Esempio n. 1
0
def index():
    if request.method == "POST":
        print(request.files)

        if ('file4' not in request.files) or ('file8' not in request.files):
            flash('No files Selected.')
            return redirect(request.url)
        file4 = request.files['file4']
        file8 = request.files['file8']
        # if user does not select file, browser also
        # submit an empty part without filename
        if file4.filename == '' or file8.filename == '':
            flash('Please Select files for both band')
            return redirect(request.url)
        if file4 and file8 and allowed_file(file4.filename) and allowed_file(
                file8.filename):
            filename4 = secure_filename(file4.filename)
            filename8 = secure_filename(file8.filename)
            dest = Path('static/NDVI.tiff')
            try:
                ndvi(filename4, filename8, str(dest))
            except Exception as ex:
                flash("Internal Error")
                print(ex)
                redirect(request.url)
            else:
                return send_from_directory('static',
                                           'NDVI.tiff',
                                           as_attachment=True)
        else:
            flash("Only tiff and jp2 files are allowed.")
            redirect(request.url)

    return render_template("base.html")
Esempio n. 2
0
from gdal import Open
from ndvi import ndvi


# Abrindo banda NIR
nir_tiff = Open(r'NIR_IMAGE.tif')
#nir_tiff = Open(r'nir.tif')
nir_band = nir_tiff.GetRasterBand(1)

# Abrindo banda RED.
red_tiff = Open(r'RED_IMAGE.tif')
#red_tiff = Open(r'red.tif') 
red_band = red_tiff.GetRasterBand(1)

# Get the rows and cols from one of the images (both should always be the same)
rows, cols, geotransform = nir_tiff.RasterYSize, nir_tiff.RasterXSize, nir_tiff.GetGeoTransform()
print(geotransform)

# Arquivo de saida 16-bit (0-255)
out_tiff_int16 = r'NDVI_16.tif'

# Arquivo de saida 32-bit floating point (-1 to 1)
out_tiff_float32 = r'NDVI_32.tif'

# Gerando imagem  NDVI 16-bit integer
ndvi(nir_band, red_band, rows, cols, geotransform, out_tiff_int16, gdal.GDT_UInt16)

# Gerando imagem NDVI 32-bit floating point
ndvi(nir_band, red_band, rows, cols, geotransform, out_tiff_float32, gdal.GDT_Float32)

print('done')
Esempio n. 3
0
import gdal
from gdal import Open
from ndvi import ndvi

# Open NIR image and get its only band.
nir_tiff = Open(r'NIR_IMAGE.tif')
nir_band = nir_tiff.GetRasterBand(1)

# Open red image and get its only band.
red_tiff = Open(r'RED_IMAGE.tif')
red_band = red_tiff.GetRasterBand(1)

# Get the rows and cols from one of the images (both should always be the same)
rows, cols, geotransform = nir_tiff.RasterYSize, nir_tiff.RasterXSize, nir_tiff.GetGeoTransform()
print(geotransform)

# Set an output for a 16-bit unsigned integer (0-255)
out_tiff_int16 = r'NDVI_INT16.tif'

# Set the output for a 32-bit floating point (-1 to 1)
out_tiff_float32 = r'NDVI_FLOAT32.tif'

# Run the function for unsigned 16-bit integer
ndvi(nir_band, red_band, rows, cols, geotransform, out_tiff_int16, gdal.GDT_UInt16)

# Run the function for 32-bit floating point
ndvi(nir_band, red_band, rows, cols, geotransform, out_tiff_float32, gdal.GDT_Float32)

print('done')
Esempio n. 4
0
print(red_band)
blue_tiff = Open(r'BLUE_IMAGE.tif')
blue_band = blue_tiff.GetRasterBand(1)

green_tiff = Open(r'GREEN_IMAGE.tif')
green_band = green_tiff.GetRasterBand(1)

swir_tiff = Open(r'SWIR_IMAGE.tif')
swir_band = swir_tiff.GetRasterBand(1)

mir_tiff = Open(r'MIR_IMAGE.tif')
mir_band = mir_tiff.GetRasterBand(1)

(rows, cols) = (nir_tiff.RasterYSize, nir_tiff.RasterXSize)

ndvi_value = ndvi(nir_band, red_band, rows, cols)
print(ndvi_value)
ndv = nan_to_num(result)
print(ndv, "sd")
result = ndvi_value
row = len(result) - 1
col = len(result[0]) - 729
i = 0
sum = 0
for i in range(row):
    j = 0
    for j in range(col):
        prev = sum
        sum += result[i, j]
denom = row * col
ndvi_value = sum / denom
Esempio n. 5
0
import gdal
from gdal import Open
from ndvi import ndvi

# Open NIR image and get its only band.
nir_tiff = Open(r'NIR_IMAGE.tif')
nir_band = nir_tiff.GetRasterBand(1)

# Open red image and get its only band.
red_tiff = Open(r'RED_IMAGE.tif')
red_band = red_tiff.GetRasterBand(1)

# Get the rows and cols from one of the images (both should always be the same)
rows, cols, geotransform = nir_tiff.RasterYSize, nir_tiff.RasterXSize, nir_tiff.GetGeoTransform(
)
print(geotransform)

# Set the output for a 32-bit floating point (-1 to 1)
out_tiff_float32 = r'NDVI_FLOAT32.tif'

# Run the function for 32-bit floating point
ndvi(nir_band, red_band, rows, cols, geotransform, out_tiff_float32)

print('done')
Esempio n. 6
0
def do_ndvi():
    "do_ndvi(): function to read MODIS refl HDF file and calculate NDVI"

    ifile = 'MOD09GA.A2004154.h19v10.005.2008152141836.hdf'
    title = ifile
    ofile = 0
    red = 'sur_refl_b01_1'
    nir = 'sur_refl_b02_1'

    xmin = 0
    xmax = 500
    ymin = 0
    ymax = 500

    xlabel = 'Col'
    ylabel = 'Row'

    # min and max values for colourbar on plot
    ndvimin = 0.1
    ndvimax = 0.8

    # default plot value
    plot = 1

    if options.ifile:
        ifile = options.ifile

    if options.ofile:
        ofile = options.ofile

    if options.sdsName:
        sdsName = options.sdsName

    # read HDF file
    md = hdf_utils.r(ifile)

    if options.v:
        # o/p file datasets
        sys.stderr.write('ifile: %s\n' % (ifile))
        md.datasets()

    sds_red = md.select(red)
    sds_nir = md.select(nir)

    # do we have extract i.e. xmin, xmax, ymin, ymax?
    if options.xmin:
        xmin = options.xmin
    if options.ymin:
        ymin = options.ymin
    if options.xmax:
        xmax = options.xmax
    if options.ymax:
        ymax = options.ymax

    # scale ndvi values?
    if options.ndvimin:
        ndvimin = options.ndvimin
    if options.ndvimax:
        ndvimax = options.ndvimax

    if options.xlabel:
        xlabel = options.xlabel

    if options.ylabel:
        ylabel = options.ylabel

    if options.title:
        title = options.title

    # check dims
    if (sds_red.dimensions('XDim').values()[0][0] !=
            sds_nir.dimensions('XDim').values()[0][0]) or (
                sds_red.dimensions('YDim').values()[0][0] !=
                sds_nir.dimensions('YDim').values()[0][0]):
        sys.stderr.write(
            '%s: dimension error - x, y dims of SDS %s and %s do not match\n' %
            (ifile, red, nir))

    # get extract if required, and cast to float32
    if (options.xmin or options.ymin or options.xmax or options.ymax):
        sds_red = np.float32(sds_red[xmin:xmax, ymin:ymax])
        sds_nir = np.float32(sds_nir[xmin:xmax, ymin:ymax])
        n = np.zeros([xmax - xmin, ymax - ymin])
    else:
        xdim = sds_red.dimensions('XDim').values()[0][0]
        ydim = sds_red.dimensions('YDim').values()[0][0]
        sds_red = np.float32(sds_red[0:xdim, 0:ydim])
        sds_nir = np.float32(sds_nir[0:xdim, 0:ydim])
        n = np.zeros([xdim, ydim])

    # calculate ndvi from bands 1, 2
    n = ndvi.ndvi(sds_red, sds_nir)

    # clip if required
    np.clip(n, -1., 1., out=n)

    if options.v:
        # o/p file datasets
        sys.stderr.write('ifile: %s\n' % (ifile))
        md.datasets()

    if options.plot:
        # o/p file datasets
        plot = 1

    if plot:
        plot_me.plot(n, title, xlabel, ylabel, 'NDVI', ofile, ndvimin, ndvimax)