def single_lookup(seed_hash, dataset, output_path):
    logging.info(f"START: seed_hash: {seed_hash}")
    seed_arch = dataset.get_modelspec_by_hash(seed_hash)
    seed_matrix, seed_ops = seed_arch.matrix, seed_arch.ops
    seed_test_acc = dataset.query(
        api101.ModelSpec(matrix=seed_matrix, ops=seed_ops), 'test', epochs=108)

    random.seed(seed_hash)

    row_dict = dict()
    hash_iterator = list(dataset.hash_iterator())
    random.shuffle(hash_iterator)
    for _, arch_hash in enumerate(hash_iterator):
        arch = dataset.get_modelspec_by_hash(arch_hash)
        matrix, ops = arch.matrix, arch.ops
        arch_test_acc = dataset.query(
            api101.ModelSpec(matrix=matrix, ops=ops), 'test', epochs=108)

        true_distance = get_edit_distance(
            seed_matrix, seed_ops, matrix, ops, max_edit_distance)
        row_dict[true_distance] = ((true_distance, seed_hash, arch_hash,
                                    seed_test_acc - arch_test_acc, seed_test_acc, arch_test_acc))

        # row_dict.keys() : 0, 1, ..., max_edit_distance
        if len(row_dict) == max_edit_distance + 1:
            break

    with open(f'{output_path}/{seed_hash}.csv', 'w') as f:
        writer = csv.writer(f)
        writer.writerows(list(row_dict.values()))
Esempio n. 2
0
    def adj_neighborhood(self, nasbench, shuffle=True):
        nbhd = []
        # add op neighbors
        for vertex in range(1, OP_SPOTS + 1):
            if self.is_valid_vertex(vertex):
                available = [op for op in OPS if op != self.ops[vertex]]
                for op in available:
                    new_matrix = copy.deepcopy(self.matrix)
                    new_ops = copy.deepcopy(self.ops)
                    new_ops[vertex] = op
                    new_arch = {'matrix': new_matrix, 'ops': new_ops}
                    nbhd.append(new_arch)

        # add edge neighbors
        for src in range(0, NUM_VERTICES - 1):
            for dst in range(src + 1, NUM_VERTICES):
                new_matrix = copy.deepcopy(self.matrix)
                new_ops = copy.deepcopy(self.ops)
                new_matrix[src][dst] = 1 - new_matrix[src][dst]
                new_arch = {'matrix': new_matrix, 'ops': new_ops}

                if self.matrix[src][dst] and self.is_valid_edge((src, dst)):
                    spec = api.ModelSpec(matrix=new_matrix, ops=new_ops)
                    if nasbench.is_valid(spec):
                        nbhd.append(new_arch)

                if not self.matrix[src][dst] and Cell101(
                        **new_arch).is_valid_edge((src, dst)):
                    spec = api.ModelSpec(matrix=new_matrix, ops=new_ops)
                    if nasbench.is_valid(spec):
                        nbhd.append(new_arch)

        if shuffle:
            random.shuffle(nbhd)
        return nbhd
Esempio n. 3
0
 def get_val_loss(self,
                  nasbench,
                  deterministic=True,
                  patience=50,
                  epochs=None,
                  dataset=None):
     if not deterministic:
         # output one of the three validation accuracies at random
         acc = 0
         if epochs:
             acc = (100 * (1 - nasbench.query(
                 api.ModelSpec(matrix=self.matrix, ops=self.ops),
                 epochs=epochs)['validation_accuracy']))
         else:
             acc = (100 * (1 - nasbench.query(
                 api.ModelSpec(matrix=self.matrix,
                               ops=self.ops))['validation_accuracy']))
         return np.round(acc, 4)
     else:
         # query the api until we see all three accuracies, then average them
         # a few architectures only have two accuracies, so we use patience to avoid an infinite loop
         accs = []
         while len(accs) < 3 and patience > 0:
             patience -= 1
             if epochs:
                 acc = nasbench.query(api.ModelSpec(matrix=self.matrix,
                                                    ops=self.ops),
                                      epochs=epochs)['validation_accuracy']
             else:
                 acc = nasbench.query(
                     api.ModelSpec(matrix=self.matrix,
                                   ops=self.ops))['validation_accuracy']
             if acc not in accs:
                 accs.append(acc)
         return round(100 * (1 - np.mean(accs)), 4)
Esempio n. 4
0
def test_equal(nasbench_search_space):
    import numpy as np
    from nasbench import api

    ss = nasbench_search_space
    arch_1 = (np.array(
        [[0, 0, 1, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1],
         [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 0, 0]],
        dtype=np.int8), [1, 2, 1, 1, 0])
    arch_2 = (np.array(
        [[0, 0, 1, 0, 1, 1, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1],
         [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 0, 0]],
        dtype=np.int8), [1, 2, 1, 1, 0])
    spec_1 = api.ModelSpec(
        arch_1[0],
        ["input"] + [ss.ops_choices[ind] for ind in arch_1[1]] + ["output"])
    spec_2 = api.ModelSpec(
        arch_2[0],
        ["input"] + [ss.ops_choices[ind] for ind in arch_2[1]] + ["output"])

    assert not spec_1 == spec_2
    r_1 = ss.rollout_from_genotype(spec_1)
    r_2 = ss.rollout_from_genotype(spec_2)
    assert r_1.genotype.hash_spec(ss.ops_choices) == r_2.genotype.hash_spec(
        ss.ops_choices)
    assert r_1 == r_2
    ss.compare_reduced = False
    assert r_1 != r_2
Esempio n. 5
0
 def get_test_loss(self, nasbench, patience=50, epochs=None, dataset=None):
     """
     query the api until we see all three accuracies, then average them
     a few architectures only have two accuracies, so we use patience to avoid an infinite loop
     """
     accs = []
     while len(accs) < 3 and patience > 0:
         patience -= 1
         if epochs:
             acc = nasbench.query(api.ModelSpec(matrix=self.matrix, ops=self.ops), epochs=epochs)['test_accuracy']
         else:
             acc = nasbench.query(api.ModelSpec(matrix=self.matrix, ops=self.ops))['test_accuracy']
         if acc not in accs:
             accs.append(acc)
     return round(100*(1-np.mean(accs)), 4)
Esempio n. 6
0
    def mutate(self, 
               nasbench, 
               mutation_rate=1.0, 
               patience=5000):
        """
        A stochastic approach to perturbing the cell
        inspird by https://github.com/google-research/nasbench
        """
        p = 0
        while p < patience:
            p += 1
            new_matrix = copy.deepcopy(self.matrix)
            new_ops = copy.deepcopy(self.ops)

            edge_mutation_prob = mutation_rate / (NUM_VERTICES * (NUM_VERTICES - 1) / 2)
            # flip each edge w.p. so expected flips is 1. same for ops
            for src in range(0, NUM_VERTICES - 1):
                for dst in range(src + 1, NUM_VERTICES):
                    if random.random() < edge_mutation_prob:
                        new_matrix[src, dst] = 1 - new_matrix[src, dst]

            op_mutation_prob = mutation_rate / OP_SPOTS
            for ind in range(1, OP_SPOTS + 1):
                if random.random() < op_mutation_prob:
                    available = [o for o in OPS if o != new_ops[ind]]
                    new_ops[ind] = random.choice(available)

            new_spec = api.ModelSpec(new_matrix, new_ops)
            if nasbench.is_valid(new_spec):
                return {
                    'matrix': new_matrix,
                    'ops': new_ops
                }
        return self.mutate(nasbench, mutation_rate+1)
Esempio n. 7
0
    def mutate(self, nasbench, mutation_rate=1.0):
        """
        similar to perturb. A stochastic approach to perturbing the cell
        inspird by https://github.com/google-research/nasbench
        """
        while True:
            new_matrix = copy.deepcopy(self.matrix)
            new_ops = copy.deepcopy(self.ops)

            edge_mutation_prob = mutation_rate / NUM_VERTICES
            for src in range(0, NUM_VERTICES - 1):
                for dst in range(src + 1, NUM_VERTICES):
                    if random.random() < edge_mutation_prob:
                        new_matrix[src, dst] = 1 - new_matrix[src, dst]

            op_mutation_prob = mutation_rate / OP_SPOTS
            for ind in range(1, OP_SPOTS + 1):
                if random.random() < op_mutation_prob:
                    available = [o for o in OPS if o != new_ops[ind]]
                    new_ops[ind] = random.choice(available)

            new_spec = api.ModelSpec(new_matrix, new_ops)
            if nasbench.is_valid(new_spec):
                return {
                    'matrix': new_matrix,
                    'ops': new_ops
                }
Esempio n. 8
0
def config2data_A(config, b):
    VERTICES = 7
    MAX_EDGES = 9
    budget = 108

    matrix = np.zeros([VERTICES, VERTICES], dtype=np.int8)
    idx = np.triu_indices(matrix.shape[0], k=1)
    for i in range(VERTICES * (VERTICES - 1) // 2):
        row = idx[0][i]
        col = idx[1][i]
        matrix[row, col] = config["edge_%d" % i]

    # if not graph_util.is_full_dag(matrix) or graph_util.num_edges(matrix) > MAX_EDGES:
    if graph_util.num_edges(matrix) > MAX_EDGES:
        return None, None

    labeling = [config["op_node_%d" % i] for i in range(5)]
    labeling = ['input'] + list(labeling) + ['output']
    model_spec = api.ModelSpec(matrix, labeling)
    try:
        data = b.dataset.query(model_spec, epochs=budget)
        msp = b.dataset.get_metrics_from_spec(model_spec)
    except api.OutOfDomainError:
        return None, None

    test_acc = [msp[1][108][k]['final_test_accuracy'] for k in range(3)]

    return data, np.mean(test_acc)
Esempio n. 9
0
    def perturb(self, nasbench, edits=1):
        """ 
        create new perturbed cell 
        inspird by https://github.com/google-research/nasbench
        """
        new_matrix = copy.deepcopy(self.matrix)
        new_ops = copy.deepcopy(self.ops)
        for _ in range(edits):
            while True:
                if np.random.random() < 0.5:
                    for src in range(0, NUM_VERTICES - 1):
                        for dst in range(src+1, NUM_VERTICES):
                            new_matrix[src][dst] = 1 - new_matrix[src][dst]
                else:
                    for ind in range(1, NUM_VERTICES - 1):
                        available = [op for op in OPS if op != new_ops[ind]]
                        new_ops[ind] = np.random.choice(available)

                new_spec = api.ModelSpec(new_matrix, new_ops)
                if nasbench.is_valid(new_spec):
                    break
        return {
            'matrix': new_matrix,
            'ops': new_ops
        }
Esempio n. 10
0
 def model_to_metric(_ops, _matrix):
     model_spec = api.ModelSpec(matrix=_matrix,
                                ops=[ID_TO_NODE[t] for t in _ops])
     computed_metrics = nasbench.get_metrics_from_spec(model_spec)[1]
     return np.mean([d["final_test_accuracy"] for d in
                     computed_metrics[max_epochs]])\
         .astype(np.float32).reshape([1])
Esempio n. 11
0
def mutate_spec(nasbench, old_spec, mutation_rate=1.0):
    """Computes a valid mutated spec from the old_spec."""
    while True:
        new_matrix = copy.deepcopy(old_spec.original_matrix)
        new_ops = copy.deepcopy(old_spec.original_ops)

        # In expectation, V edges flipped (note that most end up being pruned).
        edge_mutation_prob = mutation_rate / NUM_VERTICES
        for src in range(0, NUM_VERTICES - 1):
            for dst in range(src + 1, NUM_VERTICES):
                if random.random() < edge_mutation_prob:
                    new_matrix[src, dst] = 1 - new_matrix[src, dst]

        # In expectation, one op is resampled.
        op_mutation_prob = mutation_rate / OP_SPOTS
        for ind in range(1, NUM_VERTICES - 1):
            if random.random() < op_mutation_prob:
                available = [
                    o for o in nasbench.config['available_ops']
                    if o != new_ops[ind]
                ]
                new_ops[ind] = random.choice(available)

        new_spec = api.ModelSpec(new_matrix, new_ops)
        if nasbench.is_valid(new_spec):
            return new_spec
Esempio n. 12
0
    def objective_function(self, config, budget=108):

        bitlist = [0] * (VERTICES * (VERTICES - 1) // 2)
        for i in range(MAX_EDGES):
            bitlist[config["edge_%d" % i]] = 1
        out = 0
        for bit in bitlist:
            out = (out << 1) | bit

        matrix = np.fromfunction(graph_util.gen_is_edge_fn(out),
                                 (VERTICES, VERTICES),
                                 dtype=np.int8)
        # if not graph_util.is_full_dag(matrix) or graph_util.num_edges(matrix) > MAX_EDGES:
        if graph_util.num_edges(matrix) > MAX_EDGES:
            self.record_invalid(config, 1, 1, 0)
            return 1, 0

        labeling = [config["op_node_%d" % i] for i in range(5)]
        labeling = ['input'] + list(labeling) + ['output']
        model_spec = api.ModelSpec(matrix, labeling)
        try:
            data = self.dataset.query(model_spec, epochs=budget)
        except api.OutOfDomainError:
            self.record_invalid(config, 1, 1, 0)
            return 1, 0

        self.record_valid(config, model_spec, budget)

        return 1 - data["validation_accuracy"], data["training_time"]
Esempio n. 13
0
    def objective_function(self, config, budget=108):
        # bit = 0
        # for i in range(VERTICES * (VERTICES - 1) // 2):
        #     bit += config["edge_%d" % i] * 2 ** i
        # matrix = np.fromfunction(graph_util.gen_is_edge_fn(bit),
        #                          (VERTICES, VERTICES),
        #                          dtype=np.int8)
        matrix = np.zeros([VERTICES, VERTICES], dtype=np.int8)
        idx = np.triu_indices(matrix.shape[0], k=1)
        for i in range(VERTICES * (VERTICES - 1) // 2):
            row = idx[0][i]
            col = idx[1][i]
            matrix[row, col] = config["edge_%d" % i]

        # if not graph_util.is_full_dag(matrix) or graph_util.num_edges(matrix) > MAX_EDGES:
        if graph_util.num_edges(matrix) > MAX_EDGES:
            self.record_invalid(config, 1, 1, 0)
            return 1, 0

        labeling = [config["op_node_%d" % i] for i in range(5)]
        labeling = ['input'] + list(labeling) + ['output']
        model_spec = api.ModelSpec(matrix, labeling)
        try:
           data = self.dataset.query(model_spec, epochs=budget)
        except api.OutOfDomainError:
            self.record_invalid(config, 1, 1, 0)
            return 1, 0

        self.record_valid(config, model_spec, budget)
        return 1 - data["validation_accuracy"], data["training_time"]
Esempio n. 14
0
    def random_cell_gnn(self, nasbench):
        while True:
            key = random.sample(self.total_keys, 1)[0]
            architecture = self.total_archs[key]
            spec = api.ModelSpec(matrix=architecture['o_matrix'],
                                 ops=architecture['o_ops'])

            if nasbench.is_valid(spec):
                key = spec.hash_spec(self.ops_t)

                o_matrix, o_ops = spec.matrix, spec.ops
                if key in self.total_keys:
                    matrix = self.total_archs[key]['matrix']
                    ops = self.total_archs[key]['ops']
                    o_matrix = self.total_archs[key]['o_matrix']
                    val_loss = 100 * (1 - self.total_archs[key]['val'])
                    test_loss = 100 * (1 - self.total_archs[key]['test'])
                else:
                    matrix, ops = self.matrix_dummy_nodes(o_matrix, o_ops)
                    arch = {'matrix': o_matrix, 'ops': o_ops}
                    val_loss = Cell(**arch).get_val_loss(self.nasbench, True)
                    test_loss = Cell(**arch).get_test_loss(self.nasbench)
                return {
                    'matrix': matrix,
                    'matrix_orig': o_matrix,
                    'ops': ops,
                    'isolate_node_idxs': [],
                    'val_loss': val_loss,
                    'test_loss': test_loss
                }
Esempio n. 15
0
    def generate_search_space_without_loose_ends(self):
        # Create all possible connectivity patterns
        for iter, adjacency_matrix in enumerate(
                self.generate_adjacency_matrix_without_loose_ends()):
            print(iter)
            # Print graph
            # Evaluate every possible combination of node ops.
            n_repeats = int(np.sum(np.sum(adjacency_matrix, axis=1)[1:-1] > 0))
            for combination in itertools.product(
                [CONV1X1, CONV3X3, MAXPOOL3X3], repeat=n_repeats):
                # Create node labels
                # Add some op as node 6 which isn't used, here conv1x1
                ops = [INPUT]
                combination = list(combination)
                for i in range(5):
                    if np.sum(adjacency_matrix, axis=1)[i + 1] > 0:
                        ops.append(combination.pop())
                    else:
                        ops.append(CONV1X1)
                assert (len(combination) == 0, 'Something is wrong')
                ops.append(OUTPUT)

                # Create nested list from numpy matrix
                nasbench_adjacency_matrix = adjacency_matrix.astype(
                    np.int).tolist()

                # Assemble the model spec
                model_spec = api.ModelSpec(
                    # Adjacency matrix of the module
                    matrix=nasbench_adjacency_matrix,
                    # Operations at the vertices of the module, matches order of matrix
                    ops=ops)

                yield adjacency_matrix, ops, model_spec
Esempio n. 16
0
    def query_arch(self,
                   matrix,
                   ops,
                   encode_paths=True,
                   deterministic=True,
                   require_distance=False):
        matrix = matrix.astype(np.int8)
        model_spec = api.ModelSpec(matrix=matrix, ops=ops)
        key = model_spec.hash_spec(self.ops_t)
        if not model_spec.valid_spec:
            return None

        o_matrix = model_spec.matrix
        o_ops = model_spec.ops

        if key in self.total_keys:
            matrix = self.total_archs[key]['matrix']
            ops = self.total_archs[key]['ops']
            val_loss = 100 * (1 - self.total_archs[key]['val'])
            test_loss = 100 * (1 - self.total_archs[key]['test'])
            arch = {'matrix': matrix, 'ops': ops}
        else:
            matrix, ops = self.matrix_dummy_nodes(o_matrix, o_ops)
            arch = {'matrix': matrix, 'ops': ops}
            val_loss = Cell(**arch).get_val_loss(self.nasbench, deterministic)
            test_loss = Cell(**arch).get_test_loss(self.nasbench)

        if encode_paths:
            encoding = Cell(**arch).encode_paths()
        else:
            encoding = Cell(**arch).encode_cell2()
        return [(matrix, ops, []), o_matrix, o_ops, encoding, val_loss,
                test_loss, key]
Esempio n. 17
0
def random_cell_cont_adj(nasbench):
    """ 
    continuous adjacency matrix
    draw num_paths randomly
    draw continuous [0,1] for each edge, then threshold
    """
    while True:
        values = np.random.random(size=(NUM_VERTICES, NUM_VERTICES))
        values = np.triu(values, 1)
        n = np.random.randint(8) + 1
        flat = values.flatten()
        threshold = flat[np.argsort(flat)[-1 * n]]

        # now convert it to a model spec
        matrix = np.random.choice([0], size=(NUM_VERTICES, NUM_VERTICES))
        for i in range(NUM_VERTICES):
            for j in range(NUM_VERTICES):
                if values[i][j] >= threshold:
                    matrix[i][j] = 1

        ops = np.random.choice(OPS, size=NUM_VERTICES).tolist()
        ops[0] = INPUT
        ops[-1] = OUTPUT

        spec = api.ModelSpec(matrix=matrix, ops=ops)
        if nasbench.is_valid(spec):
            return {'matrix': matrix, 'ops': ops}
Esempio n. 18
0
def random_models(argv):
    del argv  # Unused
    LIMIT = 100
    OUTPUT = './experiments/random_sampling.json'

    # Load the data from file (this will take some time)
    nasbench = api.NASBench(NASBENCH_TFRECORD)

    npEnc = api._NumpyEncoder()
    for index, unique_hash in enumerate(nasbench.hash_iterator()):
        if index >= LIMIT:
            break
        fixed_metrics, computed_metrics = nasbench.get_metrics_from_hash(
            unique_hash)
        model_spec = api.ModelSpec(matrix=fixed_metrics['module_adjacency'],
                                   ops=fixed_metrics['module_operations'])
        random_estimate = nasbench.random_estimate(model_spec, MODEL_DIR)
        data = nasbench.query(model_spec)
        merge = {**fixed_metrics, **computed_metrics}
        merge['module_adjacency'] = npEnc.default(
            fixed_metrics['module_adjacency'])
        merge['random_sampling_time'] = random_estimate['prediction_time']
        merge['random_samples'] = random_estimate['evaluation_results']
        merge['train_accuracy'] = data['train_accuracy']
        merge['test_accuracy'] = data['test_accuracy']
        merge['validation_accuracy'] = data['validation_accuracy']
        print(index, merge)

        with open(OUTPUT, 'a') as f:
            f.write(json.dumps(merge) + '\n')
Esempio n. 19
0
def single_model(argv):
    del argv  # Unused

    # Load the data from file (this will take some time)
    nasbench = api.NASBench(NASBENCH_TFRECORD)

    # Create an Inception-like module (5x5 convolution replaced with two 3x3
    # convolutions).
    model_spec = api.ModelSpec(
        # Adjacency matrix of the module
        matrix=[
            [0, 1, 1, 1, 0, 1, 0],  # input layer
            [0, 0, 0, 0, 0, 0, 1],  # 1x1 conv
            [0, 0, 0, 0, 0, 0, 1],  # 3x3 conv
            [0, 0, 0, 0, 1, 0, 0],  # 5x5 conv (replaced by two 3x3's)
            [0, 0, 0, 0, 0, 0, 1],  # 5x5 conv (replaced by two 3x3's)
            [0, 0, 0, 0, 0, 0, 1],  # 3x3 max-pool
            [0, 0, 0, 0, 0, 0, 0]
        ],  # output layer
        # Operations at the vertices of the module, matches order of matrix
        ops=[INPUT, CONV1X1, CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUTPUT])

    random_estimate = nasbench.random_estimate(model_spec, MODEL_DIR)
    print(random_estimate)
    # Query this model from dataset, returns a dictionary containing the metrics
    # associated with this model.
    # print('Querying an Inception-like model.')
    data = nasbench.query(model_spec)
    print(data)
Esempio n. 20
0
def EvaluateNasbench(theta, search_space, logger, NASbenchName):

    # get result log
    stdout_backup = sys.stdout
    result_path = os.path.join(cfg.OUT_DIR, "result.log")
    log_file = open(result_path, "w")
    sys.stdout = log_file
    if NASbenchName == "nasbench201":
        geotype = search_space.genotype(theta)
        index = api_nasben201.query_index_by_arch(geotype)
        api_nasben201.show(index)
    else:
        current_best = np.argmax(theta, axis=1)
        config = ConfigSpace.Configuration(
            search_space.search_space.get_configuration_space(),
            vector=current_best)
        adjacency_matrix, node_list = search_space.search_space.convert_config_to_nasbench_format(
            config)
        node_list = [
            INPUT, *node_list, OUTPUT
        ] if search_space.search_space.search_space_number == 3 else [
            INPUT, *node_list, CONV1X1, OUTPUT
        ]
        adjacency_list = adjacency_matrix.astype(np.int).tolist()
        model_spec = api.ModelSpec(matrix=adjacency_list, ops=node_list)
        nasbench_data = nasbench.query(model_spec, epochs=108)
        print("the test accuracy in {}".format(NASbenchName))
        print(nasbench_data['test_accuracy'])

    log_file.close()
    sys.stdout = stdout_backup
def eval_random_ws_model(config, model):
    model_list = pickle.load(open(model, 'rb'))

    accs = []

    for model in model_list:
        adjacency_matrix, node_list = model[0]

        if int(config['search_space']) == int('1'):
            adjacency_matrix = upscale_to_nasbench_format(adjacency_matrix)
            node_list = [INPUT, *node_list, CONV1X1, OUTPUT]
        elif int(config['search_space']) == int('2'):
            adjacency_matrix = upscale_to_nasbench_format(adjacency_matrix)
            node_list = [INPUT, *node_list, CONV1X1, OUTPUT]
        elif int(config['search_space']) == int('3'):
            node_list = [INPUT, *node_list, OUTPUT]
        else:
            raise ValueError('Unknown search space')

        # Convert the adjacency matrix in format for nasbench
        adjacency_list = adjacency_matrix.astype(np.int).tolist()
        model_spec = api.ModelSpec(matrix=adjacency_list, ops=node_list)

        # Query nasbench
        data = nasbench.query(model_spec)
        valid_acc, test_acc = [], []
        for item in data:
            test_acc.append(item['test_accuracy'])
            valid_acc.append(item['validation_accuracy'])
        accs.append([np.mean(valid_acc), np.mean(test_acc)])
    return accs
Esempio n. 22
0
    def _query_benchmark(self, config: Dict, budget: int = 108) -> Dict:
        """
        Copy of the 'objective_function' from nas_cifar10.py
        We adapted the file in such a way, that the complete result is returned. The original implementation returns
        only the validation error. Now, it can also return the test loss for a given configuration.

        Parameters
        ----------
        config : Dict
        budget : int
            The number of epochs. Must be one of: 4 12 36 108. Otherwise a accuracy of 0 is returned.

        Returns
        -------
        Dict
        """
        # Unify the return value to a dictionary.
        failure = {
            "test_accuracy": 0,
            "validation_accuracy": 0,
            "training_time": 0,
            "info": "failure"
        }

        if self.benchmark.multi_fidelity is False:
            assert budget == 108

        edge_prob = []
        for i in range(VERTICES * (VERTICES - 1) // 2):
            edge_prob.append(config["edge_%d" % i])

        idx = np.argsort(edge_prob)[::-1][:config["num_edges"]]
        binay_encoding = np.zeros(len(edge_prob))
        binay_encoding[idx] = 1
        matrix = np.zeros([VERTICES, VERTICES], dtype=np.int8)
        idx = np.triu_indices(matrix.shape[0], k=1)
        for i in range(VERTICES * (VERTICES - 1) // 2):
            row = idx[0][i]
            col = idx[1][i]
            matrix[row, col] = binay_encoding[i]

        if graph_util.num_edges(matrix) > MAX_EDGES:
            self.benchmark.record_invalid(config, 1, 1, 0)
            return failure

        labeling = [config["op_node_%d" % i] for i in range(5)]
        labeling = ['input'] + list(labeling) + ['output']
        model_spec = api.ModelSpec(matrix, labeling)
        try:
            data = self.benchmark.dataset.query(model_spec, epochs=budget)
        except api.OutOfDomainError:
            self.benchmark.record_invalid(config, 1, 1, 0)
            return failure

        self.benchmark.record_valid(config, data, model_spec)

        # We dont need this field.
        data.pop('module_adjacency')

        return data
Esempio n. 23
0
    def objective_function(self, config, budget=108):

        edge_prob = []
        for i in range(VERTICES * (VERTICES - 1) // 2):
            edge_prob.append(config["edge_%d" % i])

        idx = np.argsort(edge_prob)[::-1][:config["num_edges"]]
        binay_encoding = np.zeros(len(edge_prob))
        binay_encoding[idx] = 1
        matrix = np.zeros([VERTICES, VERTICES], dtype=np.int8)
        idx = np.triu_indices(matrix.shape[0], k=1)
        for i in range(VERTICES * (VERTICES - 1) // 2):
            row = idx[0][i]
            col = idx[1][i]
            matrix[row, col] = binay_encoding[i]

        if graph_util.num_edges(matrix) > MAX_EDGES:
            self.record_invalid(config, 1, 1, 0)
            return 1, 0

        labeling = [config["op_node_%d" % i] for i in range(5)]
        labeling = ['input'] + list(labeling) + ['output']
        model_spec = api.ModelSpec(matrix, labeling)
        try:
            data = self.dataset.query(model_spec, epochs=budget)
        except api.OutOfDomainError:
            self.record_invalid(config, 1, 1, 0)
            return 1, 0

        self.record_valid(config, model_spec, budget)

        return 1 - data["validation_accuracy"], data["training_time"]
Esempio n. 24
0
def is_valid_NAS(g, nasbench, START_TYPE=1, END_TYPE=0):
    L = {
        1: 'input',
        0: 'output',
        2: 'conv1x1-bn-relu',
        3: 'conv3x3-bn-relu',
        4: 'maxpool3x3'
    }

    # first need to be a valid DAG computation graph
    res = is_valid_DAG(g, START_TYPE, END_TYPE)

    node_atts = nx.get_node_attributes(g, 'Label')
    labels = [node_atts[i] for i in range(len(node_atts))]
    node_list = [L[x] for x in np.array(labels)]

    adjacency_matrix = nx.to_numpy_array(g).astype(int)
    # Check for nasbench validity
    try:
        model_spec = api.ModelSpec(matrix=adjacency_matrix, ops=node_list)
        # data = nasbench.query(model_spec)
        if nasbench.is_valid(model_spec):
            return res
        else:
            return False
    except:
        return False
    return res
Esempio n. 25
0
    def _query_benchmark(self, config: Dict, fidelity: Dict,
                         run_index: int) -> Dict:

        adjacency_matrix, node_list = self.search_space.convert_config_to_nasbench_format(
            config)
        node_list = [INPUT, *node_list, CONV1X1, OUTPUT]
        adjacency_list = adjacency_matrix.astype(np.int).tolist()
        model_spec = api.ModelSpec(matrix=adjacency_list, ops=node_list)

        try:
            nasbench_data = self._query_api(model_spec=model_spec,
                                            run_index=run_index,
                                            epochs=int(fidelity['budget']))
        except api.OutOfDomainError:
            return {
                "trainable_parameters": 0,
                "training_time": 0,
                "train_accuracy": 0,
                "validation_accuracy": 0,
                "test_accuracy": 0,
                "module_operations": 0,
                "info": "failure"
            }

        nasbench_data.pop('module_adjacency')
        return nasbench_data
Esempio n. 26
0
def _convert_cell_to_nb101_spec(cell):
    
    matrix = np.triu(np.ones((7,7)), 1)

    ops_to_nb101 = {
            'MaxPool1x1': 'maxpool3x3',
            'ReLUConvBN1x1': 'conv1x1-bn-relu',
            'ReLUConvBN3x3': 'conv3x3-bn-relu',
        }

    ops_to_nb101_edges = {
        'Identity': 1,
        'Zero': 0,
    }

    num_vertices = 7
    ops = ['input'] * num_vertices
    ops[-1] = 'output'

    for i in range(1, 6):
        ops[i] = ops_to_nb101[cell.nodes[i+1]['subgraph'].edges[1, 2]['op'].get_op_name]
    
    for i, j in cell.edges:
        matrix[i-1][j-1] = ops_to_nb101_edges[cell.edges[i, j]['op'].get_op_name]
    
    spec = api.ModelSpec(matrix=matrix, ops=ops)
    
    return spec
Esempio n. 27
0
def config2data_B(config, b):
    VERTICES = 7
    MAX_EDGES = 9
    budget = 108

    bitlist = [0] * (VERTICES * (VERTICES - 1) // 2)
    for i in range(MAX_EDGES):
        bitlist[config["edge_%d" % i]] = 1
    out = 0
    for bit in bitlist:
        out = (out << 1) | bit

    matrix = np.fromfunction(graph_util.gen_is_edge_fn(out),
                             (VERTICES, VERTICES),
                             dtype=np.int8)
    # if not graph_util.is_full_dag(matrix) or graph_util.num_edges(matrix) > MAX_EDGES:
    if graph_util.num_edges(matrix) > MAX_EDGES:
        return None, None

    labeling = [config["op_node_%d" % i] for i in range(5)]
    labeling = ['input'] + list(labeling) + ['output']
    model_spec = api.ModelSpec(matrix, labeling)
    try:
        data = b.dataset.query(model_spec, epochs=budget)
        msp = b.dataset.get_metrics_from_spec(model_spec)
    except api.OutOfDomainError:
        return None, None
    test_acc = [msp[1][108][k]['final_test_accuracy'] for k in range(3)]
    return data, test_acc
Esempio n. 28
0
 def get_test_mean_acc(self, chromosome):
     cell = api.ModelSpec(matrix=chromosome.matrix,
                          ops=chromosome.operations)
     fixed_stats, computed_stats = self.api.get_metrics_from_spec(cell)
     stats = computed_stats[108]
     mean_score = [stats[i]['final_test_accuracy'] for i in range(3)]
     return np.mean(mean_score)
Esempio n. 29
0
def generate_arch(n, nasbench, need_perf=False):
    count = 0
    archs = []
    seqs = []
    valid_accs = []
    all_keys = list(nasbench.hash_iterator())
    np.random.shuffle(all_keys)
    for key in all_keys:
        count += 1
        if n is not None and count > n:
            break
        fixed_stat, computed_stat = nasbench.get_metrics_from_hash(key)
        arch = api.ModelSpec(
            matrix=fixed_stat['module_adjacency'],
            ops=fixed_stat['module_operations'],
        )
        if need_perf:
            data = nasbench.query(arch)
            if data['validation_accuracy'] < 0.85:
                continue
            valid_accs.append(data['validation_accuracy'])
        archs.append(arch)
        seqs.append(convert_arch_to_seq(arch.matrix, arch.ops))
    if need_perf:
        return archs, seqs, valid_accs
    return archs, seqs
Esempio n. 30
0
def gen_data_point(nasbench):

    i = 0
    epoch = 108

    padding = [0, 0, 0, 0, 0, 0, 0]
    best_val_acc = 0
    best_test_acc = 0

    tf_data = {}
    for unique_hash in nasbench.hash_iterator():
        fixed_metrics, computed_metrics = nasbench.get_metrics_from_hash(
            unique_hash)
        ops_array = transform_operations(fixed_metrics['module_operations'])
        ops_list = convert_tf_format(ops_array)
        adj_array = fixed_metrics['module_adjacency'].tolist()
        print('\nIterating over {} / {} unique models in the dataset.'.format(
            i, 423623))
        test_acc_avg = 0.0
        val_acc_avg = 0.0
        training_time = 0.0
        for repeat_index in range(len(computed_metrics[epoch])):
            assert len(computed_metrics[epoch]
                       ) == 3, 'len(computed_metrics[epoch]) should be 3'
            data_point = computed_metrics[epoch][repeat_index]
            val_acc_avg += data_point['final_validation_accuracy']
            test_acc_avg += data_point['final_test_accuracy']
            training_time += data_point['final_training_time']
        val_acc_avg = val_acc_avg / 3.0
        test_acc_avg = test_acc_avg / 3.0
        tf_data[unique_hash] = (adj_array, ops_list, val_acc_avg)
        training_time_avg = training_time / 3.0
        adj_array = fixed_metrics['module_adjacency'].tolist()
        params = fixed_metrics['trainable_parameters']
        print('parameters size: {}'.format(params))
        model_spec = api.ModelSpec(fixed_metrics['module_adjacency'],
                                   fixed_metrics['module_operations'])
        data = nasbench.query(model_spec, epochs=108)
        print('api training time: {}'.format(data['training_time']))
        print('real training time: {}'.format(training_time_avg))

        if len(adj_array) <= 6:
            for row in range(len(adj_array)):
                for _ in range(7 - len(adj_array)):
                    adj_array[row].append(0)
            for _ in range(7 - len(adj_array)):
                adj_array.append(padding)

        if val_acc_avg > best_val_acc:
            best_val_acc = val_acc_avg

        if test_acc_avg > best_test_acc:
            best_test_acc = test_acc_avg

        print('best val. acc: {:.4f}, best test acc {:.4f}'.format(
            best_val_acc, best_test_acc))

        i += 1
    return tf_data