Esempio n. 1
0
    def test_maximum_violation(self):
        def expectation_values(measurement, outcomes):
            exp_values = []
            for k in range(len(measurement)):
                exp_value = 0
                for j in range(len(measurement[k])):
                    exp_value += outcomes[k][j] * measurement[k][j]
                exp_values.append(exp_value)
            return exp_values

        E = generate_operators('E', 8, hermitian=True)
        M, outcomes = [], []
        for i in range(4):
            M.append([E[2 * i], E[2 * i + 1]])
            outcomes.append([1, -1])
        A = [M[0], M[1]]
        B = [M[2], M[3]]
        substitutions = projective_measurement_constraints(A, B)
        C = expectation_values(M, outcomes)
        chsh = -(C[0] * C[2] + C[0] * C[3] + C[1] * C[2] - C[1] * C[3])
        sdpRelaxation = SdpRelaxation(E, verbose=0)
        sdpRelaxation.get_relaxation(1,
                                     objective=chsh,
                                     substitutions=substitutions)
        sdpRelaxation.solve()
        self.assertTrue(abs(sdpRelaxation.primal + 2 * np.sqrt(2)) < 10e-5)
Esempio n. 2
0
 def test_ground_state(self):
     length, n, h, U, t = 2, 0.8, 3.8, -6, 1
     fu = generate_operators('fu', length)
     fd = generate_operators('fd', length)
     _b = flatten([fu, fd])
     monomials = [[ci for ci in _b]]
     monomials[-1].extend([Dagger(ci) for ci in _b])
     monomials.append([cj * ci for ci in _b for cj in _b])
     monomials.append([Dagger(cj) * ci for ci in _b for cj in _b])
     monomials[-1].extend([cj * Dagger(ci) for ci in _b for cj in _b])
     monomials.append([Dagger(cj) * Dagger(ci) for ci in _b for cj in _b])
     hamiltonian = 0
     for j in range(length):
         hamiltonian += U * (Dagger(fu[j]) * Dagger(fd[j]) * fd[j] * fu[j])
         hamiltonian += -h / 2 * (Dagger(fu[j]) * fu[j] -
                                  Dagger(fd[j]) * fd[j])
         for k in get_neighbors(j, len(fu), width=1):
             hamiltonian += -t * Dagger(fu[j]) * fu[k] - t * Dagger(
                 fu[k]) * fu[j]
             hamiltonian += -t * Dagger(fd[j]) * fd[k] - t * Dagger(
                 fd[k]) * fd[j]
     momentequalities = [n - sum(Dagger(br) * br for br in _b)]
     sdpRelaxation = SdpRelaxation(_b, verbose=0)
     sdpRelaxation.get_relaxation(-1,
                                  objective=hamiltonian,
                                  momentequalities=momentequalities,
                                  substitutions=fermionic_constraints(_b),
                                  extramonomials=monomials)
     sdpRelaxation.solve()
     s = 0.5 * (sum((Dagger(u) * u) for u in fu) - sum(
         (Dagger(d) * d) for d in fd))
     magnetization = sdpRelaxation[s]
     self.assertTrue(abs(magnetization - 0.021325317328560453) < 10e-5)
Esempio n. 3
0
 def test_guessing_probability(self):
     p = [
         0.5, 0.5, 0.5, 0.5, 0.4267766952966368, 0.4267766952966368,
         0.4267766952966368, 0.07322330470336313
     ]
     P = Probability([2, 2], [2, 2])
     behaviour_constraint = [
         P([0], [0], 'A') - p[0],
         P([0], [1], 'A') - p[1],
         P([0], [0], 'B') - p[2],
         P([0], [1], 'B') - p[3],
         P([0, 0], [0, 0]) - p[4],
         P([0, 0], [0, 1]) - p[5],
         P([0, 0], [1, 0]) - p[6],
         P([0, 0], [1, 1]) - p[7]
     ]
     behaviour_constraint.append("-0[0,0]+1.0")
     sdpRelaxation = SdpRelaxation(P.get_all_operators(),
                                   normalized=False,
                                   verbose=0)
     sdpRelaxation.get_relaxation(1,
                                  objective=-P([0], [0], 'A'),
                                  momentequalities=behaviour_constraint,
                                  substitutions=P.substitutions)
     sdpRelaxation.solve()
     self.assertTrue(abs(sdpRelaxation.primal + 0.5) < 10e-5)
Esempio n. 4
0
 def setUp(self):
     X = generate_operators('x', 2, hermitian=True)
     self.sdpRelaxation = SdpRelaxation(X)
     self.sdpRelaxation.get_relaxation(2,
                                       objective=X[0] * X[1] + X[1] * X[0],
                                       inequalities=[-X[1]**2 + X[1] + 0.5],
                                       substitutions={X[0]**2: X[0]})
Esempio n. 5
0
def __main__():
    # chsh quantum bound : 4
    # mermin quantum bound : 4
    # svetlichny quantum bound 4sqrt(2) ~ 5.65

    P = Probability([2, 2], [2, 2], [2, 2])
    Chsh = chsh(P)
    Mermin = mermin(P)
    Svetlichny = svetlichny(P)

    dx = 0
    div = 1.0
    step = 0.4
    lim = 5.6
    x = []
    y = []
    while dx <= lim:

        print(dx)
        ineq = []
        ineq.append(Svetlichny - dx)
        ineq.append(-1 * Svetlichny + dx)
        sdpRelaxation = SdpRelaxation(P.get_all_operators(), verbose=0)
        sdpRelaxation.get_relaxation(2,
                                     substitutions=P.substitutions,
                                     inequalities=ineq)
        sdpRelaxation.set_objective(-Chsh)
        solve_sdp(sdpRelaxation, solver="cvxopt")
        x.append(dx)
        y.append(abs(sdpRelaxation.primal) / div)
        dx = dx + step

    plt.plot(x, y, 'k')
    plt.show()
Esempio n. 6
0
 def test_solving(self):
     x = generate_variables('x', 2, commutative=True)
     g0 = 4 * x[0] ** 2 + x[0] * x[1] - 4 * x[1] ** 2 - \
         2.1 * x[0] ** 4 + 4 * x[1] ** 4 + x[0] ** 6 / 3
     sdpRelaxation = SdpRelaxation(x)
     sdpRelaxation.get_relaxation(3, objective=g0)
     sdpRelaxation.solve()
     self.assertTrue(abs(sdpRelaxation.primal + 1.0316282672706911) < 10e-5)
Esempio n. 7
0
 def test_solving_with_sdpa(self):
     x = generate_variables('x', 2, commutative=True)
     sdpRelaxation = SdpRelaxation(x)
     sdpRelaxation.get_relaxation(2, objective=x[0]*x[1] + x[1]*x[0],
                                  inequalities=[-x[1]**2 + x[1] + 0.5],
                                  substitutions={x[0]**2: x[0]})
     sdpRelaxation.solve(solver="sdpa")
     self.assertTrue(abs(sdpRelaxation.primal + 0.7320505301965234) < 10e-5)
Esempio n. 8
0
 def test_maximum_violation(self):
     I = [[0, -1, 0], [-1, 1, 1], [0, 1, -1]]
     P = Probability([2, 2], [2, 2])
     relaxation = SdpRelaxation(P.get_all_operators())
     relaxation.get_relaxation(1,
                               objective=define_objective_with_I(I, P),
                               substitutions=P.substitutions,
                               extramonomials=P.get_extra_monomials('AB'))
     relaxation.solve()
     self.assertTrue(abs(relaxation.primal + (np.sqrt(2) - 1) / 2) < 10e-5)
Esempio n. 9
0
 def test_chordal_extension(self):
     X = generate_variables('x', 3, commutative=True)
     inequalities = [1-X[0]**2-X[1]**2, 1-X[1]**2-X[2]**2]
     sdpRelaxation = SdpRelaxation(X)
     sdpRelaxation.get_relaxation(2,
                                  objective=X[1] - 2*X[0]*X[1] + X[1]*X[2],
                                  inequalities=inequalities,
                                  chordal_extension=True)
     sdpRelaxation.solve()
     self.assertTrue(abs(sdpRelaxation.primal + 2.2443690631722637) < 10e-5)
Esempio n. 10
0
 def test_ground_state_energy(self):
     N = 3
     a = generate_operators('a', N)
     substitutions = bosonic_constraints(a)
     hamiltonian = sum(Dagger(a[i]) * a[i] for i in range(N))
     sdpRelaxation = SdpRelaxation(a, verbose=0)
     sdpRelaxation.get_relaxation(1, objective=hamiltonian,
                                  substitutions=substitutions)
     sdpRelaxation.solve()
     self.assertTrue(abs(sdpRelaxation.primal) < 10e-5)
Esempio n. 11
0
 def test_max_cut(self):
     W = np.diag(np.ones(8), 1) + np.diag(np.ones(7), 2) + \
         np.diag([1, 1], 7) + np.diag([1], 8)
     W = W + W.T
     Q = (np.diag(np.dot(np.ones(len(W)).T, W)) - W) / 4
     x = generate_variables('x', len(W), commutative=True)
     equalities = [xi ** 2 - 1 for xi in x]
     objective = -np.dot(x, np.dot(Q, np.transpose(x)))
     sdpRelaxation = SdpRelaxation(x)
     sdpRelaxation.get_relaxation(1, objective=objective,
                                  equalities=equalities,
                                  removeequalities=True)
     sdpRelaxation.solve()
     self.assertTrue(abs(sdpRelaxation.primal + 13.5) < 10e-5)
Esempio n. 12
0
@author: Peter Wittek
"""

from ncpol2sdpa import generate_variables, SdpRelaxation, write_to_sdpa

# Number of variables
n_vars = 2
# Level of relaxation
level = 2

# Get commutative variables
X = generate_variables(n_vars, commutative=True)

# Define the objective function
obj = X[0] * X[1] + X[1] * X[0]

# Inequality constraints
inequalities = [-X[1]**2 + X[1] + 0.5]

# Simple monomial substitutions
monomial_substitution = {}
monomial_substitution[X[0]**2] = X[0]

# Obtain SDP relaxation
sdpRelaxation = SdpRelaxation(X)
sdpRelaxation.get_relaxation(level,
                             objective=obj,
                             inequalities=inequalities,
                             substitutions=monomial_substitution)
write_to_sdpa(sdpRelaxation, 'example_commutative.dat-s')
Esempio n. 13
0
Kim, S. & Kojima, M. (2012). Exploiting Sparsity in SDP Relaxation of
Polynomial Optimization Problems. In Handbook on Semidefinite, Conic and
Polynomial Optimization. Springer, 2012, 499--531.

Created on Sun Nov 30 19:18:04 2014

@author: Peter Wittek
"""

from ncpol2sdpa import generate_variables, SdpRelaxation, solve_sdp

# Number of variables
n_vars = 3
# Level of relaxation
level = 2

# Get commutative variables
X = generate_variables(n_vars, commutative=True)

# Define the objective function
obj = X[1] - 2 * X[0] * X[1] + X[1] * X[2]

# Inequality constraints
inequalities = [1 - X[0]**2 - X[1]**2, 1 - X[1]**2 - X[2]**2]

# Obtain SDP relaxation
sdpRelaxation = SdpRelaxation(X, hierarchy="npa_chordal")
sdpRelaxation.get_relaxation(level, objective=obj, inequalities=inequalities)
print(solve_sdp(sdpRelaxation))
# Number of variables
N = 3

# Parameters for the Hamiltonian
hbar, omega = 1, 1

# Define ladder operators
a = generate_variables(N, name='a')

hamiltonian = 0
for i in range(N):
    hamiltonian += hbar * omega * (Dagger(a[i]) * a[i] + 0.5)

substitutions, equalities = bosonic_constraints(a)
inequalities = []

time0 = time.time()
# Obtain SDP relaxation
print("Obtaining SDP relaxation...")
sdpRelaxation = SdpRelaxation(a, verbose=1)
sdpRelaxation.get_relaxation(level, objective=hamiltonian,
                             equalities=equalities,
                             substitutions=substitutions,
                             removeequalities=True)
# Export relaxation to SDPA format
print("Writing to disk...")
write_to_sdpa(sdpRelaxation, 'harmonic_oscillator.dat-s')

print('%0.2f s' % ((time.time() - time0)))
Esempio n. 15
0
# -*- coding: utf-8 -*-
"""
This script replicates the results of gloptipolydemo.m, which is packaged with
Gloptipoly3.

Created on Thu May 15 11:16:58 2014

@author: wittek
"""
from sympy.physics.quantum.operator import HermitianOperator
from ncpol2sdpa import SdpRelaxation, write_to_sdpa

# Get commutative variables
x1 = HermitianOperator("x1")
x1.is_commutative = True
x2 = HermitianOperator("x2")
x2.is_commutative = True

g0 = 4 * x1 ** 2 + x1 * x2 - 4 * x2 ** 2 - \
    2.1 * x1 ** 4 + 4 * x2 ** 4 + x1 ** 6 / 3

# Obtain SDP relaxation
sdpRelaxation = SdpRelaxation([x1, x2])
sdpRelaxation.get_relaxation(3, objective=g0)
write_to_sdpa(sdpRelaxation, 'gloptipoly_demo.dat-s')