Esempio n. 1
0
def proc_iv(df, T):
    r = 0.03  # 固定无风险短期利率
    iv_c_list = []
    iv_p_list = []

    for i, row in df.iterrows():
        S0 = float(row.obj)  # 标的价格
        K = int(row.atm)  # 行权价格

        C0 = float(row.close_C)  # 期权价格
        iv_c = bsm_call_imp_vol(S0, K, T, r, C0)
        iv_c_list.append(iv_c)

        C0 = float(row.close_P)  # 期权价格
        iv_p = bsm_put_imp_vol(S0, K, T, r, C0)
        iv_p_list.append(iv_p)

        # print(T, S0, K, iv_c, iv_p)
    df['iv_c'] = iv_c_list
    df['iv_p'] = iv_p_list
    df['iv_a'] = (df['iv_c'] + df['iv_p']) / 2

    df = df[[
        'date', 'time', 'pz', 'symbol', 'atm', 'obj', 'close_C', 'close_P',
        'iv_c', 'iv_p', 'iv_a'
    ]]
    return df
Esempio n. 2
0
def df_iv(basic, df):
    """
    输入:df,包含字段 dt, symbol, close, close_obj
    """
    try:
        r = 0.03
        fn = get_dss() + 'fut/cfg/opt_mature.csv'
        df2 = pd.read_csv(fn)
        df2 = df2[pd.notnull(df2.flag)]
        df2 = df2.set_index('symbol')
        mature_dict = dict(df2.mature)

        iv_list = []
        for i, row in df.iterrows():
            strike = get_contract(row.symbol).strike
            opt_flag = get_contract(row.symbol).opt_flag
            date_mature = mature_dict[basic]
            date_mature = datetime.strptime(date_mature, '%Y-%m-%d')
            td = datetime.strptime(row['dt'][:10], '%Y-%m-%d')
            T = float((date_mature - td).days) / 365  # 剩余期限
            T = 0.0015 if T == 0 else T  # 最后一天特殊处理

            try:
                if opt_flag == 'C':
                    iv = bsm_call_imp_vol(row.close_obj, strike, T, r,
                                          row.close)
                else:
                    iv = bsm_put_imp_vol(row.close_obj, strike, T, r,
                                         row.close)
            except:
                iv = 0
            iv_list.append(round(100 * iv, 2))

        df['iv'] = iv_list
        df['value'] = df['iv']
        df2 = df.set_index('dt')
        df2 = df2.sort_index()
        df2 = df2[['value']]
        df2.index.name = df.index.name
        return df2
    except Exception as e:
        s = traceback.format_exc()
        to_log(s)

        return None
Esempio n. 3
0
    def calc_iv(self, basic, flag, S0, K, C0):
        r = 0.03
        fn = get_dss() + 'fut/cfg/opt_mature.csv'
        df2 = pd.read_csv(fn)
        df2 = df2[df2.pz == df2.pz]  # 筛选出不为空的记录
        df2 = df2.set_index('symbol')
        mature_dict = dict(df2.mature)
        date_mature = mature_dict[basic]
        date_mature = datetime.strptime(date_mature, '%Y-%m-%d')
        td = datetime.now()
        T = float((date_mature - td).days) / 365  # 剩余期限

        skew = 0
        if flag == 'C':
            skew = bsm_call_imp_vol(S0, K, T, r, C0)
        if flag == 'P':
            skew = bsm_put_imp_vol(S0, K, T, r, C0)

        return skew
Esempio n. 4
0
def calc_greeks_common(symbol, row, S0, is_call, r, today, mature_dict, term,
                       K):
    """
    计算新下载数据的希腊字母值,保存到yyyy-dd_greeks.csv文件
    Parameters:
    S0: 标的价格
    K:  行权价格
    T:  剩余期限,已做年化处理
    r:  固定无风险短期利率
    C0:期权价格
    """

    C0 = float(row['LastPrice'])  # 期权价格
    date_mature = mature_dict[term]
    date_mature = datetime.strptime(date_mature, '%Y-%m-%d')
    td = datetime.strptime(today, '%Y-%m-%d')
    T = float((date_mature - td).days) / 365  # 剩余期限
    # print(S0, K, C0, T)

    if is_call == True:
        n = 1
        iv = bsm_call_imp_vol(S0, K, T, r, C0)
    else:
        n = -1
        iv = bsm_put_imp_vol(S0, K, T, r, C0)

    row['obj'] = S0
    row['delta'] = delta(S0, K, r, T, iv, n)
    row['gamma'] = gamma(S0, K, r, T, iv)
    row['theta'] = theta(S0, K, r, T, iv, n)
    row['vega'] = vega(S0, K, r, T, iv)
    row['iv'] = iv

    df2 = pd.DataFrame([row])
    df2.index.name = 'Instrument'
    fn2 = get_dss() + 'opt/' + today[:7] + '_greeks.csv'
    if os.path.exists(fn2):
        df2.to_csv(fn2, mode='a', header=None)
    else:
        df2.to_csv(fn2)
Esempio n. 5
0
def skew_now_show(basic, date):
    # 获得上一个交易日,用于确定差值的基准
    symbol_obj = 'IF' + basic[2:]
    fn = get_dss() + 'fut/bar/day_' + symbol_obj + '.csv'
    df = pd.read_csv(fn)
    df = df[df.date <= date]
    if date == df.iat[-1, 0]:
        date_pre = df.iat[-2, 0]
    else:
        date_pre = df.iat[-1, 0]

    # 取开盘数据的atm
    fn = get_dss() + 'fut/put/rec/min5_' + symbol_obj + '.csv'
    df = pd.read_csv(fn)
    df = df[df.date == date]
    df1 = df[df.time == '09:34:00']
    if len(df1) == 0:
        return '当前日期无数据'

    rec = df1.iloc[0, :]
    obj = rec.close
    gap = 50
    atm = int(round(round(obj * (100 / gap) / 1E4, 2) * 1E4 / (100 / gap),
                    0))  # 获得平值

    fn = get_dss() + 'fut/put/rec/min5_' + basic + '-C-' + str(atm) + '.csv'
    df_atm_c = pd.read_csv(fn)
    df_atm_c = df_atm_c[df_atm_c.date == date]

    fn = get_dss() + 'fut/put/rec/min5_' + basic + '-P-' + str(atm) + '.csv'
    df_atm_p = pd.read_csv(fn)
    df_atm_p = df_atm_p[df_atm_p.date == date]

    fn = get_dss() + 'fut/put/rec/min5_' + basic + '-C-' + str(atm + 2 *
                                                               gap) + '.csv'
    df_right_c = pd.read_csv(fn)
    df_right_c = df_right_c[df_right_c.date == date]

    fn = get_dss() + 'fut/put/rec/min5_' + basic + '-P-' + str(atm + 2 *
                                                               gap) + '.csv'
    df_right_p = pd.read_csv(fn)
    df_right_p = df_right_p[df_right_p.date == date]

    fn = get_dss() + 'fut/put/rec/min5_' + basic + '-C-' + str(atm - 2 *
                                                               gap) + '.csv'
    df_left_c = pd.read_csv(fn)
    df_left_c = df_left_c[df_left_c.date == date]

    fn = get_dss() + 'fut/put/rec/min5_' + basic + '-P-' + str(atm - 2 *
                                                               gap) + '.csv'
    df_left_p = pd.read_csv(fn)
    df_left_p = df_left_p[df_left_p.date == date]

    df = df.reset_index()
    df_atm_c = df_atm_c.reset_index()
    df_atm_p = df_atm_p.reset_index()
    df_right_c = df_right_c.reset_index()
    df_right_p = df_right_p.reset_index()
    df_left_c = df_left_c.reset_index()
    df_left_p = df_left_p.reset_index()

    r = 0.03
    fn = get_dss() + 'fut/cfg/opt_mature.csv'
    df2 = pd.read_csv(fn)
    df2 = df2[df2.pz == 'IO']  # 筛选出不为空的记录
    df2 = df2.set_index('symbol')
    mature_dict = dict(df2.mature)
    date_mature = mature_dict[basic]
    date_mature = datetime.strptime(date_mature, '%Y-%m-%d')
    td = datetime.strptime(date, '%Y-%m-%d')
    T = float((date_mature - td).days) / 365  # 剩余期限

    skew_c_list = []
    skew_p_list = []
    # skew_mean_c_list = []
    # skew_mean_p_list = []
    skew_mean_list = []

    for i, row in df.iterrows():
        try:
            S0 = row.close
            iv_atm_c = bsm_call_imp_vol(S0, atm, T, r, df_atm_c.at[i, 'close'])
            iv_atm_p = bsm_put_imp_vol(S0, atm, T, r, df_atm_p.at[i, 'close'])
            iv_right_c = bsm_call_imp_vol(S0, atm + 2 * gap, T, r,
                                          df_right_c.at[i, 'close'])
            iv_right_p = bsm_put_imp_vol(S0, atm + 2 * gap, T, r,
                                         df_right_p.at[i, 'close'])
            iv_left_c = bsm_call_imp_vol(S0, atm - 2 * gap, T, r,
                                         df_left_c.at[i, 'close'])
            iv_left_p = bsm_put_imp_vol(S0, atm - 2 * gap, T, r,
                                        df_left_p.at[i, 'close'])

            skew_c_list.append(
                round(100 * (iv_right_c - iv_atm_c) / iv_atm_c, 2))
            skew_p_list.append(
                round(100 * (iv_left_p - iv_atm_p) / iv_atm_p, 2))
            # skew_mean_c_list.append( round( 100*( iv_right_c + iv_right_p - iv_atm_c - iv_atm_p ) / (iv_atm_c + iv_atm_p), 2) )
            # skew_mean_p_list.append( round( 100*( iv_left_c  + iv_left_p  - iv_atm_c - iv_atm_p ) / (iv_atm_c + iv_atm_p), 2) )
            skew_mean_list.append(
                round(
                    100 * (iv_right_c + iv_right_p - iv_left_c - iv_left_p) /
                    (iv_left_c + iv_left_p), 2))
        except:
            break

    plt.figure(figsize=(13, 7))
    plt.title(basic + '   ' + str(atm))
    plt.xticks(rotation=90)
    plt.plot(skew_c_list, label='c')
    plt.plot(skew_p_list, label='p')
    # plt.plot(skew_mean_c_list, label='mean_c')
    # plt.plot(skew_mean_p_list, label='mean_p')
    plt.plot(skew_mean_list, label='mean')
    plt.legend()

    fn = 'static/skew_show.jpg'
    plt.savefig(fn)
    plt.cla()

    rr = ''
    fn = 'skew_show.jpg'
    now = str(int(time.time()))
    rr = '<img src=\"static/' + fn + '?rand=' + now + '\" />'
    return rr
Esempio n. 6
0
def iv_min5_show(symbol_list, date):
    plt.figure(figsize=(13, 7))
    plt.title(date)

    for symbol in symbol_list:
        basic = get_contract(symbol).basic
        strike = get_contract(symbol).strike
        opt_flag = get_contract(symbol).opt_flag

        if basic[:2] == 'IO':
            symbol_obj = 'IF' + basic[2:]
        else:
            symbol_obj = basic

        fn = get_dss() + 'fut/put/rec/min5_' + symbol_obj + '.csv'
        df_obj = pd.read_csv(fn)
        df_obj = df_obj.set_index(['date', 'time'])
        df_obj['close_obj'] = df_obj['close']
        df_obj = df_obj[['close_obj']]
        # print(df_obj.tail())

        fn = get_dss() + 'fut/put/rec/min5_' + symbol + '.csv'
        df = pd.read_csv(fn)
        df = df[df.date == date]
        df = df.set_index(['date', 'time'])
        # print(df.tail())

        df = df.join(df_obj)
        df = df.dropna()
        df = df.reset_index()
        df = df.set_index('time')
        # print(df.tail())

        r = 0.03
        fn = get_dss() + 'fut/cfg/opt_mature.csv'
        df2 = pd.read_csv(fn)
        df2 = df2[df2.flag == df2.flag]  # 筛选出不为空的记录
        df2 = df2.set_index('symbol')
        mature_dict = dict(df2.mature)
        date_mature = mature_dict[basic]
        date_mature = datetime.strptime(date_mature, '%Y-%m-%d')
        td = datetime.strptime(date, '%Y-%m-%d')
        T = float((date_mature - td).days) / 365  # 剩余期限

        iv_list = []
        for i, row in df.iterrows():
            try:
                if opt_flag == 'C':
                    iv = bsm_call_imp_vol(row.close_obj, strike, T, r,
                                          row.close)
                else:
                    iv = bsm_put_imp_vol(row.close_obj, strike, T, r,
                                         row.close)
                iv_list.append(round(100 * iv, 2))
            except:
                break
        df['iv'] = iv_list
        plt.plot(df.iv, label=symbol)

    plt.xticks(rotation=90)
    plt.legend()

    fn = 'static/iv_min5_show.jpg'
    plt.savefig(fn)
    plt.cla()

    rr = ''
    fn = 'iv_min5_show.jpg'
    now = str(int(time.time()))
    rr = '<img src=\"static/' + fn + '?rand=' + now + '\" />'
    return rr