get__`` overload for the descriptor.
    """
    instance_type = get_proper_type(instance_type)
    descriptor_type = get_proper_type(descriptor_type)

    if isinstance(descriptor_type, UnionType):
        # Map the access over union types
        return make_simplified_union([
            analyze_descriptor_access(instance_type,
                                      typ,
                                      builtin_type,
                                      msg,
                                      context,
                                      chk=chk) for typ in descriptor_type.items
        ])
    elif not isinstance(descriptor_type, Instance):
        return descriptor_type

    if not descriptor_type.type.has_readable_member('__get__'):
        return descriptor_type

    dunder_get = descriptor_type.type.get_method('__get__')

    if dunder_get is None:
        msg.fail(
            message_registry.DESCRIPTOR_GET_NOT_CALLABLE.format(
                descriptor_type), context)
        return AnyType(TypeOfAny.from_error)

    function = function_type(dunder_get, builtin_type('builtins.function'))
    bound_method = bind_self(function, descriptor_type)
    typ = map_instance_to_supertype(descriptor_type, dunder_get.info)
    dunder_get_type = expand_type_by_instance(bound_method, typ)

    if isinstance(instance_type, FunctionLike) and instance_type.is_type_obj():
        owner_type = instance_type.items()[0].ret_type
        instance_type = NoneType()
    elif isinstance(instance_type, TypeType):
        owner_type = instance_type.item
        instance_type = NoneType()
    else:
        owner_type = instance_type

    _, inferred_dunder_get_type = chk.expr_checker.check_call(
        dunder_get_type, [
            TempNode(instance_type, context=context),
            TempNode(TypeType.make_normalized(owner_type), context=context)
        ], [ARG_POS, ARG_POS], context)

    inferred_dunder_get_type = get_proper_type(inferred_dunder_get_type)
    if isinstance(inferred_dunder_get_type, AnyType):
        # check_call failed, and will have reported an error
        return inferred_dunder_get_type

    if not isinstance(inferred_dunder_get_type, CallableType):
        msg.fail(
            message_registry.DESCRIPTOR_GET_NOT_CALLABLE.format(
                descriptor_type), context)
        return AnyType(TypeOfAny.from_error)

    return inferred_dunder_get_type.ret_type
Esempio n. 7
0
def analyze_member_var_access(name: str, itype: Instance, info: TypeInfo,
                              mx: MemberContext) -> Type:
    """Analyse attribute access that does not target a method.

    This is logically part of analyze_member_access and the arguments are similar.

    original_type is the type of E in the expression E.var
    """
    # It was not a method. Try looking up a variable.
    v = lookup_member_var_or_accessor(info, name, mx.is_lvalue)

    vv = v
    if isinstance(vv, Decorator):
        # The associated Var node of a decorator contains the type.
        v = vv.var

    if isinstance(vv, TypeInfo):
        # If the associated variable is a TypeInfo synthesize a Var node for
        # the purposes of type checking.  This enables us to type check things
        # like accessing class attributes on an inner class.
        v = Var(name, type=type_object_type(vv, mx.builtin_type))
        v.info = info

    if isinstance(vv, TypeAlias) and isinstance(get_proper_type(vv.target),
                                                Instance):
        # Similar to the above TypeInfo case, we allow using
        # qualified type aliases in runtime context if it refers to an
        # instance type. For example:
        #     class C:
        #         A = List[int]
        #     x = C.A() <- this is OK
        typ = instance_alias_type(vv, mx.builtin_type)
        v = Var(name, type=typ)
        v.info = info

    if isinstance(v, Var):
        implicit = info[name].implicit

        # An assignment to final attribute is always an error,
        # independently of types.
        if mx.is_lvalue and not mx.chk.get_final_context():
            check_final_member(name, info, mx.msg, mx.context)

        return analyze_var(name, v, itype, info, mx, implicit=implicit)
    elif isinstance(v, FuncDef):
        assert False, "Did not expect a function"
    elif (not v
          and name not in ['__getattr__', '__setattr__', '__getattribute__']
          and not mx.is_operator):
        if not mx.is_lvalue:
            for method_name in ('__getattribute__', '__getattr__'):
                method = info.get_method(method_name)
                # __getattribute__ is defined on builtins.object and returns Any, so without
                # the guard this search will always find object.__getattribute__ and conclude
                # that the attribute exists
                if method and method.info.fullname != 'builtins.object':
                    function = function_type(
                        method, mx.builtin_type('builtins.function'))
                    bound_method = bind_self(function, mx.self_type)
                    typ = map_instance_to_supertype(itype, method.info)
                    getattr_type = get_proper_type(
                        expand_type_by_instance(bound_method, typ))
                    if isinstance(getattr_type, CallableType):
                        result = getattr_type.ret_type

                        # Call the attribute hook before returning.
                        fullname = '{}.{}'.format(method.info.fullname, name)
                        hook = mx.chk.plugin.get_attribute_hook(fullname)
                        if hook:
                            result = hook(
                                AttributeContext(
                                    get_proper_type(mx.original_type), result,
                                    mx.context, mx.chk))
                        return result
        else:
            setattr_meth = info.get_method('__setattr__')
            if setattr_meth and setattr_meth.info.fullname != 'builtins.object':
                setattr_func = function_type(
                    setattr_meth, mx.builtin_type('builtins.function'))
                bound_type = bind_self(setattr_func, mx.self_type)
                typ = map_instance_to_supertype(itype, setattr_meth.info)
                setattr_type = get_proper_type(
                    expand_type_by_instance(bound_type, typ))
                if isinstance(
                        setattr_type,
                        CallableType) and len(setattr_type.arg_types) > 0:
                    return setattr_type.arg_types[-1]

    if itype.type.fallback_to_any:
        return AnyType(TypeOfAny.special_form)

    # Could not find the member.
    if mx.is_super:
        mx.msg.undefined_in_superclass(name, mx.context)
        return AnyType(TypeOfAny.from_error)
    else:
        if mx.chk and mx.chk.should_suppress_optional_error([itype]):
            return AnyType(TypeOfAny.from_error)
        return mx.msg.has_no_attr(mx.original_type, itype, name, mx.context,
                                  mx.module_symbol_table)
Esempio n. 8
0
def analyze_class_attribute_access(itype: Instance,
                                   name: str,
                                   mx: MemberContext,
                                   override_info: Optional[TypeInfo] = None) -> Optional[Type]:
    """original_type is the type of E in the expression E.var"""
    info = itype.type
    if override_info:
        info = override_info

    node = info.get(name)
    if not node:
        if info.fallback_to_any:
            return AnyType(TypeOfAny.special_form)
        return None

    is_decorated = isinstance(node.node, Decorator)
    is_method = is_decorated or isinstance(node.node, FuncBase)
    if mx.is_lvalue:
        if is_method:
            mx.msg.cant_assign_to_method(mx.context)
        if isinstance(node.node, TypeInfo):
            mx.msg.fail(message_registry.CANNOT_ASSIGN_TO_TYPE, mx.context)

    # If a final attribute was declared on `self` in `__init__`, then it
    # can't be accessed on the class object.
    if node.implicit and isinstance(node.node, Var) and node.node.is_final:
        mx.msg.fail(message_registry.CANNOT_ACCESS_FINAL_INSTANCE_ATTR
                    .format(node.node.name()), mx.context)

    # An assignment to final attribute on class object is also always an error,
    # independently of types.
    if mx.is_lvalue and not mx.chk.get_final_context():
        check_final_member(name, info, mx.msg, mx.context)

    if info.is_enum and not (mx.is_lvalue or is_decorated or is_method):
        enum_literal = LiteralType(name, fallback=itype)
        return itype.copy_modified(last_known_value=enum_literal)

    t = node.type
    if t:
        if isinstance(t, PartialType):
            symnode = node.node
            assert isinstance(symnode, Var)
            return mx.chk.handle_partial_var_type(t, mx.is_lvalue, symnode, mx.context)

        # Find the class where method/variable was defined.
        if isinstance(node.node, Decorator):
            super_info = node.node.var.info  # type: Optional[TypeInfo]
        elif isinstance(node.node, (Var, SYMBOL_FUNCBASE_TYPES)):
            super_info = node.node.info
        else:
            super_info = None

        # Map the type to how it would look as a defining class. For example:
        #     class C(Generic[T]): ...
        #     class D(C[Tuple[T, S]]): ...
        #     D[int, str].method()
        # Here itype is D[int, str], isuper is C[Tuple[int, str]].
        if not super_info:
            isuper = None
        else:
            isuper = map_instance_to_supertype(itype, super_info)

        if isinstance(node.node, Var):
            assert isuper is not None
            # Check if original variable type has type variables. For example:
            #     class C(Generic[T]):
            #         x: T
            #     C.x  # Error, ambiguous access
            #     C[int].x  # Also an error, since C[int] is same as C at runtime
            if isinstance(t, TypeVarType) or get_type_vars(t):
                # Exception: access on Type[...], including first argument of class methods is OK.
                if not isinstance(get_proper_type(mx.original_type), TypeType):
                    mx.msg.fail(message_registry.GENERIC_INSTANCE_VAR_CLASS_ACCESS, mx.context)

            # Erase non-mapped variables, but keep mapped ones, even if there is an error.
            # In the above example this means that we infer following types:
            #     C.x -> Any
            #     C[int].x -> int
            t = erase_typevars(expand_type_by_instance(t, isuper))

        is_classmethod = ((is_decorated and cast(Decorator, node.node).func.is_class)
                          or (isinstance(node.node, FuncBase) and node.node.is_class))
        result = add_class_tvars(get_proper_type(t), itype, isuper, is_classmethod,
                                 mx.builtin_type, mx.original_type)
        if not mx.is_lvalue:
            result = analyze_descriptor_access(mx.original_type, result, mx.builtin_type,
                                               mx.msg, mx.context, chk=mx.chk)
        return result
    elif isinstance(node.node, Var):
        mx.not_ready_callback(name, mx.context)
        return AnyType(TypeOfAny.special_form)

    if isinstance(node.node, TypeVarExpr):
        mx.msg.fail(message_registry.CANNOT_USE_TYPEVAR_AS_EXPRESSION.format(
                    info.name(), name), mx.context)
        return AnyType(TypeOfAny.from_error)

    if isinstance(node.node, TypeInfo):
        return type_object_type(node.node, mx.builtin_type)

    if isinstance(node.node, MypyFile):
        # Reference to a module object.
        return mx.builtin_type('types.ModuleType')

    if (isinstance(node.node, TypeAlias) and
            isinstance(get_proper_type(node.node.target), Instance)):
        return instance_alias_type(node.node, mx.builtin_type)

    if is_decorated:
        assert isinstance(node.node, Decorator)
        if node.node.type:
            return node.node.type
        else:
            mx.not_ready_callback(name, mx.context)
            return AnyType(TypeOfAny.from_error)
    else:
        return function_type(cast(FuncBase, node.node), mx.builtin_type('builtins.function'))