Esempio n. 1
0
def test08(terminate, func=lambda x: x[0], info=False, debug=False):
    from mystic.solvers import PowellDirectionalSolver as PDS
    solver = PDS(1)
    solver.SetRandomInitialPoints()
    solver.SetEvaluationLimits(8)
    solver.Solve(func, VTR())
    if debug: verbosity(solver)
    return terminate(solver, info)
Esempio n. 2
0
def local_optimize(cost,x0,lb,ub):
  from mystic.solvers import PowellDirectionalSolver
  from mystic.termination import NormalizedChangeOverGeneration as NCOG
  from mystic.monitors import VerboseMonitor, Monitor

  maxiter = 1000
  maxfun = 1e+6
  convergence_tol = 1e-4

 #def func_unpickle(filename):
 #  """ standard pickle.load of function from a File """
 #  import dill as pickle
 #  return pickle.load(open(filename,'r'))

 #stepmon = VerboseMonitor(100)
  stepmon = Monitor()
  evalmon = Monitor()

  ndim = len(lb)

  solver = PowellDirectionalSolver(ndim)
  solver.SetInitialPoints(x0)
  solver.SetStrictRanges(min=lb,max=ub)
  solver.SetEvaluationLimits(maxiter,maxfun)
  solver.SetEvaluationMonitor(evalmon)
  solver.SetGenerationMonitor(stepmon)

  tol = convergence_tol
 #cost = func_unpickle(cost)  #XXX: regenerate cost function from file
  solver.Solve(cost, termination=NCOG(tol))

  solved_params = solver.bestSolution
  solved_energy = solver.bestEnergy
  func_evals = solver.evaluations
  return solved_params, solved_energy, func_evals
Esempio n. 3
0
def local_optimize(cost, x0, lb, ub):
    from mystic.solvers import PowellDirectionalSolver
    from mystic.termination import NormalizedChangeOverGeneration as NCOG
    from mystic.monitors import VerboseMonitor, Monitor

    maxiter = 1000
    maxfun = 1e+6
    convergence_tol = 1e-4

    #stepmon = VerboseMonitor(100)
    stepmon = Monitor()
    evalmon = Monitor()

    ndim = len(lb)

    solver = PowellDirectionalSolver(ndim)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(min=lb, max=ub)
    solver.SetEvaluationLimits(maxiter, maxfun)
    solver.SetEvaluationMonitor(evalmon)
    solver.SetGenerationMonitor(stepmon)

    tol = convergence_tol
    solver.Solve(cost, termination=NCOG(tol))

    solved_params = solver.bestSolution
    solved_energy = solver.bestEnergy
    func_evals = solver.evaluations
    return solved_params, solved_energy, func_evals
Esempio n. 4
0
 def test_PowellDirectionalSolver_CRT(self):
     from mystic.solvers import PowellDirectionalSolver
     from mystic.termination import CandidateRelativeTolerance as CRT
     self.solver = PowellDirectionalSolver(self.ND)
     self.term = CRT()
     self._run_solver(early_terminate=True)
Esempio n. 5
0
 def test_PowellDirectionalSolver_VTR(self):
     from mystic.solvers import PowellDirectionalSolver
     from mystic.termination import VTR
     self.solver = PowellDirectionalSolver(self.ND)
     self.term = VTR()
     self._run_solver()
Esempio n. 6
0
 def test_PowellDirectionalSolver_COG(self):
     from mystic.solvers import PowellDirectionalSolver
     from mystic.termination import ChangeOverGeneration as COG
     self.solver = PowellDirectionalSolver(self.ND)
     self.term = COG()
     self._run_solver()
Esempio n. 7
0
 def test_PowellDirectionalSolver_NCOG(self):  # Default for this solver
     from mystic.solvers import PowellDirectionalSolver
     from mystic.termination import NormalizedChangeOverGeneration as NCOG
     self.solver = PowellDirectionalSolver(self.ND)
     self.term = NCOG()
     self._run_solver()
Esempio n. 8
0
def test_rosenbrock():
    """Test the 2-dimensional Rosenbrock function.

Testing 2-D Rosenbrock:
Expected: x=[1., 1.] and f=0

Using DifferentialEvolutionSolver:
Solution:  [ 1.00000037  1.0000007 ]
f value:  2.29478683682e-13
Iterations:  99
Function evaluations:  3996
Time elapsed:  0.582273006439  seconds

Using DifferentialEvolutionSolver2:
Solution:  [ 0.99999999  0.99999999]
f value:  3.84824937598e-15
Iterations:  100
Function evaluations:  4040
Time elapsed:  0.577210903168  seconds

Using NelderMeadSimplexSolver:
Solution:  [ 0.99999921  1.00000171]
f value:  1.08732211477e-09
Iterations:  70
Function evaluations:  130
Time elapsed:  0.0190329551697  seconds

Using PowellDirectionalSolver:
Solution:  [ 1.  1.]
f value:  0.0
Iterations:  28
Function evaluations:  859
Time elapsed:  0.113857030869  seconds
"""

    print "Testing 2-D Rosenbrock:"
    print "Expected: x=[1., 1.] and f=0"
    from mystic.models import rosen as costfunc
    ndim = 2
    lb = [-5.]*ndim
    ub = [5.]*ndim
    x0 = [2., 3.]
    maxiter = 10000
    
    # DifferentialEvolutionSolver
    print "\nUsing DifferentialEvolutionSolver:"
    npop = 40
    from mystic.solvers import DifferentialEvolutionSolver
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.strategy import Rand1Bin
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver(ndim, npop)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = COG(1e-10)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Bin)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 2.29478683682e-13, tol=3e-3)

    # DifferentialEvolutionSolver2
    print "\nUsing DifferentialEvolutionSolver2:"
    npop = 40
    from mystic.solvers import DifferentialEvolutionSolver2
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.strategy import Rand1Bin
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver2(ndim, npop)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = COG(1e-10)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Bin)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 3.84824937598e-15, tol=3e-3)

    # NelderMeadSimplexSolver
    print "\nUsing NelderMeadSimplexSolver:"
    from mystic.solvers import NelderMeadSimplexSolver
    from mystic.termination import CandidateRelativeTolerance as CRT
    esow = Monitor()
    ssow = Monitor() 
    solver = NelderMeadSimplexSolver(ndim)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = CRT()
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 1.08732211477e-09, tol=3e-3)

    # PowellDirectionalSolver
    print "\nUsing PowellDirectionalSolver:"
    from mystic.solvers import PowellDirectionalSolver
    from mystic.termination import NormalizedChangeOverGeneration as NCOG
    esow = Monitor()
    ssow = Monitor() 
    solver = PowellDirectionalSolver(ndim)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = NCOG(1e-10)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 0.0, tol=3e-3)
Esempio n. 9
0
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE

from mystic.solvers import DifferentialEvolutionSolver
from mystic.solvers import NelderMeadSimplexSolver, PowellDirectionalSolver
from mystic.termination import VTR, ChangeOverGeneration, When, Or
from mystic.models import rosen
from mystic.solvers import LoadSolver
import os
import sys

is_pypy = hasattr(sys, 'pypy_version_info')
if is_pypy:
    print('Skipping: test_solver_sanity.py')
    exit()

solver = PowellDirectionalSolver(3)
solver.SetRandomInitialPoints([0., 0., 0.], [10., 10., 10.])
term = VTR()
solver.Solve(rosen, term)
x = solver.bestSolution
y = solver.bestEnergy
assert solver._state == None
assert LoadSolver(solver._state) == None

solver = PowellDirectionalSolver(3)
solver.SetRandomInitialPoints([0., 0., 0.], [10., 10., 10.])
term = VTR()
tmpfile = 'mysolver.pkl'
solver.SetSaveFrequency(10, tmpfile)
solver.Solve(rosen, term)
x = solver.bestSolution
    # min = [-0.999, -0.999, -0.999]
    # max = [200.001, 100.001, numpy.inf]
    #  min = [-0.999, -0.999, 0.999]
    #  max = [2.001, 1.001, 1.001]
    print "Powell Direction Set Method"
    print "==========================="
    start = time.time()
    from mystic.monitors import Monitor, VerboseMonitor
    stepmon = VerboseMonitor(1, 1)
    #stepmon = Monitor() #VerboseMonitor(10)
    from mystic.termination import NormalizedChangeOverGeneration as NCOG

    #from mystic._scipyoptimize import fmin_powell
    from mystic.solvers import fmin_powell, PowellDirectionalSolver
    #print fmin_powell(rosen,x0,retall=0,full_output=0)#,maxiter=14)
    solver = PowellDirectionalSolver(len(x0))
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(min, max)
    #solver.SetEvaluationLimits(generations=13)
    solver.SetGenerationMonitor(stepmon)
    solver.SetConstraints(constrain)
    solver.enable_signal_handler()
    solver.Solve(rosen, NCOG(tolerance=1e-4), disp=1)
    print solver.bestSolution
    #print "Current function value: %s" % solver.bestEnergy
    #print "Iterations: %s" % solver.generations
    #print "Function evaluations: %s" % solver.evaluations

    times.append(time.time() - start)
    algor.append("Powell's Method\t")
Esempio n. 11
0
  # min = [-0.999, -0.999, -0.999]
  # max = [200.001, 100.001, numpy.inf]
 #  min = [-0.999, -0.999, 0.999]
 #  max = [2.001, 1.001, 1.001]
    print "Powell Direction Set Method"
    print "==========================="
    start = time.time()
    from mystic.monitors import Monitor, VerboseMonitor
    stepmon = VerboseMonitor(1,1)
   #stepmon = Monitor() #VerboseMonitor(10)
    from mystic.termination import NormalizedChangeOverGeneration as NCOG

   #from mystic._scipyoptimize import fmin_powell
    from mystic.solvers import fmin_powell, PowellDirectionalSolver
   #print fmin_powell(rosen,x0,retall=0,full_output=0)#,maxiter=14)
    solver = PowellDirectionalSolver(len(x0))
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(min,max)
   #solver.SetEvaluationLimits(generations=13)
    solver.SetGenerationMonitor(stepmon)
    solver.SetConstraints(constrain)
    solver.enable_signal_handler()
    solver.Solve(rosen, NCOG(tolerance=1e-4), disp=1)
    print solver.bestSolution
   #print "Current function value: %s" % solver.bestEnergy
   #print "Iterations: %s" % solver.generations
   #print "Function evaluations: %s" % solver.evaluations

    times.append(time.time() - start)
    algor.append("Powell's Method\t")
Esempio n. 12
0
def solve(measurements, method):
    """Find reasonable marker positions based on a set of measurements."""
    print(method)

    marker_measurements = measurements
    if np.size(measurements) == 21:
        marker_measurements = measurements[(21 - 15) :]
    # m0 has known positions (0, 0, 0)
    # m1 has unknown x-position
    # All others have unknown xy-positions
    num_params = 0 + 1 + 2 + 2 + 2 + 2

    bound = 400.0
    lower_bound = [
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        -bound,
        0.0,
        -bound,
        0.0,
    ]
    upper_bound = [
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
    ]

    def costx_no_nozzle(posvec):
        """Identical to cost_no_nozzle, except the shape of inputs"""
        positions = posvec2matrix_no_nozzle(posvec)
        return cost_no_nozzle(positions, marker_measurements)

    guess_0 = [0.0] * num_params

    intermediate_cost = 0.0
    intermediate_solution = []
    if method == "SLSQP":
        sol = scipy.optimize.minimize(
            costx_no_nozzle,
            guess_0,
            method="SLSQP",
            bounds=list(zip(lower_bound, upper_bound)),
            tol=1e-20,
            options={"disp": True, "ftol": 1e-40, "eps": 1e-10, "maxiter": 500},
        )
        intermediate_cost = sol.fun
        intermediate_solution = sol.x
    elif method == "L-BFGS-B":
        sol = scipy.optimize.minimize(
            costx_no_nozzle,
            guess_0,
            method="L-BFGS-B",
            bounds=list(zip(lower_bound, upper_bound)),
            options={"disp": True, "ftol": 1e-12, "gtol": 1e-12, "maxiter": 50000, "maxfun": 1000000},
        )
        intermediate_cost = sol.fun
        intermediate_solution = sol.x
    elif method == "PowellDirectionalSolver":
        from mystic.solvers import PowellDirectionalSolver
        from mystic.termination import Or, CollapseAt, CollapseAs
        from mystic.termination import ChangeOverGeneration as COG
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, And, Or

        solver = PowellDirectionalSolver(num_params)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetTermination(Or(VTR(1e-25), COG(1e-10, 20)))
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(VerboseMonitor(5))
        solver.Solve(costx_no_nozzle)
        intermediate_cost = solver.bestEnergy
        intermediate_solution = solver.bestSolution
    elif method == "differentialEvolutionSolver":
        from mystic.solvers import DifferentialEvolutionSolver2
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, ChangeOverGeneration, And, Or
        from mystic.strategy import Best1Exp, Best1Bin

        stop = Or(VTR(1e-18), ChangeOverGeneration(1e-9, 500))
        npop = 3
        stepmon = VerboseMonitor(100)
        solver = DifferentialEvolutionSolver2(num_params, npop)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(stepmon)
        solver.Solve(
            costx_no_nozzle,
            termination=stop,
            strategy=Best1Bin,
        )
        intermediate_cost = solver.bestEnergy
        intermediate_solution = solver.bestSolution
    else:
        print("Method %s is not supported!" % method)
        sys.exit(1)
    print("Best intermediate cost: ", intermediate_cost)
    print("Best intermediate positions: \n%s" % posvec2matrix_no_nozzle(intermediate_solution))
    if np.size(measurements) == 15:
        print("Got only 15 samples, so will not try to find nozzle position\n")
        return
    nozzle_measurements = measurements[: (21 - 15)]
    # Look for nozzle's xyz-offset relative to marker 0
    num_params = 3
    lower_bound = [
        0.0,
        0.0,
        -bound,
    ]
    upper_bound = [bound, bound, 0.0]

    def costx_nozzle(posvec):
        """Identical to cost_nozzle, except the shape of inputs"""
        positions = posvec2matrix_nozzle(posvec, intermediate_solution)
        return cost_nozzle(positions, measurements)

    guess_0 = [0.0, 0.0, 0.0]
    final_cost = 0.0
    final_solution = []
    if method == "SLSQP":
        sol = scipy.optimize.minimize(
            costx_nozzle,
            guess_0,
            method="SLSQP",
            bounds=list(zip(lower_bound, upper_bound)),
            tol=1e-20,
            options={"disp": True, "ftol": 1e-40, "eps": 1e-10, "maxiter": 500},
        )
        final_cost = sol.fun
        final_solution = sol.x
    elif method == "L-BFGS-B":
        sol = scipy.optimize.minimize(
            costx_nozzle,
            guess_0,
            method="L-BFGS-B",
            bounds=list(zip(lower_bound, upper_bound)),
            options={"disp": True, "ftol": 1e-12, "gtol": 1e-12, "maxiter": 50000, "maxfun": 1000000},
        )
        final_cost = sol.fun
        final_solution = sol.x
    elif method == "PowellDirectionalSolver":
        from mystic.solvers import PowellDirectionalSolver
        from mystic.termination import Or, CollapseAt, CollapseAs
        from mystic.termination import ChangeOverGeneration as COG
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, And, Or

        solver = PowellDirectionalSolver(num_params)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetTermination(Or(VTR(1e-25), COG(1e-10, 20)))
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(VerboseMonitor(5))
        solver.Solve(costx_nozzle)
        final_cost = solver.bestEnergy
        final_solution = solver.bestSolution
    elif method == "differentialEvolutionSolver":
        from mystic.solvers import DifferentialEvolutionSolver2
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, ChangeOverGeneration, And, Or
        from mystic.strategy import Best1Exp, Best1Bin

        stop = Or(VTR(1e-18), ChangeOverGeneration(1e-9, 500))
        npop = 3
        stepmon = VerboseMonitor(100)
        solver = DifferentialEvolutionSolver2(num_params, npop)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(stepmon)
        solver.Solve(
            costx_nozzle,
            termination=stop,
            strategy=Best1Bin,
        )
        final_cost = solver.bestEnergy
        final_solution = solver.bestSolution

    print("Best final cost: ", final_cost)
    print("Best final positions:")
    final = posvec2matrix_nozzle(final_solution, intermediate_solution)[1:]
    for num in range(0, 6):
        print(
            "{0: 8.3f} {1: 8.3f} {2: 8.3f} <!-- Marker {3} -->".format(final[num][0], final[num][1], final[num][2], num)
        )
def solve(samp, xyz_of_samp, _cost, method, cx_is_positive=False):
    """Find reasonable positions and anchors given a set of samples.
    """

    u = np.shape(samp)[0]
    ux = np.shape(xyz_of_samp)[0]
    number_of_params_pos = 3*(u - ux)

    def costx(posvec, anchvec):
        """Identical to cost, except the shape of inputs and capture of samp, xyz_of_samp, ux, and u

        Parameters
        ----------
        x : [A_ay A_az A_bx A_by A_bz A_cx A_cy A_cz A_dz
               x1   y1   z1   x2   y2   z2   ...  xu   yu   zu
        """
        anchors = anchorsvec2matrix(anchvec)
        pos = np.zeros((u, 3))
        if(np.size(xyz_of_samp) != 0):
            pos[0:ux] = xyz_of_samp
        pos[ux:] = np.reshape(posvec, (u-ux,3))
        return _cost(anchors, pos, samp)

    l_long = 5000.0
    l_short = 1700.0
    data_z_min = -20.0
    # Limits of anchor positions:
    #     |ANCHOR_XY|    < 4000
    #      ANCHOR_B_X    > 0
    #      ANCHOR_C_X    < 0
    #     |ANCHOR_ABC_Z| < 1700
    # 0 <  ANCHOR_D_Z    < 4000
    # Limits of data collection volume:
    #         |x| < 1700
    #         |y| < 1700
    # -20.0 <  z  < 3400.0
    # Define bounds
    lb = [      -l_long, # A_ay > -4000.0
               -l_short, # A_az > -1700.0
                    0.0, # A_bx > 0
                    0.0, # A_by > 0
               -l_short, # A_bz > -1700.0
                -l_long, # A_cx > -4000
                    0.0, # A_cy > 0
               -l_short, # A_cz > -1700.0
                    0.0, # A_dz > 0
          ] + [-l_short, -l_short, data_z_min]*(u-ux)
    ub = [          0.0, # A_ay < 0
                l_short, # A_az < 1700
                 l_long, # A_bx < 4000
                 l_long, # A_by < 4000
                l_short, # A_bz < 1700
                    0.0, # A_cx < 0
                 l_long, # A_cy < 4000.0
                l_short, # A_cz < 1700
                 l_long, # A_dz < 4000.0
          ] + [l_short, l_short, 2*l_short]*(u-ux)

    # If the user has input xyz data, then signs should be ok anyways
    if(ux > 2):
        lb[A_bx] = -l_long

    # It would work to just swap the signs of bx and cx after the optimization
    # But there are fewer assumptions involved in setting correct bounds from the start instead
    if(cx_is_positive):
        tmp = lb[A_bx]
        lb[A_bx] = lb[A_cx]
        lb[A_cx] = tmp
        tmp = ub[A_bx]
        ub[A_bx] = ub[A_cx]
        ub[A_cx] = tmp

    pos_est0 = np.zeros((u-ux,3)) # The positions we need to estimate
    anchors_est = np.array([[0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0]])
    x_guess0 = list(anchorsmatrix2vec(anchors_est)) + list(posmatrix2vec(pos_est0))

    if(method == 'PowellDirectionalSolver'):
        from mystic.termination import ChangeOverGeneration, NormalizedChangeOverGeneration, VTR
        from mystic.solvers import PowellDirectionalSolver
        from mystic.termination import Or, CollapseAt, CollapseAs
        from mystic.termination import ChangeOverGeneration as COG
        target = 1.0
        term = Or((COG(generations=100), CollapseAt(target, generations=100)))
        # Solver 0
        solver0 = PowellDirectionalSolver(number_of_params_pos+params_anch)
        solver0.SetEvaluationLimits(evaluations=3200000, generations=10000)
        solver0.SetTermination(term)
        solver0.SetInitialPoints(x_guess0)
        solver0.SetStrictRanges(lb, ub)
        solver0.Solve(lambda x: costx(x[params_anch:], x[0:params_anch]))
        x_guess0 = solver0.bestSolution
        # PowellDirectional sometimes finds new ways if kickstarted anew
        for i in range(1,20):
            solver0 = PowellDirectionalSolver(number_of_params_pos+params_anch)
            solver0.SetInitialPoints(x_guess0)
            solver0.SetStrictRanges(lb, ub)
            solver0.Solve(lambda x: costx(x[params_anch:], x[0:params_anch]))
            x_guess0 = solver0.bestSolution
        return x_guess0
    elif(method == 'SLSQP'):
        # 'SLSQP' is crazy fast and lands on 0.0000 error
        x_guess0 = scipy.optimize.minimize(lambda x: costx(x[params_anch:], x[0:params_anch]), x_guess0, method=method, bounds=list(zip(lb,ub)),
                options={'disp':True,'ftol':1e-20, 'maxiter':150000})
        return x_guess0.x
    elif(method == 'L-BFGS-B'):
        ## 'L-BFGS-B' Is crazy fast but doesn't quite land at 0.0000 error
        x_guess0 = scipy.optimize.minimize(lambda x: costx(x[params_anch:], x[0:params_anch]), x_guess0, method=method, bounds=list(zip(lb,ub)),
                options={'ftol':1e-12, 'maxiter':150000})
        return x_guess0.x
    else:
        print("Method %s is not supported!" % method)
        sys.exit(1)
params = cP(signedBinaryCS, binaryTFA)
dim = len(params)
(lb, ub) = createBounds(params)

proc = process(signedBinaryCS, binaryTFA, simulatedExpressionMatrix, params)
"""assigns g to be one of the 3 processDataForOptimizing functions so that Mystic optimizes on the correct one
Only used for generating different simulated data"""
if ide < 55:
    g = proc.processDataForOptimizing
elif ide > 54 and ide < 109:
    g = proc.processDataForOptimizingUpdate1
else:
    g = proc.processDataForOptimizingBL

my_solver = PowellDirectionalSolver(
    dim
)  # initializes the PowellDirectionalSolver with the number of parameters
my_solver.SetStrictRanges(
    lb, ub
)  # sets the range that the solutions must be within for PowellDirectionalSolver
start = time.time()
solver = LatticeSolver(
    dim, nbins=2
)  # initalizes the LatticeSolver with the number of parameters and the number of bins for starting points
solver.SetStrictRanges(
    lb, ub
)  # sets the range that the solutions must be within for the LatticeSolver
solver.SetNestedSolver(
    my_solver)  # nests the PowellDirectionalSolver within the LatticeSolver
solver.SetMapper(Pool(nodes=100).map)
solver.Solve(g)  # LatticeSolver optimizes on the function g