def get_c_ore(self, in_can_info):
        # print "input", in_can_info
        # print in_can_info[0].pos
        t_c_order = []
        for ci in range(len(in_can_info)):
            tm_tar_pos = in_can_info[ci].pos
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            tm_obs_pos.append(self.tar_pos)
            obs_r = []
            for i in tm_obs_pos:
                obs_r.append(0.035)
            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            while 1:
                tm_tar_pos = in_can_info[ci].pos
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                tm_obs_pos.append(self.tar_pos)
                obs_r = []
                for i in tm_obs_pos:
                    obs_r.append(0.035)
                for i in ore_order:
                    if i != 'T':
                        tm_obs_pos[i] = [4.0, 0.0]

                tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
                # print "after removing:", tmp_order
                if tmp_order[0] != 'T':
                    # print "not ok"
                    t_c_order.append([])
                    break
                    # if tmp_order[0] == -1:
                    #     print "no path"
                    #     t_c_order.append([])
                    #     break
                    # if len(ore_order) > len(self.obs_pos):
                    #     print "no path"
                    #     t_c_order.append([])
                    #     break
                    # print "tricky environment for c_ore so extend", ore_order
                    # ore_order.pop()
                    # print "delete target", ore_order
                    # ore_order.extend(tmp_order)
                    # print "to", ore_order
                else:
                    if tmp_order[0] == 'T':
                        # print "ok", ore_order
                        ore_order.pop()

                        if len(tm_obs_pos) in ore_order:
                            # print "\n\nThere is target!! warning!!!\n\n"
                            t_c_order.append([])
                        else:
                            t_c_order.append(ore_order)
                        break
        return t_c_order
Esempio n. 2
0
    def update_env(self, in_obs_pos, in_obs_grid):
        self.d_max = 2.0
        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_tar_ori = [0.0, 0.0, 0.0]
        tm_obs_pos = copy.deepcopy(in_obs_pos)
        # tm_obs_pos.extend(self.obs_wall)
        ob = len(tm_obs_pos)
        tm_obs_ori = []
        for i in range(ob):
            tm_obs_ori.append([0.0, 0.0, 0.0])

        self.ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
        # self.ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)

        # check if the obstacles are rearranged then target is reachable
        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_obs_pos = copy.deepcopy(self.obs_pos)
        tm_ore_pos = []
        for i in self.ore_order:
            if i != 'T':
                tm_obs_pos.remove(self.obs_pos[i])
        # tm_obs_pos.extend(self.obs_wall)
        ob = len(tm_obs_pos)
        tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
        # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
        # print "after removing:", tmp_order
        # if tmp_order[0] == 'T':
            # print "environment setting OK"
        self.ore_grid = []
        self.ore_pos = []
        self.ore_r = []

        self.obs_re_grid = copy.deepcopy(in_obs_grid)
        self.obs_re_pos = copy.deepcopy(in_obs_pos)
        self.obs_re_r = copy.deepcopy(self.obs_r)

        for i in self.ore_order:
            if i != 'T':
                self.ore_grid.append(self.obs_re_grid[i])
                self.ore_pos.append(self.obs_re_pos[i])
                self.ore_r.append(self.obs_re_r[i])
        for i in self.ore_order:
            if i != 'T':
                self.obs_re_grid.remove(self.obs_grid[i])
                self.obs_re_pos.remove(self.obs_pos[i])
                self.obs_re_r.remove(self.obs_r[i])

        self.grid_ori = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_r)):
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
        self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

        self.grid_del = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_re_r)):
            self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
        self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
        self.ore_order.pop()
    def set_env(self, obstacle_name, obstacle_info, target_name, target_info):
        self.obs_r = []
        self.obs_pos = []
        self.obs_ori = []
        self.obs_grid = []
        self.tar_pos = [round(target_info[0][0][2], 2), round(-target_info[0][0][1], 2)]
        self.tar_grid = [int(round((target_info[0][0][2] - self.ws_zero[0]) * 100)), int(round((-target_info[0][0][1] - self.ws_zero[1]) * 100))]
        self.tar_r = round(target_info[0][2][1] * 0.5, 2)
        print "number of obstacles", len(obstacle_info)
        for i in range(len(obstacle_info)):
            self.obs_pos.append([round(obstacle_info[i][0][2], 2), round(-obstacle_info[i][0][1], 2)])
            self.obs_grid.append([int(round((obstacle_info[i][0][2] - self.ws_zero[0])*100)), int(round((-obstacle_info[i][0][1] - self.ws_zero[1])*100))])
            self.obs_r.append(round(obstacle_info[i][2][1] * 0.5, 2))
            self.obs_ori.append([0.0, 0.0, 0.0])

        self.object_z = obstacle_info[0][0][0]
        print "obstacles", self.obs_pos
        print "target_vfh", self.tar_pos
        print "target_rviz", target_info[0]
        print "robot pos", self.rob_pos

        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_obs_pos = copy.deepcopy(self.obs_pos)

        self.ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])

        self.ore_grid = []
        self.ore_pos = []
        self.ore_r = []

        self.obs_re_grid = copy.deepcopy(self.obs_grid)
        self.obs_re_pos = copy.deepcopy(self.obs_pos)
        self.obs_re_r = copy.deepcopy(self.obs_r)

        for i in self.ore_order:
            if i != 'T':
                self.ore_grid.append(self.obs_re_grid[i])
                self.ore_pos.append(self.obs_re_pos[i])
                self.ore_r.append(self.obs_re_r[i])
        for i in self.ore_order:
            if i != 'T':
                self.obs_re_grid.remove(self.obs_grid[i])
                self.obs_re_pos.remove(self.obs_pos[i])
                self.obs_re_r.remove(self.obs_r[i])

        self.grid_ori = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_r)):
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
        self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

        self.grid_del = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_re_r)):
            self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
        self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
        self.ore_order.pop()
Esempio n. 4
0
    def get_c_ore(self, in_can_info):
        # print "input", in_can_info
        # print in_can_info[0].pos
        t_c_order = []
        for ci in range(len(in_can_info)):
            tm_tar_pos = in_can_info[ci].pos
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            tm_obs_pos.append(self.tar_pos)
            # tm_obs_pos.extend(self.obs_wall)
            tm_ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(tm_ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            # ore_order = TM_noplot(tm_ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
            ore_order.pop()
            t_c_order.append(ore_order)
        return t_c_order
    def get_c_ore(self, in_can_info):
        # print "input", in_can_info
        # print in_can_info[0].pos
        t_c_order = []
        for ci in range(len(in_can_info)):
            tm_tar_pos = in_can_info[ci].pos
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            tm_obs_pos.append(self.tar_pos)
            # tm_obs_pos.extend(self.obs_wall)
            tm_ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(tm_ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            ore_order = NG_ore(
                tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos,
                self.ws_zero,
                [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            # ore_order = TM_noplot(tm_ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
            while 1:
                tm_tar_pos = in_can_info[ci].pos
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                tm_obs_pos.append(self.tar_pos)
                for i in ore_order:
                    if i != 'T':
                        tm_obs_pos[i] = [3.0, 3.0]

                tmp_order = NG_ore(
                    tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r,
                    self.rob_pos, self.ws_zero,
                    [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
                # print "after removing:", tmp_order
                if tmp_order[0] != 'T':
                    print "tricky environment for c_ore so extend", ore_order
                    ore_order.pop()
                    print "delete target", ore_order
                    ore_order.extend(tmp_order)
                    print "to", ore_order
                else:
                    if tmp_order[0] == 'T':
                        print "ok", ore_order
                        break
            ore_order.pop()

            if len(tm_obs_pos) in ore_order:
                print "\n\nThere is target!! warning!!!\n\n"
                t_c_order = []
            else:
                t_c_order.append(ore_order)
        return t_c_order
Esempio n. 6
0
    def get_can_info(self, in_can_info, in_obs_pos, in_obs_re_pos, in_ore_order, in_tar_pos):
        tmp_can_info = []
        for i in range(len(in_ore_order)):
            tmp_can_info.append(copy.deepcopy(in_can_info))
        tmp_obs_pos = copy.deepcopy(in_obs_pos)
        tmp_obs_re_pos = copy.deepcopy(in_obs_re_pos)
        tmp_ore_order = copy.deepcopy(in_ore_order)
        tmp_tar_pos = copy.deepcopy(in_tar_pos)
        # print("\nCheck if candidate blocks the target")
        for step_i in range(len(tmp_ore_order)):
            for i in range(len(tmp_can_info[step_i])):
                vfh_obs_pos = copy.deepcopy(tmp_obs_re_pos)
                vfh_obs_pos.append(tmp_can_info[step_i][i].pos)
                vfh_obs_pos.extend(self.obs_wall)
                vfh_tar_pos = copy.deepcopy(tmp_tar_pos)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                # vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.obs_r, self.tar_r)
                if vfh[3] == 0:
                    tmp_can_info[step_i][i].BT = 1  # BT == 1 : The candidate blocks the target.
                else:                       # BT == 0 : The candidate does not block the target.
                    tmp_can_info[step_i][i].BT = 0

            # print("\nCheck if the candidate is accessible.")
            for i in range(len(tmp_can_info[step_i])):
                vfh_tar_pos = copy.deepcopy(tmp_can_info[step_i][i].pos)
                vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                for si in range(step_i+1):
                    # print "\nstep", si, "\nbefore", vfh_obs_pos
                    vfh_obs_pos.remove(tmp_obs_pos[tmp_ore_order[si]])
                    # print "after", vfh_obs_pos
                vfh_obs_pos.append(tmp_tar_pos)
                vfh_obs_pos.extend(self.obs_wall)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:                      # A == 1 : The candidate is accessible.
                    tmp_can_info[step_i][i].A = 0    # A == 0 : The candidate is not accessible.
                else:                   #
                    tmp_can_info[step_i][i].A = 1

            # print("\nCheck the candidate ORC.")
            for i in range(len(tmp_can_info[step_i])):
                vfh_tar_pos = copy.deepcopy(tmp_can_info[step_i][i].pos)
                vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                vfh_obs_pos.append(tmp_tar_pos)
                vfh_obs_pos.extend(self.obs_wall)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:              # A == 1 : The candidate is accessible.
                    tmp_can_info[step_i][i].A = 0    # A == 0 : The candidate is not accessible.
                    tm_tar_pos = copy.deepcopy(vfh_tar_pos)
                    tm_tar_ori = [0.0, 0.0, 0.0]
                    tm_obs_pos = copy.deepcopy(tmp_obs_pos)
                    # tm_obs_pos.extend(self.obs_wall)
                    ob = len(tm_obs_pos)
                    tm_obs_ori = []
                    for obs_ori_i in range(ob):
                        tm_obs_ori.append([0.0, 0.0, 0.0])

                    ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                    # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)
                    ore_order.pop()  # The last order is always the target so we need to pop the last element.
                    tmp_can_info[step_i][i].ORC = ore_order
                else:                   #
                    tmp_can_info[step_i][i].A = 1

        return tmp_can_info
Esempio n. 7
0
    def get_env_case1(self):
        while 1:
            obs_r = [0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035]
            tar_r = 0.035
            min_ore = 2
            self.obs_grid = []
            grid_tmp = copy.deepcopy(self.grid_act)
            self.obs_r = obs_r
            self.tar_r = tar_r

            self.obs_grid = [[10, 70], [10, 50], [10, 10],
                             [20, 70], [20, 50], [19, 31], [24, 25], [20, 10]]
            self.tar_grid = [30, 30]

            # self.grid_ori = copy.deepcopy(self.grid_act)
            # for i in range(len(self.obs_r)):
            #     print "obs", i, round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2)
            #     self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
            # self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
            # break
            # for ri in self.obs_r:
            #     grid_tmp, obs_center_tmp = CUF.place_circle_object_ig(grid_tmp, ri, 2)
            #     self.obs_grid.append(obs_center_tmp)
            # grid_tmp, tar_tmp = CUF.place_circle_object_ig(grid_tmp, self.tar_r, 4)
            # self.tar_grid = copy.deepcopy(tar_tmp)

            self.obs_pos = []
            for i in self.obs_grid:
                xi, yi = i
                self.obs_pos.append([round(xi * self.GRID_SIZE + self.ws_zero[0], 2), round(yi * self.GRID_SIZE + self.ws_zero[1], 2)])
            self.tar_pos = [round(self.tar_grid[0] * self.GRID_SIZE + self.ws_zero[0], 2), round(self.tar_grid[1] * self.GRID_SIZE + self.ws_zero[1], 2)]  # target object!

            self.d_max = 2.0
            tm_tar_pos = copy.deepcopy(self.tar_pos)
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            # tm_obs_pos.extend(self.obs_wall)
            ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)
            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            if len(ore_order) > min_ore:
                # print"environment setting OK"
                # print"target", self.tar_pos
                # print"obstacles", self.obs_pos
                # print"remove", ore_order, "th obstacles"
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                # tm_obs_pos.extend(self.obs_wall)
                ob = len(tm_obs_pos)
                # self.ore_order = ore_order
                self.ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)

                # check if the obstacles are rearranged then target is reachable
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                tm_ore_pos = []
                for i in self.ore_order:
                    if i != 'T':
                        tm_ore_pos.append(self.obs_pos[i])
                for i in self.ore_order:
                    if i != 'T':
                        tm_obs_pos.remove(self.obs_pos[i])
                # tm_obs_pos.extend(self.obs_wall)
                ob = len(tm_obs_pos)

                # tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)
                if len(tmp_order) == 1:
                    print"environment setting OK"
                    break
        '''
        # with out additional rearrangement
        '''
        if len(self.ore_order) > min_ore:
            self.ore_grid = []
            self.ore_pos = []
            self.ore_r = []

            self.obs_re_grid = copy.deepcopy(self.obs_grid)
            self.obs_re_pos = copy.deepcopy(self.obs_pos)
            self.obs_re_r = copy.deepcopy(self.obs_r)

            for i in self.ore_order:
                if i != 'T':
                    self.ore_grid.append(self.obs_re_grid[i])
                    self.ore_pos.append(self.obs_re_pos[i])
                    self.ore_r.append(self.obs_re_r[i])
            for i in self.ore_order:
                if i != 'T':
                    self.obs_re_grid.remove(self.obs_grid[i])
                    self.obs_re_pos.remove(self.obs_pos[i])
                    self.obs_re_r.remove(self.obs_r[i])

            self.grid_ori = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_r)):
                self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

            self.grid_del = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_re_r)):
                self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
            self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
            self.ore_order.pop()
Esempio n. 8
0
class EnvInfo:

    def __init__(self, rob_pos, ws_width, ws_depth, ws_cen, grid_size, wall_r):
        self.rob_pos = rob_pos
        self.GRID_SIZE = grid_size
        self.ws_w = ws_width
        self.ws_d = ws_depth
        self.ws_cen = ws_cen
        self.ws_zero = [round(self.ws_cen[0] - ws_width * self.GRID_SIZE * 0.5, 2), round(self.ws_cen[1] - ws_depth * self.GRID_SIZE * 0.5, 2)]
        self.obs_wall = self.get_obs_wall(OBJ_R=wall_r)

        self.order_error_flag = 1
        self.d_max = 2.0
        self.eta = 45

        grid_act = np.zeros([ws_width, ws_depth])
        self.grid_act = CUF.mark_edge_grid(grid_act)

    def get_env(self, obs_r, tar_r, min_ore):
        while 1:
            self.obs_grid = []
            grid_tmp = copy.deepcopy(self.grid_act)
            self.obs_r = obs_r
            self.tar_r = tar_r
            for ri in self.obs_r:
                grid_tmp, obs_center_tmp = CUF.place_circle_object_ig(grid_tmp, ri, 2)
                self.obs_grid.append(obs_center_tmp)
            grid_tmp, tar_tmp = CUF.place_circle_object_ig(grid_tmp, self.tar_r, 4)
            self.tar_grid = copy.deepcopy(tar_tmp)

            self.obs_pos = []
            for i in self.obs_grid:
                xi, yi = i
                self.obs_pos.append([round(xi * self.GRID_SIZE + self.ws_zero[0], 2), round(yi * self.GRID_SIZE + self.ws_zero[1], 2)])
            self.tar_pos = [round(self.tar_grid[0] * self.GRID_SIZE + self.ws_zero[0], 2), round(self.tar_grid[1] * self.GRID_SIZE + self.ws_zero[1], 2)]  # target object!

            self.d_max = 2.0
            tm_tar_pos = copy.deepcopy(self.tar_pos)
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            # tm_obs_pos.extend(self.obs_wall)
            ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)
            # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)
            # TM_noplot()
            if len(ore_order) > min_ore:
                # print"before rearrangemet: ", ore_order
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                # tm_obs_pos.extend(self.obs_wall)
                # ob = len(tm_obs_pos)
                self.ore_order = ore_order
                # self.ore_order = TM_plot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)

                # check if the obstacles are rearranged then target is reachable
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                tm_ore_pos = []
                for i in self.ore_order:
                    if i != 'T':
                        tm_obs_pos.remove(self.obs_pos[i])
                # tm_obs_pos.extend(self.obs_wall)
                ob = len(tm_obs_pos)
                tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
                # print "after removing:", tmp_order
                if tmp_order[0] == 'T':
                    # print"environment setting OK"
                    break
            # else:
                # print "SHORT...min:", min_ore, "ours:", len(ore_order)
        '''
        with out additional rearrangement
        '''
        if len(self.ore_order) > min_ore:
            self.ore_grid = []
            self.ore_pos = []
            self.ore_r = []

            self.obs_re_grid = copy.deepcopy(self.obs_grid)
            self.obs_re_pos = copy.deepcopy(self.obs_pos)
            self.obs_re_r = copy.deepcopy(self.obs_r)

            for i in self.ore_order:
                if i != 'T':
                    self.ore_grid.append(self.obs_re_grid[i])
                    self.ore_pos.append(self.obs_re_pos[i])
                    self.ore_r.append(self.obs_re_r[i])
            for i in self.ore_order:
                if i != 'T':
                    self.obs_re_grid.remove(self.obs_grid[i])
                    self.obs_re_pos.remove(self.obs_pos[i])
                    self.obs_re_r.remove(self.obs_r[i])

            self.grid_ori = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_r)):
                self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

            self.grid_del = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_re_r)):
                self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
            self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
            self.ore_order.pop()

    def get_env_case1(self):
        while 1:
            obs_r = [0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035, 0.035]
            tar_r = 0.035
            min_ore = 2
            self.obs_grid = []
            grid_tmp = copy.deepcopy(self.grid_act)
            self.obs_r = obs_r
            self.tar_r = tar_r

            self.obs_grid = [[10, 70], [10, 50], [10, 10],
                             [20, 70], [20, 50], [19, 31], [24, 25], [20, 10]]
            self.tar_grid = [30, 30]

            # self.grid_ori = copy.deepcopy(self.grid_act)
            # for i in range(len(self.obs_r)):
            #     print "obs", i, round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2)
            #     self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
            # self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
            # break
            # for ri in self.obs_r:
            #     grid_tmp, obs_center_tmp = CUF.place_circle_object_ig(grid_tmp, ri, 2)
            #     self.obs_grid.append(obs_center_tmp)
            # grid_tmp, tar_tmp = CUF.place_circle_object_ig(grid_tmp, self.tar_r, 4)
            # self.tar_grid = copy.deepcopy(tar_tmp)

            self.obs_pos = []
            for i in self.obs_grid:
                xi, yi = i
                self.obs_pos.append([round(xi * self.GRID_SIZE + self.ws_zero[0], 2), round(yi * self.GRID_SIZE + self.ws_zero[1], 2)])
            self.tar_pos = [round(self.tar_grid[0] * self.GRID_SIZE + self.ws_zero[0], 2), round(self.tar_grid[1] * self.GRID_SIZE + self.ws_zero[1], 2)]  # target object!

            self.d_max = 2.0
            tm_tar_pos = copy.deepcopy(self.tar_pos)
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            # tm_obs_pos.extend(self.obs_wall)
            ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)
            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            if len(ore_order) > min_ore:
                # print"environment setting OK"
                # print"target", self.tar_pos
                # print"obstacles", self.obs_pos
                # print"remove", ore_order, "th obstacles"
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                # tm_obs_pos.extend(self.obs_wall)
                ob = len(tm_obs_pos)
                # self.ore_order = ore_order
                self.ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)

                # check if the obstacles are rearranged then target is reachable
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                tm_ore_pos = []
                for i in self.ore_order:
                    if i != 'T':
                        tm_ore_pos.append(self.obs_pos[i])
                for i in self.ore_order:
                    if i != 'T':
                        tm_obs_pos.remove(self.obs_pos[i])
                # tm_obs_pos.extend(self.obs_wall)
                ob = len(tm_obs_pos)

                # tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)
                if len(tmp_order) == 1:
                    print"environment setting OK"
                    break
        '''
        # with out additional rearrangement
        '''
        if len(self.ore_order) > min_ore:
            self.ore_grid = []
            self.ore_pos = []
            self.ore_r = []

            self.obs_re_grid = copy.deepcopy(self.obs_grid)
            self.obs_re_pos = copy.deepcopy(self.obs_pos)
            self.obs_re_r = copy.deepcopy(self.obs_r)

            for i in self.ore_order:
                if i != 'T':
                    self.ore_grid.append(self.obs_re_grid[i])
                    self.ore_pos.append(self.obs_re_pos[i])
                    self.ore_r.append(self.obs_re_r[i])
            for i in self.ore_order:
                if i != 'T':
                    self.obs_re_grid.remove(self.obs_grid[i])
                    self.obs_re_pos.remove(self.obs_pos[i])
                    self.obs_re_r.remove(self.obs_r[i])

            self.grid_ori = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_r)):
                self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

            self.grid_del = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_re_r)):
                self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
            self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
            self.ore_order.pop()

    def get_max_can_case1(self):
        # [19, 35], [24, 25]
        self.can_grid = [[30, 70], [30, 50], [14, 25], [30, 10]]
        self.can_pos = []
        circle_r = max(self.ore_r)+0.005
        for i in self.can_grid:
            xi, yi = i
            self.can_pos.append([self.ws_zero[0] + xi * self.GRID_SIZE, self.ws_zero[1] + yi * self.GRID_SIZE])

        self.grid_max_can = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_r)):
            self.grid_max_can = CUF.obstacle_circle(self.grid_max_can, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
        self.grid_max_can = CUF.obstacle_circle(self.grid_max_can, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
        for i in range(len(self.can_grid)):
            self.grid_max_can = CUF.obstacle_circle(self.grid_max_can, [self.can_grid[i][0], self.can_grid[i][1], circle_r], 3)

    def update_env(self, in_obs_pos, in_obs_grid):
        self.d_max = 2.0
        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_tar_ori = [0.0, 0.0, 0.0]
        tm_obs_pos = copy.deepcopy(in_obs_pos)
        # tm_obs_pos.extend(self.obs_wall)
        ob = len(tm_obs_pos)
        tm_obs_ori = []
        for i in range(ob):
            tm_obs_ori.append([0.0, 0.0, 0.0])

        self.ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
        # self.ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)

        # check if the obstacles are rearranged then target is reachable
        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_obs_pos = copy.deepcopy(self.obs_pos)
        tm_ore_pos = []
        for i in self.ore_order:
            if i != 'T':
                tm_obs_pos.remove(self.obs_pos[i])
        # tm_obs_pos.extend(self.obs_wall)
        ob = len(tm_obs_pos)
        tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
        # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
        # print "after removing:", tmp_order
        # if tmp_order[0] == 'T':
            # print "environment setting OK"
        self.ore_grid = []
        self.ore_pos = []
        self.ore_r = []

        self.obs_re_grid = copy.deepcopy(in_obs_grid)
        self.obs_re_pos = copy.deepcopy(in_obs_pos)
        self.obs_re_r = copy.deepcopy(self.obs_r)

        for i in self.ore_order:
            if i != 'T':
                self.ore_grid.append(self.obs_re_grid[i])
                self.ore_pos.append(self.obs_re_pos[i])
                self.ore_r.append(self.obs_re_r[i])
        for i in self.ore_order:
            if i != 'T':
                self.obs_re_grid.remove(self.obs_grid[i])
                self.obs_re_pos.remove(self.obs_pos[i])
                self.obs_re_r.remove(self.obs_r[i])

        self.grid_ori = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_r)):
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
        self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

        self.grid_del = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_re_r)):
            self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
        self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
        self.ore_order.pop()
        # else:
        #     self.order_error_flag = 0

    def get_max_can(self, input_grid, bt_num, trial_num, ):
        bt_circle = []
        circle_r = max(self.ore_r)+0.03
        for bt in range(bt_num):
            can_grid = []
            grid_can = copy.deepcopy(input_grid)  # get original scene from the grid_set
            empt_grid, occu_grid = CUF.getEmpOcc(grid_can)
            for i in range(trial_num):
                pick_cen = np.random.randint(0, len(empt_grid))
                check_sum = 0
                for oc in range(len(occu_grid)):
                    d_w = empt_grid[pick_cen][0] - occu_grid[oc][0]
                    d_d = empt_grid[pick_cen][1] - occu_grid[oc][1]
                    d_c = (d_w * d_w + d_d * d_d) ** 0.5 * self.GRID_SIZE
                    if d_c <= circle_r:
                        check_sum = 1

                if check_sum == 0:
                    can_grid.append(empt_grid[pick_cen])
                    for em in range(len(empt_grid)):
                        d_w = empt_grid[pick_cen][0] - empt_grid[em][0]
                        d_d = empt_grid[pick_cen][1] - empt_grid[em][1]
                        d_c = (d_w * d_w + d_d * d_d) ** 0.5 * self.GRID_SIZE
                        if d_c <= circle_r:
                            grid_can[empt_grid[em][0]][empt_grid[em][1]] = 3
                            grid_can[empt_grid[pick_cen][0]][empt_grid[pick_cen][1]] = 3
                            occu_grid.append([empt_grid[em][0], empt_grid[em][1]])
            bt_circle.append([can_grid, grid_can])

        max_cir_num = []
        for i in range(len(bt_circle)):
            max_cir_num.append([len(bt_circle[i][0])])

        # print(max_cir_num.index(max(max_cir_num)))
        max_trial = max_cir_num.index(max(max_cir_num))

        self.grid_max_can = copy.deepcopy(bt_circle[max_trial][1])
        self.can_grid = bt_circle[max_trial][0]
        self.can_pos = []
        for i in self.can_grid:
            xi, yi = i
            self.can_pos.append([self.ws_zero[0] + xi * self.GRID_SIZE, self.ws_zero[1] + yi * self.GRID_SIZE])

    def get_obs_wall(self, OBJ_R):
        ws_side = []
        ws_side.append(
            [self.ws_cen[0] - self.ws_w * self.GRID_SIZE * 0.5, self.ws_cen[1] - self.ws_d * self.GRID_SIZE * 0.5 - OBJ_R])  # left low point
        ws_side.append([self.ws_cen[0] + self.ws_w * self.GRID_SIZE * 0.5 + OBJ_R,
                        self.ws_cen[1] - self.ws_d * self.GRID_SIZE * 0.5 - OBJ_R])  # right low point
        ws_side.append([self.ws_cen[0] + self.ws_w * self.GRID_SIZE * 0.5 + OBJ_R,
                        self.ws_cen[1] + self.ws_d * self.GRID_SIZE * 0.5 + OBJ_R])  # right high point
        ws_side.append(
            [self.ws_cen[0] - self.ws_w * self.GRID_SIZE * 0.5, self.ws_cen[1] + self.ws_d * self.GRID_SIZE * 0.5 + OBJ_R])  # left high point

        obs_wall = []
        obs_wall.extend(CUF.linspace2D(ws_side[0], ws_side[1], round(self.ws_w * self.GRID_SIZE / OBJ_R)))
        obs_wall.extend(CUF.linspace2D(ws_side[1], ws_side[2], round(self.ws_d * self.GRID_SIZE / OBJ_R)))
        obs_wall.extend(CUF.linspace2D(ws_side[2], ws_side[3], round(self.ws_w * self.GRID_SIZE / OBJ_R)))
        return obs_wall

    def get_can_info(self, in_can_info, in_obs_pos, in_obs_re_pos, in_ore_order, in_tar_pos):
        tmp_can_info = []
        for i in range(len(in_ore_order)):
            tmp_can_info.append(copy.deepcopy(in_can_info))
        tmp_obs_pos = copy.deepcopy(in_obs_pos)
        tmp_obs_re_pos = copy.deepcopy(in_obs_re_pos)
        tmp_ore_order = copy.deepcopy(in_ore_order)
        tmp_tar_pos = copy.deepcopy(in_tar_pos)
        # print("\nCheck if candidate blocks the target")
        for step_i in range(len(tmp_ore_order)):
            for i in range(len(tmp_can_info[step_i])):
                vfh_obs_pos = copy.deepcopy(tmp_obs_re_pos)
                vfh_obs_pos.append(tmp_can_info[step_i][i].pos)
                vfh_obs_pos.extend(self.obs_wall)
                vfh_tar_pos = copy.deepcopy(tmp_tar_pos)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                # vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.obs_r, self.tar_r)
                if vfh[3] == 0:
                    tmp_can_info[step_i][i].BT = 1  # BT == 1 : The candidate blocks the target.
                else:                       # BT == 0 : The candidate does not block the target.
                    tmp_can_info[step_i][i].BT = 0

            # print("\nCheck if the candidate is accessible.")
            for i in range(len(tmp_can_info[step_i])):
                vfh_tar_pos = copy.deepcopy(tmp_can_info[step_i][i].pos)
                vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                for si in range(step_i+1):
                    # print "\nstep", si, "\nbefore", vfh_obs_pos
                    vfh_obs_pos.remove(tmp_obs_pos[tmp_ore_order[si]])
                    # print "after", vfh_obs_pos
                vfh_obs_pos.append(tmp_tar_pos)
                vfh_obs_pos.extend(self.obs_wall)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:                      # A == 1 : The candidate is accessible.
                    tmp_can_info[step_i][i].A = 0    # A == 0 : The candidate is not accessible.
                else:                   #
                    tmp_can_info[step_i][i].A = 1

            # print("\nCheck the candidate ORC.")
            for i in range(len(tmp_can_info[step_i])):
                vfh_tar_pos = copy.deepcopy(tmp_can_info[step_i][i].pos)
                vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                vfh_obs_pos.append(tmp_tar_pos)
                vfh_obs_pos.extend(self.obs_wall)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:              # A == 1 : The candidate is accessible.
                    tmp_can_info[step_i][i].A = 0    # A == 0 : The candidate is not accessible.
                    tm_tar_pos = copy.deepcopy(vfh_tar_pos)
                    tm_tar_ori = [0.0, 0.0, 0.0]
                    tm_obs_pos = copy.deepcopy(tmp_obs_pos)
                    # tm_obs_pos.extend(self.obs_wall)
                    ob = len(tm_obs_pos)
                    tm_obs_ori = []
                    for obs_ori_i in range(ob):
                        tm_obs_ori.append([0.0, 0.0, 0.0])

                    ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                    # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)
                    ore_order.pop()  # The last order is always the target so we need to pop the last element.
                    tmp_can_info[step_i][i].ORC = ore_order
                else:                   #
                    tmp_can_info[step_i][i].A = 1

        return tmp_can_info

    def get_can_A(self, in_can_info, in_obs_pos, in_tar_pos):
        tmp_can_info = copy.deepcopy(in_can_info)
        # print("\nCheck if the candidate is accessible.")
        for ci in range(len(tmp_can_info)):
            vfh_tar_pos = copy.deepcopy(tmp_can_info[ci].pos)
            vfh_obs_pos = copy.deepcopy(in_obs_pos)
            vfh_obs_pos.append(copy.deepcopy(in_tar_pos))
            vfh_obs_pos.extend(self.obs_wall)
            ob = len(vfh_obs_pos)
            vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
            if vfh[3] == 0:  # A == 1 : The candidate is accessible.
                tmp_can_info[ci].A = 0  # A == 0 : The candidate is not accessible.
            else:  #
                tmp_can_info[ci].A = 1
        return tmp_can_info

    def get_can_BT(self, in_can_info, in_obs_pos, in_tar_pos):
        tmp_can_info = copy.deepcopy(in_can_info)
        # print("\nCheck if candidate blocks the target")
        for ci in range(len(tmp_can_info)):
            vfh_obs_pos = copy.deepcopy(in_obs_pos)
            vfh_obs_pos.append(tmp_can_info[ci].pos)
            vfh_obs_pos.extend(self.obs_wall)
            vfh_tar_pos = copy.deepcopy(in_tar_pos)
            ob = len(vfh_obs_pos)
            vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
            if vfh[3] == 0:
                tmp_can_info[ci].BT = 1  # BT == 1 : The candidate blocks the target.
            # else:                        # BT == 0 : The candidate does not block the target.
            #     tmp_can_info[ci].BT = 0
                # print "can", ci, "bt=0"

        return tmp_can_info

    def get_cf(self, in_can_info):
        tmp_cf = []
        tmp_cf_index = []
        tmp_can_info = copy.deepcopy(in_can_info)

        # print("\nCheck the candidate ORC.")
        for ci in range(len(tmp_can_info)):
            # print "\ncan ", ci, "th has A, BT :", tmp_can_info[ci].A, tmp_can_info[ci].BT
            if tmp_can_info[ci].A == 1 and tmp_can_info[ci].BT == 0:
                tmp_cf.append(tmp_can_info[ci])
                tmp_cf_index.append(ci)
        return tmp_cf, tmp_cf_index

    def get_cf_b(self, in_cf, in_obs_pos):
        tmp_cf = copy.deepcopy(in_cf)
        tmp_obs_pos = copy.deepcopy(in_obs_pos)
        tmp_b = []
        for cb in range(len(tmp_cf)):  # cb: The candidate that will check the b value
            b = 0
            for ci in range(len(tmp_cf)):  # ci: Other candidates for checking the b value
                if cb != ci:
                    # print "\ntar", tmp_cf_pos[ci]
                    # print "obs", tmp_obs_pos
                    vfh_tar_pos = copy.deepcopy(tmp_cf[ci].pos)
                    vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                    vfh_obs_pos.append(tmp_cf[cb].pos)
                    vfh_obs_pos.extend(self.obs_wall)
                    ob = len(vfh_obs_pos)
                    vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                    if vfh[3] == 0:
                        b = b + 1
            tmp_b.append(b)
        return tmp_b

    def get_cp(self, in_can_info):
        tmp_cp = []
        tmp_cp_index = []
        tmp_can_info = copy.deepcopy(in_can_info)

        # print("\nCheck the candidate ORC.")
        for ci in range(len(tmp_can_info)):
            # print "\ncan ", ci, "th has A, BT :", tmp_can_info[ci].A, tmp_can_info[ci].BT
            if tmp_can_info[ci].A == 0:
                tmp_cp.append(tmp_can_info[ci])
                tmp_cp_index.append(ci)
        return tmp_cp, tmp_cp_index

    # def get_can_A(self, in_can_info, in_obs_pos, in_tar_pos):
    #     tmp_can_info = copy.deepcopy(in_can_info)
    #     # print("\nCheck if the candidate is accessible.")
    #     for ci in range(len(tmp_can_info)):
    #         vfh_tar_pos = copy.deepcopy(tmp_can_info[ci].pos)
    #         vfh_obs_pos = copy.deepcopy(in_obs_pos)
    #         vfh_obs_pos.append(copy.deepcopy(in_tar_pos))
    #         vfh_obs_pos.extend(self.obs_wall)
    #         ob = len(vfh_obs_pos)
    #         vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
    #         if vfh[3] == 0:  # A == 1 : The candidate is accessible.
    #             tmp_can_info[ci].A = 0  # A == 0 : The candidate is not accessible.
    #             # print "c:", ci, ".A = 0"
    #         else:  #
    #             tmp_can_info[ci].A = 1
    #             # print "c:", ci, ".A = 1"
    #     return tmp_can_info
    #
    # def get_can_BT(self, in_can_info, in_obs_pos, in_tar_pos):
    #     tmp_can_info = copy.deepcopy(in_can_info)
    #     # print("\nCheck if candidate blocks the target")
    #     for ci in range(len(tmp_can_info)):
    #         vfh_obs_pos = copy.deepcopy(in_obs_pos)
    #         vfh_obs_pos.append(tmp_can_info[ci].pos)
    #         vfh_obs_pos.extend(self.obs_wall)
    #         vfh_tar_pos = copy.deepcopy(in_tar_pos)
    #         ob = len(vfh_obs_pos)
    #         vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
    #         if vfh[3] == 0:
    #             tmp_can_info[ci].BT = 1  # BT == 1 : The candidate blocks the target.
    #             # print "c:", ci, ".BT = 1"
    #         # else:                        # BT == 0 : The candidate does not block the target.
    #         #     tmp_can_info[ci].BT = 0
    #         #     print "c:", ci, ".BT = 0"
    #
    #     return tmp_can_info

    def get_c_ore(self, in_can_info):
        # print "input", in_can_info
        # print in_can_info[0].pos
        t_c_order = []
        for ci in range(len(in_can_info)):
            tm_tar_pos = in_can_info[ci].pos
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            tm_obs_pos.append(self.tar_pos)
            # tm_obs_pos.extend(self.obs_wall)
            tm_ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(tm_ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            # ore_order = TM_noplot(tm_ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
            ore_order.pop()
            t_c_order.append(ore_order)
        return t_c_order
class EnvInfo:

    def __init__(self, rob_pos, ws_width, ws_depth, ws_cen, grid_size, wall_r):
        self.rob_pos = rob_pos
        self.GRID_SIZE = grid_size
        self.ws_w = ws_width
        self.ws_d = ws_depth
        self.ws_cen = ws_cen
        self.ws_zero = [round(self.ws_cen[0] - ws_width * self.GRID_SIZE * 0.5, 2), round(self.ws_cen[1] - ws_depth * self.GRID_SIZE * 0.5, 2)]
        self.obs_wall = self.get_obs_wall(OBJ_R=wall_r)

        self.jaco_home_pos = [0.020, -0.0046, 0.673]
        self.jaco_home_ori = [-0.1869, 0.125044, 0.69344, 0.6845144]

        # goal_pose = [-0.010, -0.005, 0.967]
        # goal_orientation = [-0.1869, 0.125044, 0.69344, 0.6845144]
        self.order_error_flag = 1
        self.d_max = 2.0
        self.eta = 45

        grid_act = np.zeros([ws_width, ws_depth])
        self.grid_act = CUF.mark_edge_grid(grid_act)

    def set_env(self, obstacle_name, obstacle_info, target_name, target_info):
        self.obs_r = []
        self.obs_pos = []
        self.obs_ori = []
        self.obs_grid = []
        self.tar_pos = [round(target_info[0][0][2], 2), round(-target_info[0][0][1], 2)]
        self.tar_grid = [int(round((target_info[0][0][2] - self.ws_zero[0]) * 100)), int(round((-target_info[0][0][1] - self.ws_zero[1]) * 100))]
        self.tar_r = round(target_info[0][2][1] * 0.5, 2)
        print "number of obstacles", len(obstacle_info)
        for i in range(len(obstacle_info)):
            self.obs_pos.append([round(obstacle_info[i][0][2], 2), round(-obstacle_info[i][0][1], 2)])
            self.obs_grid.append([int(round((obstacle_info[i][0][2] - self.ws_zero[0])*100)), int(round((-obstacle_info[i][0][1] - self.ws_zero[1])*100))])
            self.obs_r.append(round(obstacle_info[i][2][1] * 0.5, 2))
            self.obs_ori.append([0.0, 0.0, 0.0])

        self.object_z = obstacle_info[0][0][0]
        print "obstacles", self.obs_pos
        print "target_vfh", self.tar_pos
        print "target_rviz", target_info[0]
        print "robot pos", self.rob_pos

        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_obs_pos = copy.deepcopy(self.obs_pos)

        self.ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])

        self.ore_grid = []
        self.ore_pos = []
        self.ore_r = []

        self.obs_re_grid = copy.deepcopy(self.obs_grid)
        self.obs_re_pos = copy.deepcopy(self.obs_pos)
        self.obs_re_r = copy.deepcopy(self.obs_r)

        for i in self.ore_order:
            if i != 'T':
                self.ore_grid.append(self.obs_re_grid[i])
                self.ore_pos.append(self.obs_re_pos[i])
                self.ore_r.append(self.obs_re_r[i])
        for i in self.ore_order:
            if i != 'T':
                self.obs_re_grid.remove(self.obs_grid[i])
                self.obs_re_pos.remove(self.obs_pos[i])
                self.obs_re_r.remove(self.obs_r[i])

        self.grid_ori = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_r)):
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
        self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

        self.grid_del = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_re_r)):
            self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
        self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
        self.ore_order.pop()

    def get_env(self, obs_r, tar_r, min_ore):
        while 1:
            self.obs_grid = []
            grid_tmp = copy.deepcopy(self.grid_act)
            self.obs_r = obs_r
            self.tar_r = tar_r
            for ri in self.obs_r:
                grid_tmp, obs_center_tmp = CUF.place_circle_object_ig(grid_tmp, ri, 2)
                self.obs_grid.append(obs_center_tmp)
            grid_tmp, tar_tmp = CUF.place_circle_object_ig(grid_tmp, self.tar_r, 4)
            self.tar_grid = copy.deepcopy(tar_tmp)

            self.obs_pos = []
            for i in self.obs_grid:
                xi, yi = i
                self.obs_pos.append([round(xi * self.GRID_SIZE + self.ws_zero[0], 2), round(yi * self.GRID_SIZE + self.ws_zero[1], 2)])
            self.tar_pos = [round(self.tar_grid[0] * self.GRID_SIZE + self.ws_zero[0], 2), round(self.tar_grid[1] * self.GRID_SIZE + self.ws_zero[1], 2)]  # target object!

            self.d_max = 2.0
            tm_tar_pos = copy.deepcopy(self.tar_pos)
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            # tm_obs_pos.extend(self.obs_wall)
            ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)
            # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)
            # TM_noplot()
            if len(ore_order) > min_ore:
                # print"before rearrangemet: ", ore_order
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                # tm_obs_pos.extend(self.obs_wall)
                # ob = len(tm_obs_pos)
                self.ore_order = ore_order
                # self.ore_order = TM_plot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)

                # check if the obstacles are rearranged then target is reachable
                tm_tar_pos = copy.deepcopy(self.tar_pos)
                tm_obs_pos = copy.deepcopy(self.obs_pos)
                tm_ore_pos = []
                for i in self.ore_order:
                    if i != 'T':
                        tm_obs_pos.remove(self.obs_pos[i])
                # tm_obs_pos.extend(self.obs_wall)
                ob = len(tm_obs_pos)
                tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
                # print "after removing:", tmp_order
                if tmp_order[0] == 'T':
                    # print"environment setting OK"
                    break
            # else:
                # print "SHORT...min:", min_ore, "ours:", len(ore_order)
        '''
        with out additional rearrangement
        '''
        if len(self.ore_order) > min_ore:
            self.ore_grid = []
            self.ore_pos = []
            self.ore_r = []

            self.obs_re_grid = copy.deepcopy(self.obs_grid)
            self.obs_re_pos = copy.deepcopy(self.obs_pos)
            self.obs_re_r = copy.deepcopy(self.obs_r)

            for i in self.ore_order:
                if i != 'T':
                    self.ore_grid.append(self.obs_re_grid[i])
                    self.ore_pos.append(self.obs_re_pos[i])
                    self.ore_r.append(self.obs_re_r[i])
            for i in self.ore_order:
                if i != 'T':
                    self.obs_re_grid.remove(self.obs_grid[i])
                    self.obs_re_pos.remove(self.obs_pos[i])
                    self.obs_re_r.remove(self.obs_r[i])

            self.grid_ori = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_r)):
                self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

            self.grid_del = copy.deepcopy(self.grid_act)
            for i in range(len(self.obs_re_r)):
                self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
            self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
            self.ore_order.pop()

    def update_env(self, in_obs_pos, in_obs_grid):
        self.d_max = 2.0
        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_tar_ori = [0.0, 0.0, 0.0]
        tm_obs_pos = copy.deepcopy(in_obs_pos)
        # tm_obs_pos.extend(self.obs_wall)
        ob = len(tm_obs_pos)
        tm_obs_ori = []
        for i in range(ob):
            tm_obs_ori.append([0.0, 0.0, 0.0])

        self.ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
        # self.ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall, self.rob_pos, self.rob_pos, self.d_max)

        # check if the obstacles are rearranged then target is reachable
        tm_tar_pos = copy.deepcopy(self.tar_pos)
        tm_obs_pos = copy.deepcopy(self.obs_pos)
        tm_ore_pos = []
        for i in self.ore_order:
            if i != 'T':
                tm_obs_pos.remove(self.obs_pos[i])
        # tm_obs_pos.extend(self.obs_wall)
        ob = len(tm_obs_pos)
        tmp_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
        # tmp_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
        # print "after removing:", tmp_order
        # if tmp_order[0] == 'T':
            # print "environment setting OK"
        self.ore_grid = []
        self.ore_pos = []
        self.ore_r = []

        self.obs_re_grid = copy.deepcopy(in_obs_grid)
        self.obs_re_pos = copy.deepcopy(in_obs_pos)
        self.obs_re_r = copy.deepcopy(self.obs_r)

        for i in self.ore_order:
            if i != 'T':
                self.ore_grid.append(self.obs_re_grid[i])
                self.ore_pos.append(self.obs_re_pos[i])
                self.ore_r.append(self.obs_re_r[i])
        for i in self.ore_order:
            if i != 'T':
                self.obs_re_grid.remove(self.obs_grid[i])
                self.obs_re_pos.remove(self.obs_pos[i])
                self.obs_re_r.remove(self.obs_r[i])

        self.grid_ori = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_r)):
            self.grid_ori = CUF.obstacle_circle(self.grid_ori, [round(self.obs_grid[i][0], 2), round(self.obs_grid[i][1], 2), self.obs_r[i]], 2)
        self.grid_ori = CUF.obstacle_circle(self.grid_ori, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target

        self.grid_del = copy.deepcopy(self.grid_act)
        for i in range(len(self.obs_re_r)):
            self.grid_del = CUF.obstacle_circle(self.grid_del, [round(self.obs_re_grid[i][0], 2), round(self.obs_re_grid[i][1], 2), self.obs_re_r[i]], 2)
        self.grid_del = CUF.obstacle_circle(self.grid_del, [self.tar_grid[0], self.tar_grid[1], self.tar_r], 4)  # target
        self.ore_order.pop()
        # else:
        #     self.order_error_flag = 0

    def get_max_can(self, input_grid, bt_num, trial_num, ):
        bt_circle = []
        can_grid = []
        # circle_r = max(self.ore_r)+0.02
        circle_r = max(self.ore_r)+0.03
        for bt in range(bt_num):
            grid_can = copy.deepcopy(input_grid)  # get original scene from the grid_set
            empt_grid, occu_grid = CUF.getEmpOcc(grid_can)
            for i in range(trial_num):
                pick_cen = np.random.randint(0, len(empt_grid))
                check_sum = 0
                for oc in range(len(occu_grid)):
                    d_w = empt_grid[pick_cen][0] - occu_grid[oc][0]
                    d_d = empt_grid[pick_cen][1] - occu_grid[oc][1]
                    d_c = (d_w * d_w + d_d * d_d) ** 0.5 * self.GRID_SIZE
                    if d_c <= circle_r:
                        check_sum = 1

                if check_sum == 0:
                    can_grid.append(empt_grid[pick_cen])
                    for em in range(len(empt_grid)):
                        d_w = empt_grid[pick_cen][0] - empt_grid[em][0]
                        d_d = empt_grid[pick_cen][1] - empt_grid[em][1]
                        d_c = (d_w * d_w + d_d * d_d) ** 0.5 * self.GRID_SIZE
                        if d_c <= circle_r:
                            grid_can[empt_grid[em][0]][empt_grid[em][1]] = 3
                            grid_can[empt_grid[pick_cen][0]][empt_grid[pick_cen][1]] = 3
                            occu_grid.append([empt_grid[em][0], empt_grid[em][1]])
            bt_circle.append([can_grid, grid_can])

        max_cir_num = []
        for i in range(len(bt_circle)):
            max_cir_num.append([len(bt_circle[i][0])])

        # print(max_cir_num.index(max(max_cir_num)))
        max_trial = max_cir_num.index(max(max_cir_num))

        self.grid_max_can = copy.deepcopy(bt_circle[max_trial][1])
        self.can_grid = bt_circle[max_trial][0]
        self.can_pos = []
        for i in self.can_grid:
            xi, yi = i
            self.can_pos.append([self.ws_zero[0] + xi * self.GRID_SIZE, self.ws_zero[1] + yi * self.GRID_SIZE])

    def get_obs_wall(self, OBJ_R):
        ws_side = []
        ws_side.append(
            [self.ws_cen[0] - self.ws_w * self.GRID_SIZE * 0.5, self.ws_cen[1] - self.ws_d * self.GRID_SIZE * 0.5 - OBJ_R])  # left low point
        ws_side.append([self.ws_cen[0] + self.ws_w * self.GRID_SIZE * 0.5 + OBJ_R,
                        self.ws_cen[1] - self.ws_d * self.GRID_SIZE * 0.5 - OBJ_R])  # right low point
        ws_side.append([self.ws_cen[0] + self.ws_w * self.GRID_SIZE * 0.5 + OBJ_R,
                        self.ws_cen[1] + self.ws_d * self.GRID_SIZE * 0.5 + OBJ_R])  # right high point
        ws_side.append(
            [self.ws_cen[0] - self.ws_w * self.GRID_SIZE * 0.5, self.ws_cen[1] + self.ws_d * self.GRID_SIZE * 0.5 + OBJ_R])  # left high point

        obs_wall = []
        obs_wall.extend(CUF.linspace2D(ws_side[0], ws_side[1], round(self.ws_w * self.GRID_SIZE / OBJ_R)))
        obs_wall.extend(CUF.linspace2D(ws_side[1], ws_side[2], round(self.ws_d * self.GRID_SIZE / OBJ_R)))
        obs_wall.extend(CUF.linspace2D(ws_side[2], ws_side[3], round(self.ws_w * self.GRID_SIZE / OBJ_R)))
        return obs_wall

    def get_can_info(self, in_can_info, in_obs_pos, in_obs_re_pos, in_ore_order, in_tar_pos):
        tmp_can_info = []
        for i in range(len(in_ore_order)):
            tmp_can_info.append(copy.deepcopy(in_can_info))
        tmp_obs_pos = copy.deepcopy(in_obs_pos)
        tmp_obs_re_pos = copy.deepcopy(in_obs_re_pos)
        tmp_ore_order = copy.deepcopy(in_ore_order)
        tmp_tar_pos = copy.deepcopy(in_tar_pos)
        # print("\nCheck if candidate blocks the target")
        for step_i in range(len(tmp_ore_order)):
            for i in range(len(tmp_can_info[step_i])):
                vfh_obs_pos = copy.deepcopy(tmp_obs_re_pos)
                vfh_obs_pos.append(tmp_can_info[step_i][i].pos)
                vfh_obs_pos.extend(self.obs_wall)
                vfh_tar_pos = copy.deepcopy(tmp_tar_pos)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                # vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.obs_r, self.tar_r)
                if vfh[3] == 0:
                    tmp_can_info[step_i][i].BT = 1  # BT == 1 : The candidate blocks the target.
                else:                       # BT == 0 : The candidate does not block the target.
                    tmp_can_info[step_i][i].BT = 0

            # print("\nCheck if the candidate is accessible.")
            for i in range(len(tmp_can_info[step_i])):
                vfh_tar_pos = copy.deepcopy(tmp_can_info[step_i][i].pos)
                vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                for si in range(step_i+1):
                    # print "\nstep", si, "\nbefore", vfh_obs_pos
                    vfh_obs_pos.remove(tmp_obs_pos[tmp_ore_order[si]])
                    # print "after", vfh_obs_pos
                vfh_obs_pos.append(tmp_tar_pos)
                vfh_obs_pos.extend(self.obs_wall)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:                      # A == 1 : The candidate is accessible.
                    tmp_can_info[step_i][i].A = 0    # A == 0 : The candidate is not accessible.
                else:                   #
                    tmp_can_info[step_i][i].A = 1

            # print("\nCheck the candidate ORC.")
            for i in range(len(tmp_can_info[step_i])):
                vfh_tar_pos = copy.deepcopy(tmp_can_info[step_i][i].pos)
                vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                vfh_obs_pos.append(tmp_tar_pos)
                vfh_obs_pos.extend(self.obs_wall)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:              # A == 1 : The candidate is accessible.
                    tmp_can_info[step_i][i].A = 0    # A == 0 : The candidate is not accessible.
                    tm_tar_pos = copy.deepcopy(vfh_tar_pos)
                    tm_tar_ori = [0.0, 0.0, 0.0]
                    tm_obs_pos = copy.deepcopy(tmp_obs_pos)
                    # tm_obs_pos.extend(self.obs_wall)
                    ob = len(tm_obs_pos)
                    tm_obs_ori = []
                    for obs_ori_i in range(ob):
                        tm_obs_ori.append([0.0, 0.0, 0.0])

                    ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
                    # ore_order = TM_noplot(ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.rob_pos, self.rob_pos, self.d_max)
                    ore_order.pop()  # The last order is always the target so we need to pop the last element.
                    tmp_can_info[step_i][i].ORC = ore_order
                else:                   #
                    tmp_can_info[step_i][i].A = 1

        return tmp_can_info

    def get_can_A(self, in_can_info, in_obs_pos, in_tar_pos):
        tmp_can_info = copy.deepcopy(in_can_info)
        # print("\nCheck if the candidate is accessible.")
        for ci in range(len(tmp_can_info)):
            vfh_tar_pos = copy.deepcopy(tmp_can_info[ci].pos)
            vfh_obs_pos = copy.deepcopy(in_obs_pos)
            vfh_obs_pos.append(copy.deepcopy(in_tar_pos))
            vfh_obs_pos.extend(self.obs_wall)
            ob = len(vfh_obs_pos)
            vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
            if vfh[3] == 0:  # A == 1 : The candidate is accessible.
                print ci, "A = 0 (vfh)"
                tmp_can_info[ci].A = 0  # A == 0 : The candidate is not accessible.
            else:  #
                print ci, "A = 1 (vfh)"

                print "\nangle:", vfh[-1]
                xi, yi = tmp_can_info[ci].pos[0], tmp_can_info[ci].pos[1]
                CLF.add_box_client('can_check', [self.object_z, -yi, xi], [-0.707, 0.0, -0.707, 0.0], [0.06, 0.06, 0.2], 'pink')

                planner_name = 'RRTConnect'
                # planner_name = 'BiTRRT'
                n_attempt = 10
                c_time = 0.5
                n_repeat = 5
                start_state = moveit_msgs.msg.RobotState()
                joint_state = sensor_msgs.msg.JointState()
                joint_state.header = std_msgs.msg.Header()
                joint_state.name = ['j2n6s300_joint_1', 'j2n6s300_joint_2', 'j2n6s300_joint_3', 'j2n6s300_joint_4', 'j2n6s300_joint_5', 'j2n6s300_joint_6']
                joint_state.position = [3.1415927410125732, 4.537856101989746, 5.93411922454834, -0.6108652353286743, 1.7453292608261108, -0.5235987901687622]
                start_state.joint_state = joint_state
                # goal_pose:
                # goal_orientation:
                # goal_pose = [self.object_z, -yi, xi - 0.05]
                # goal_orientation = [-0.00145713772037, -0.998970756926, 0.0364956710831, 0.0268955302573]
                z = self.object_z
                goal_pose = [z + 0.02, -yi, xi]
                # Set the grasp pose: substract 17cm from the z value of the object centroid
                goal_pitches = []
                goal_pitch = np.deg2rad(vfh[-1])
                # goal_pitch = vfh[-1] + math.pi/2
                goal_pitches.append(goal_pitch)  # approaching_angle: vfh[-1] from the input
                for i in range(1):
                    goal_pitches.append(goal_pitch + (i + 1) * (math.pi / 36))
                    goal_pitches.append(goal_pitch - (i + 1) * (math.pi / 36))
                # Get the grasp orientation (currently the front direction)
                goal_orientations = []
                for i in goal_pitches:
                    goal_orientations.append(quaternion_from_euler(-i, math.radians(-5.0), math.radians(90.0), axes='rxyz'))
                l = 0.001
                goal_poses = []
                for i in goal_pitches:
                    dx = math.sin(i - math.pi) * l
                    dy = math.cos(i - math.pi) * l
                    goal_poses.append([z + 0.07, -yi + dx, xi + dy])
                    # goal_poses.append([z + 0.07, goal_pose[1] + dx, goal_pose[2] - dy])

                # plt.figure()
                # for i in range(len(in_obs_pos)):
                #     plt.scatter(in_obs_pos[i][0], in_obs_pos[i][1], s=200, c='red')
                # plt.scatter(xi, yi, s=200, c='pink')
                # plt.scatter(xi + dy, yi + dx, s=200, c='blue')
                #
                # plt.figure()
                # for i in range(len(in_obs_pos)):
                #     plt.scatter(in_obs_pos[i][0], in_obs_pos[i][1], s=200, c='red')
                # plt.scatter(xi, yi, s=200, c='pink')
                # plt.scatter(xi + dy, yi - dx, s=200, c='blue')
                #
                # plt.show()

                feasibility1 = 0
                i = 0
                while not feasibility1 and i < len(goal_pitches):
                    CLF.add_box_client('can_bottom_x', [goal_poses[i][0]-0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.1, 0.005, 0.005], 'red')
                    CLF.add_box_client('can_bottom_y', [goal_poses[i][0]-0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.1, 0.005], 'blue')
                    CLF.add_box_client('can_bottom_z', [goal_poses[i][0]-0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.005, 0.1], 'green')
                    [feasibility1, trajectory1] = CLF.feasible_check_obj_joint_client('arm', 'gripper', start_state, goal_poses[i], goal_orientations[i], [], planner_name, n_attempt, c_time, n_repeat)
                    i = i + 1
                    time.sleep(1)
                    CLF.del_box_client('can_bottom_x')
                    CLF.del_box_client('can_bottom_y')
                    CLF.del_box_client('can_bottom_z')
                if feasibility1 == 0:  # A == 1 : The candidate is accessible.
                    print ci, "A = 0 (MP)"
                    tmp_can_info[ci].A = 0  # A == 0 : The candidate is not accessible.
                else:  #
                    print ci, "A = 1 (MP)"
                    tmp_can_info[ci].A = 1
                CLF.del_box_client('can_check')
                tmp_can_info[ci].A = 1
        return tmp_can_info

    def get_can_BT(self, in_can_info, in_obs_pos, in_tar_pos):
        tmp_can_info = copy.deepcopy(in_can_info)
        # print("\nCheck if candidate blocks the target")
        for ci in range(len(tmp_can_info)):
            if tmp_can_info[ci].A == 1:
                vfh_obs_pos = copy.deepcopy(in_obs_pos)
                vfh_obs_pos.append(tmp_can_info[ci].pos)
                vfh_obs_pos.extend(self.obs_wall)
                vfh_tar_pos = copy.deepcopy(in_tar_pos)
                ob = len(vfh_obs_pos)
                vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                if vfh[3] == 0:
                    print ci, "BT = 1 (vfh)"
                    tmp_can_info[ci].BT = 1  # BT == 1 : The candidate blocks the target.
                else:                        # BT == 0 : The candidate does not block the target.
                    print ci, "BT = 0 (vfh)"

                    print "\nangle:", vfh[-1]
                    xi, yi = tmp_can_info[ci].pos[0], tmp_can_info[ci].pos[1]
                    CLF.add_box_client('can_check', [self.object_z, -yi, xi], [-0.707, 0.0, -0.707, 0.0], [0.06, 0.06, 0.2], 'pink')

                    planner_name = 'RRTConnect'
                    # planner_name = 'BiTRRT'
                    n_attempt = 10
                    c_time = 0.5
                    n_repeat = 5
                    start_state = moveit_msgs.msg.RobotState()
                    joint_state = sensor_msgs.msg.JointState()
                    joint_state.header = std_msgs.msg.Header()
                    joint_state.name = ['j2n6s300_joint_1', 'j2n6s300_joint_2', 'j2n6s300_joint_3', 'j2n6s300_joint_4', 'j2n6s300_joint_5', 'j2n6s300_joint_6']
                    joint_state.position = [3.1415927410125732, 4.537856101989746, 5.93411922454834, -0.6108652353286743, 1.7453292608261108, -0.5235987901687622]
                    start_state.joint_state = joint_state
                    # goal_pose:
                    # goal_orientation:
                    # goal_pose = [self.object_z, -yi, xi - 0.05]
                    # goal_orientation = [-0.00145713772037, -0.998970756926, 0.0364956710831, 0.0268955302573]
                    z = self.object_z
                    goal_pose = [z + 0.02, -yi, xi]
                    # Set the grasp pose: substract 17cm from the z value of the object centroid
                    goal_pitches = []
                    goal_pitch = np.deg2rad(vfh[-1])
                    # goal_pitch = vfh[-1] + math.pi/2
                    goal_pitches.append(goal_pitch)  # approaching_angle: vfh[-1] from the input
                    for i in range(1):
                        goal_pitches.append(goal_pitch + (i + 1) * (math.pi / 36))
                        goal_pitches.append(goal_pitch - (i + 1) * (math.pi / 36))
                    # Get the grasp orientation (currently the front direction)
                    goal_orientations = []
                    for i in goal_pitches:
                        goal_orientations.append(quaternion_from_euler(-i, math.radians(-5.0), math.radians(90.0), axes='rxyz'))
                    l = 0.001
                    goal_poses = []
                    for i in goal_pitches:
                        dx = math.sin(i - math.pi) * l
                        dy = math.cos(i - math.pi) * l
                        goal_poses.append([z + 0.02, -in_tar_pos[1] + dx, in_tar_pos[0] + dy])
                        # goal_poses.append([z + 0.07, goal_pose[1] + dx, goal_pose[2] - dy])

                    # plt.figure()
                    # for i in range(len(in_obs_pos)):
                    #     plt.scatter(in_obs_pos[i][0], in_obs_pos[i][1], s=200, c='red')
                    # plt.scatter(xi, yi, s=200, c='pink')
                    # plt.scatter(xi + dy, yi + dx, s=200, c='blue')
                    #
                    # plt.figure()
                    # for i in range(len(in_obs_pos)):
                    #     plt.scatter(in_obs_pos[i][0], in_obs_pos[i][1], s=200, c='red')
                    # plt.scatter(xi, yi, s=200, c='pink')
                    # plt.scatter(xi + dy, yi - dx, s=200, c='blue')
                    #
                    # plt.show()

                    feasibility1 = 0
                    i = 0
                    while not feasibility1 and i < len(goal_pitches):
                        CLF.add_box_client('can_bottom_x', [goal_poses[i][0]-0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.1, 0.005, 0.005], 'red')
                        CLF.add_box_client('can_bottom_y', [goal_poses[i][0]-0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.1, 0.005], 'blue')
                        CLF.add_box_client('can_bottom_z', [goal_poses[i][0]-0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.005, 0.1], 'green')
                        [feasibility1, trajectory1] = CLF.feasible_check_obj_joint_client('arm', 'gripper', start_state, goal_poses[i], goal_orientations[i], [], planner_name, n_attempt, c_time, n_repeat)
                        i = i + 1
                        time.sleep(1)
                        CLF.del_box_client('can_bottom_x')
                        CLF.del_box_client('can_bottom_y')
                        CLF.del_box_client('can_bottom_z')
                    if feasibility1 == 0:  # A == 1 : The candidate is accessible.
                        print ci, "BT = 1 (MP)"
                        tmp_can_info[ci].BT = 1  # A == 0 : The candidate is not accessible.
                    else:  #
                        print ci, "BT = 0 (MP)"
                        tmp_can_info[ci].BT = 0
                    CLF.del_box_client('can_check')
            else:
                print ci, "A = 0 => BT = no matter"

        return tmp_can_info

    def get_cf(self, in_can_info):
        tmp_cf = []
        tmp_cf_index = []
        tmp_can_info = copy.deepcopy(in_can_info)

        # print("\nCheck the candidate ORC.")
        for ci in range(len(tmp_can_info)):
            # print "\ncan ", ci, "th has A, BT :", tmp_can_info[ci].A, tmp_can_info[ci].BT
            if tmp_can_info[ci].A == 1 and tmp_can_info[ci].BT == 0:
                tmp_cf.append(tmp_can_info[ci])
                tmp_cf_index.append(ci)
        return tmp_cf, tmp_cf_index

    def get_cf_b(self, in_cf, in_obs_pos):
        tmp_cf = copy.deepcopy(in_cf)
        tmp_obs_pos = copy.deepcopy(in_obs_pos)
        tmp_b = []
        for cb in range(len(tmp_cf)):  # cb: The candidate that will check the b value
            b = 0
            for ci in range(len(tmp_cf)):  # ci: Other candidates for checking the b value
                if cb != ci:
                    # print "\ntar", tmp_cf_pos[ci]
                    # print "obs", tmp_obs_pos
                    vfh_tar_pos = copy.deepcopy(tmp_cf[ci].pos)
                    vfh_obs_pos = copy.deepcopy(tmp_obs_pos)
                    vfh_obs_pos.append(tmp_cf[cb].pos)
                    vfh_obs_pos.extend(self.obs_wall)
                    ob = len(vfh_obs_pos)
                    vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
                    if vfh[3] == 0:
                        b = b + 1
            tmp_b.append(b)
        return tmp_b

    def get_cp(self, in_can_info):
        tmp_cp = []
        tmp_cp_index = []
        tmp_can_info = copy.deepcopy(in_can_info)

        # print("\nCheck the candidate ORC.")
        for ci in range(len(tmp_can_info)):
            # print "\ncan ", ci, "th has A, BT :", tmp_can_info[ci].A, tmp_can_info[ci].BT
            if tmp_can_info[ci].A == 0:
                tmp_cp.append(tmp_can_info[ci])
                tmp_cp_index.append(ci)
        return tmp_cp, tmp_cp_index

    # def get_can_A(self, in_can_info, in_obs_pos, in_tar_pos):
    #     tmp_can_info = copy.deepcopy(in_can_info)
    #     # print("\nCheck if the candidate is accessible.")
    #     for ci in range(len(tmp_can_info)):
    #         vfh_tar_pos = copy.deepcopy(tmp_can_info[ci].pos)
    #         vfh_obs_pos = copy.deepcopy(in_obs_pos)
    #         vfh_obs_pos.append(copy.deepcopy(in_tar_pos))
    #         vfh_obs_pos.extend(self.obs_wall)
    #         ob = len(vfh_obs_pos)
    #         vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
    #         if vfh[3] == 0:  # A == 1 : The candidate is accessible.
    #             tmp_can_info[ci].A = 0  # A == 0 : The candidate is not accessible.
    #             # print "c:", ci, ".A = 0"
    #         else:  #
    #             tmp_can_info[ci].A = 1
    #             # print "c:", ci, ".A = 1"
    #     return tmp_can_info
    #
    # def get_can_BT(self, in_can_info, in_obs_pos, in_tar_pos):
    #     tmp_can_info = copy.deepcopy(in_can_info)
    #     # print("\nCheck if candidate blocks the target")
    #     for ci in range(len(tmp_can_info)):
    #         vfh_obs_pos = copy.deepcopy(in_obs_pos)
    #         vfh_obs_pos.append(tmp_can_info[ci].pos)
    #         vfh_obs_pos.extend(self.obs_wall)
    #         vfh_tar_pos = copy.deepcopy(in_tar_pos)
    #         ob = len(vfh_obs_pos)
    #         vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
    #         if vfh[3] == 0:
    #             tmp_can_info[ci].BT = 1  # BT == 1 : The candidate blocks the target.
    #             # print "c:", ci, ".BT = 1"
    #         # else:                        # BT == 0 : The candidate does not block the target.
    #         #     tmp_can_info[ci].BT = 0
    #         #     print "c:", ci, ".BT = 0"
    #
    #     return tmp_can_info

    def get_c_ore(self, in_can_info):
        # print "input", in_can_info
        # print in_can_info[0].pos
        t_c_order = []
        for ci in range(len(in_can_info)):
            tm_tar_pos = in_can_info[ci].pos
            tm_tar_ori = [0.0, 0.0, 0.0]
            tm_obs_pos = copy.deepcopy(self.obs_pos)
            tm_obs_pos.append(self.tar_pos)
            # tm_obs_pos.extend(self.obs_wall)
            tm_ob = len(tm_obs_pos)
            tm_obs_ori = []
            for i in range(tm_ob):
                tm_obs_ori.append([0.0, 0.0, 0.0])

            ore_order = NG_ore(tm_tar_pos, tm_obs_pos, self.tar_r, self.obs_r, self.rob_pos, self.ws_zero, [self.ws_w * self.GRID_SIZE, self.ws_d * self.GRID_SIZE])
            # ore_order = TM_noplot(tm_ob, tm_tar_pos, tm_tar_ori, tm_obs_pos, tm_obs_ori, self.obs_wall,self.rob_pos, self.rob_pos, self.d_max)
            ore_order.pop()
            t_c_order.append(ore_order)
        return t_c_order

    def pick(self, in_obs_pos, pick_pose, current_joints):
        print "pick at:", pick_pose

        vfh_obs_pos = copy.deepcopy(in_obs_pos)
        vfh_obs_pos.extend(self.obs_wall)
        vfh_tar_pos = copy.deepcopy(pick_pose)
        ob = len(vfh_obs_pos)
        vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
        if vfh[3] == 1:
            print "\nangle:", vfh[-1]
            xi, yi = pick_pose[0], pick_pose[1]

            planner_name = 'RRTConnect'
            # planner_name = 'BiTRRT'
            n_attempt = 100
            c_time = 3
            n_repeat = 5
            start_state = moveit_msgs.msg.RobotState()
            joint_state = sensor_msgs.msg.JointState()
            joint_state.header = std_msgs.msg.Header()
            joint_state.name = ['j2n6s300_joint_1', 'j2n6s300_joint_2', 'j2n6s300_joint_3', 'j2n6s300_joint_4', 'j2n6s300_joint_5', 'j2n6s300_joint_6']
            joint_state.position = current_joints
            # joint_state.position = [3.1415927410125732, 4.537856101989746, 5.93411922454834, -0.6108652353286743, 1.7453292608261108, -0.5235987901687622]
            start_state.joint_state = joint_state
            # goal_pose:
            # goal_orientation:
            # goal_pose = [self.object_z, -yi, xi - 0.05]
            # goal_orientation = [-0.00145713772037, -0.998970756926, 0.0364956710831, 0.0268955302573]
            z = self.object_z
            # goal_pose = [z + 0.02, -yi, xi]
            # Set the grasp pose: substract 17cm from the z value of the object centroid
            goal_pitches = []
            goal_pitch = np.deg2rad(vfh[-1])
            # goal_pitch = vfh[-1] + math.pi/2
            goal_pitches.append(goal_pitch)  # approaching_angle: vfh[-1] from the input
            for i in range(5):
                goal_pitches.append(goal_pitch + (i + 1) * (math.pi / 36))
                goal_pitches.append(goal_pitch - (i + 1) * (math.pi / 36))
            # Get the grasp orientation (currently the front direction)
            goal_orientations = []
            for i in goal_pitches:
                goal_orientations.append(quaternion_from_euler(-i, math.radians(-5.0), math.radians(90.0), axes='rxyz'))
            # l = 0.001
            l = 0.17
            goal_poses = []
            for i in goal_pitches:
                dx = math.sin(i - math.pi) * l
                dy = math.cos(i - math.pi) * l
                goal_poses.append([z + 0.02, -pick_pose[1] + dx, pick_pose[0] + dy])

            feasibility1 = 0
            i = 0
            while not feasibility1 and i < len(goal_pitches):
                # CLF.add_box_client('can_bottom_x', [goal_poses[i][0] - 0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.1, 0.005, 0.005], 'red')
                # CLF.add_box_client('can_bottom_y', [goal_poses[i][0] - 0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.1, 0.005], 'blue')
                # CLF.add_box_client('can_bottom_z', [goal_poses[i][0] - 0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.005, 0.1], 'green')
                [feasibility1, trajectory1] = CLF.move_goalpose_client('arm', 'gripper', start_state, goal_poses[i], goal_orientations[i], [], planner_name, n_attempt, c_time, n_repeat)
                i = i + 1
                # time.sleep(1)
                # CLF.del_box_client('can_bottom_x')
                # CLF.del_box_client('can_bottom_y')
                # CLF.del_box_client('can_bottom_z')
        return [goal_poses[i], goal_orientations[i]]

    def place(self, in_obs_pos, place_pose, current_joints):
        print "place at:", place_pose
        vfh_obs_pos = copy.deepcopy(in_obs_pos)
        vfh_obs_pos.remove(place_pose)
        vfh_obs_pos.extend(self.obs_wall)
        vfh_tar_pos = copy.deepcopy(place_pose)
        ob = len(vfh_obs_pos)
        vfh = influence(ob, vfh_tar_pos, vfh_obs_pos, self.rob_pos, self.d_max, self.eta)
        if vfh[3] == 1:
            print "angle:", vfh[-1]
            xi, yi = place_pose[0], place_pose[1]

            planner_name = 'RRTConnect'
            # planner_name = 'BiTRRT'
            n_attempt = 100
            c_time = 3
            n_repeat = 5
            start_state = moveit_msgs.msg.RobotState()
            joint_state = sensor_msgs.msg.JointState()
            joint_state.header = std_msgs.msg.Header()
            joint_state.name = ['j2n6s300_joint_1', 'j2n6s300_joint_2', 'j2n6s300_joint_3', 'j2n6s300_joint_4', 'j2n6s300_joint_5', 'j2n6s300_joint_6']
            joint_state.position = current_joints
            # joint_state.position = [3.1415927410125732, 4.537856101989746, 5.93411922454834, -0.6108652353286743, 1.7453292608261108, -0.5235987901687622]
            start_state.joint_state = joint_state
            # goal_pose:
            # goal_orientation:
            # goal_pose = [self.object_z, -yi, xi - 0.05]
            # goal_orientation = [-0.00145713772037, -0.998970756926, 0.0364956710831, 0.0268955302573]
            z = self.object_z
            # goal_pose = [z + 0.02, -yi, xi]
            # Set the grasp pose: substract 17cm from the z value of the object centroid
            goal_pitches = []
            goal_pitch = np.deg2rad(vfh[-1])
            # goal_pitch = vfh[-1] + math.pi/2
            goal_pitches.append(goal_pitch)  # approaching_angle: vfh[-1] from the input
            for i in range(5):
                goal_pitches.append(goal_pitch + (i + 1) * (math.pi / 36))
                goal_pitches.append(goal_pitch - (i + 1) * (math.pi / 36))
            # Get the grasp orientation (currently the front direction)
            goal_orientations = []
            for i in goal_pitches:
                goal_orientations.append(quaternion_from_euler(-i, math.radians(-5.0), math.radians(90.0), axes='rxyz'))
            # l = 0.001
            l = 0.17
            goal_poses = []
            for i in goal_pitches:
                dx = math.sin(i - math.pi) * l
                dy = math.cos(i - math.pi) * l
                goal_poses.append([z + 0.2, -place_pose[1] + dx, place_pose[0] + dy])

            feasibility1 = 0
            i = 0
            while not feasibility1 and i < len(goal_pitches):
                # CLF.add_box_client('can_bottom_x', [goal_poses[i][0] - 0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.1, 0.005, 0.005], 'red')
                # CLF.add_box_client('can_bottom_y', [goal_poses[i][0] - 0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.1, 0.005], 'blue')
                # CLF.add_box_client('can_bottom_z', [goal_poses[i][0] - 0.15, goal_poses[i][1], goal_poses[i][2]], goal_orientations[i], [0.005, 0.005, 0.1], 'green')
                [feasibility1, trajectory1] = CLF.move_goalpose_client('arm', 'gripper', start_state, goal_poses[i], goal_orientations[i], [], planner_name, n_attempt, c_time, n_repeat)
                i = i + 1
                # time.sleep(1)
                # CLF.del_box_client('can_bottom_x')
                # CLF.del_box_client('can_bottom_y')
                # CLF.del_box_client('can_bottom_z')
        return [goal_poses[i], goal_orientations[i]]

    def back_home(self, current_joints):
        print "go to home"
        planner_name = 'RRTConnect'
        # planner_name = 'BiTRRT'
        n_attempt = 100
        c_time = 3
        n_repeat = 5
        start_state = moveit_msgs.msg.RobotState()
        joint_state = sensor_msgs.msg.JointState()
        joint_state.header = std_msgs.msg.Header()
        joint_state.name = ['j2n6s300_joint_1', 'j2n6s300_joint_2', 'j2n6s300_joint_3', 'j2n6s300_joint_4', 'j2n6s300_joint_5', 'j2n6s300_joint_6']
        joint_state.position = current_joints
        # joint_state.position = [3.1415927410125732, 4.537856101989746, 5.93411922454834, -0.6108652353286743, 1.7453292608261108, -0.5235987901687622]
        start_state.joint_state = joint_state
        # goal_pose:
        feasibility1 = 0
        [feasibility1, trajectory1] = CLF.move_goalpose_client('arm', 'gripper', start_state, self.jaco_home_pos, self.jaco_home_ori, [], planner_name, n_attempt, c_time, n_repeat)

    def move_to(self, goal_pos):
        print "pos:", goal_pos[0], "ori:", goal_pos[1]
        CLF.move_cartesian('arm', goal_pos[0], goal_pos[1])