fuse = Dense(64, activation='relu')(fuse) fuse = Dropout(0.5)(fuse) fuse = Dense(16, activation='relu')(fuse) fuse = Dropout(0.5)(fuse) fuse = Dense(1, activation='sigmoid')(fuse) model = Model(inputs=inp, outputs=fuse) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': SGD(lr=0.001, momentum=0.9), 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 30, 'epochs': 20, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('ens2'), } model.fit(**fit_arg)
model.add(LSTM(256, return_sequences=True)) model.add(LSTM(64)) model.add(BatchNormalization()) model.add(Dense(16)) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/win_train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/win_val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('lstm'), } model.fit(**fit_arg)
x = BatchNormalization()(inp) x = InceptionV3(weights='imagenet', include_top=False, pooling='max')(x) x = Dense(16, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=inp, outputs=x) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('inc'), } model.fit(**fit_arg)
x = BatchNormalization()(inp) x = VGG19(weights='imagenet', include_top=False, pooling='max')(x) x = Dense(16, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=inp, outputs=x) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('vgg19'), } model.fit(**fit_arg)
model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/win_train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/win_val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 50, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('conv3d'), } model.fit(**fit_arg)
include_top=False, pooling='max')(x) x = Dense(16, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=inp, outputs=x) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('mb'), } model.fit(**fit_arg)
model = Model(inputs=[inp, p1_inp, p2_inp], outputs=fuse) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': SGD(lr=0.001, momentum=0.9), 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] players_train = np.load('npz/players_train.npz') p1_train, p2_train = players_train['p1'], players_train['p2'] players_val = np.load('npz/players_val.npz') p1_val, p2_val = players_val['p1'], players_val['p2'] fit_arg = { 'x': [x_train, p1_train, p2_train], 'y': y_train, 'batch_size': 30, 'epochs': 50, 'shuffle': True, 'validation_data': ([x_val, p1_val, p2_val], y_val), 'callbacks': get_callbacks('players_' + args.model_name), } model.fit(**fit_arg)
model.add(Dense(2, activation='softmax')) model.summary() model_arg = { 'loss': 'categorical_crossentropy', 'optimizer': 'sgd', 'metrics': ['accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] from keras.utils import to_categorical y_train = to_categorical(y_train, num_classes=2) y_val = to_categorical(y_val, num_classes=2) fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('gc', acc='val_acc'), } model.fit(**fit_arg)
model.add(BatchNormalization(input_shape=(224, 224, 3))) for layer in base.layers: model.add(layer) model.add(Dense(16, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(2, activation='softmax')) model.summary() model_arg = {'loss': 'mse', 'optimizer': 'sgd', 'metrics': ['accuracy']} model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] y_train = to_categorical(y_train, num_classes=2) y_val = to_categorical(y_val, num_classes=2) fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('temp'), } model.fit(**fit_arg)
x = BatchNormalization()(inp) x = ResNet50(weights='imagenet', include_top=False, pooling='max')(x) x = Dense(16, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=inp, outputs=x) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() train = np.load('npz/train.npz') x_train, y_train = train['xs'], train['ys'] val = np.load('npz/val.npz') x_val, y_val = val['xs'], val['ys'] fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': 40, 'epochs': 50, 'shuffle': True, 'validation_data': (x_val, y_val), 'callbacks': get_callbacks('resnet'), } model.fit(**fit_arg)