Esempio n. 1
0
    def setUp(self):
        # tmp file to aggregate to
        _, self.nc_out_filename = tempfile.mkstemp()

        pwd = os.path.dirname(__file__)
        self.files = sorted(glob.glob(os.path.join(pwd, "data", "*.nc")))
        self.config = Config.from_nc(self.files[0])
Esempio n. 2
0
    def test_collapse_second_dim(self):
        config = Config.from_nc(self.inputs[0])
        config.dims["b"].update({"flatten": True, "index_by": "b"})
        l = generate_aggregation_list(config, self.inputs)
        evaluate_aggregation_list(config, l, self.filename)
        with nc.Dataset(self.filename) as nc_out:  # type: nc.Dataset
            # This is the more practically useful method of aggregation,
            # where, for example, the dimension "a" might represent time
            # and dim "b" is maybe satellite, or event, etc. (something that,
            # at any point in time, there could be an arbitrary number of).

            # flatten b dimension, should turn out like:

            # [[0 -- --]
            #  [1 -- --]
            #  [2 -- --]
            #  [3 3 --]
            #  [4 4 --]
            #  [5 5 --]
            #  [6 6 6]
            #  [7 7 7]
            #  [8 8 8]]
            c = nc_out.variables["c"][:]
            self.assertEqual(c.shape, (9, 3))
            self.assertEqual(np.sum(c), 90)
            self.assertEqual(np.ma.count_masked(c), 9)
            for i, a in enumerate(["a", "b", "c"]):
                self.assertEqual(nc_out.variables["b"][i], a)
Esempio n. 3
0
    def setUpClass(cls):
        super(TestEvaluateAggregationList, cls).setUpClass()
        pwd = os.path.dirname(__file__)
        cls.start_time = datetime(2017, 3, 16, 15, 27)
        cls.end_time = datetime(2017, 3, 16, 15, 28)
        cls.files = glob.glob(os.path.join(pwd, "data", "*.nc"))

        cls.config = Config.from_nc(cls.files[0])
        cls.config.dims["report_number"].update({
            "index_by": "OB_time",
            "min": cls.
            start_time,  # for convenience, will convert according to index_by units if this is datetime
            "max": cls.end_time,
            "other_dim_indicies": {
                "samples_per_record": 0
            },
            "expected_cadence": {
                "report_number": 1,
                "number_samples_per_report": 10,
            },
        })
        _, cls.filename = tempfile.mkstemp()
        agg_list = generate_aggregation_list(cls.config, cls.files)
        logger.info(agg_list)
        evaluate_aggregation_list(cls.config, agg_list, cls.filename)
        cls.output = nc.Dataset(cls.filename, "r")
Esempio n. 4
0
 def setUp(self):
     _, self.file = tempfile.mkstemp()
     pwd = os.path.dirname(__file__)
     self.files = glob.glob(os.path.join(pwd, "data", "*.nc"))
     self.config = Config.from_nc(self.files[0])
     self.config.dims["time"].update(
         {"index_by": "time", "expected_cadence": {"time": 10},}
     )
Esempio n. 5
0
 def setUp(self):
     _, self.file = tempfile.mkstemp()
     pwd = os.path.dirname(__file__)
     self.files = glob.glob(os.path.join(pwd, "data", "*.nc"))
     self.config = Config.from_nc(self.files[0])
     self.config.dims["report_number"].update(
         {
             "index_by": "OB_time",
             "other_dim_indicies": {"samples_per_record": 0},
             "expected_cadence": {
                 "report_number": 1,
                 "number_samples_per_report": 10,
             },
         }
     )
Esempio n. 6
0
 def setUpClass(cls):
     super(TestEvaluateAggregationList, cls).setUpClass()
     pwd = os.path.dirname(__file__)
     cls.start_time = datetime(2017, 6, 8, 16, 45)
     cls.end_time = datetime(2017, 6, 8, 16, 50)
     cls.files = glob.glob(os.path.join(pwd, "data", "*.nc"))
     cls.config = Config.from_nc(cls.files[0])
     cls.config.dims["report_number"].update(
         {
             "index_by": "L1a_SciData_TimeStamp",
             "min": cls.start_time,  # for convenience, will convert according to index_by units if this is datetime
             "max": cls.end_time,
             "expected_cadence": {"report_number": 1, "sensor_unit": 0},
         }
     )
     _, cls.filename = tempfile.mkstemp()
     agg_list = generate_aggregation_list(cls.config, cls.files)
     evaluate_aggregation_list(cls.config, agg_list, cls.filename)
     cls.output = nc.Dataset(cls.filename, "r")
Esempio n. 7
0
 def setUpClass(cls):
     super(TestEvaluateAggregationList, cls).setUpClass()
     pwd = os.path.dirname(__file__)
     cls.start_time = datetime(2017, 4, 14, 19, 23)
     cls.end_time = datetime(2017, 4, 14, 20, 30)
     cls.files = glob.glob(os.path.join(pwd, "data", "*.nc"))
     cls.files = glob.glob(os.path.join(pwd, "data", "*.nc"))
     cls.config = Config.from_nc(cls.files[0])
     cls.config.dims["time"].update(
         {
             "index_by": "time",
             "min": cls.start_time,  # for convenience, will convert according to index_by units if this is datetime
             "max": cls.end_time,
             "expected_cadence": {"time": 10},
         }
     )
     _, cls.filename = tempfile.mkstemp()
     agg_list = generate_aggregation_list(cls.config, cls.files)
     evaluate_aggregation_list(cls.config, agg_list, cls.filename)
     cls.output = nc.Dataset(cls.filename, "r")
Esempio n. 8
0
    def test_default_multi_dim(self):
        config = Config.from_nc(self.inputs[0])
        l = generate_aggregation_list(config, self.inputs)
        evaluate_aggregation_list(config, l, self.filename)
        with nc.Dataset(self.filename) as nc_out:  # type: nc.Dataset
            # this is the default aggregation produced by aggregation
            # along both unlimited dimensions. This isn't really practically
            # useful, but, by our "basic" definition of aggregation along unlitimed
            # dimensions is correct. Need to make sure we get what's expected.

            # [[0 -- -- -- -- --]
            #  [1 -- -- -- -- --]
            #  [2 -- -- -- -- --]
            #  [-- 3 3 -- -- --]
            #  [-- 4 4 -- -- --]
            #  [-- 5 5 -- -- --]
            #  [-- -- -- 6 6 6]
            #  [-- -- -- 7 7 7]
            #  [-- -- -- 8 8 8]]
            c = nc_out.variables["c"][:]
            self.assertEqual(c.shape, (9, 6))
            self.assertEqual(np.sum(c), 90)
            self.assertEqual(np.ma.count_masked(c), 36)
Esempio n. 9
0
    def setUpClass(cls):
        super(TestEvaluateAggregationList, cls).setUpClass()
        pwd = os.path.dirname(__file__)

        cls.start_time = datetime(2018, 1, 17, 15, 5)
        cls.end_time = datetime(2018, 1, 17, 15, 56)
        cls.files = glob.glob(os.path.join(pwd, "data", "*.nc"))
        cls.config = Config.from_nc(cls.files[0])
        cls.config.dims["report_number"].update(
            {
                "index_by": "ELF_StartStopTime",
                "min": cls.start_time,  # for convenience, will convert according to index_by units if this is datetime
                "max": cls.end_time,
                "expected_cadence": {
                    "report_number": 1.0 / (5.0 * 60.0),
                    "number_of_time_bounds": 1.0 / ((5.0 * 60.0) - 1),
                },
                "size": None,
            }
        )
        _, cls.filename = tempfile.mkstemp()
        agg_list = generate_aggregation_list(cls.config, cls.files)
        evaluate_aggregation_list(cls.config, agg_list, cls.filename)
        cls.output = nc.Dataset(cls.filename, "r")
Esempio n. 10
0
    def setUp(self):
        _, self.file = tempfile.mkstemp()

        pwd = os.path.dirname(__file__)
        self.files = glob.glob(os.path.join(pwd, "data", "*.nc"))[:2]
        self.config = Config.from_nc(self.files[0])
 def setUp(self):
     self.config = Config.from_nc(test_input_file)
Esempio n. 12
0
 def setUp(self):
     self.config = Config.from_nc(another_input_file)