Esempio n. 1
0
    def test_regression_case(self):
        config = create_configuration(filename='/regression-siso.json')
        config.parallel_evaluation = False

        genome = Genome(key=1)
        genome.create_random_genome()

        dataset = get_dataset(config.dataset,
                              train_percentage=config.train_percentage,
                              testing=True)

        n_samples = 3
        network = ComplexStochasticNetwork(genome=genome)

        x, y_true, output_distribution = calculate_prediction_distribution(
            network,
            dataset=dataset,
            problem_type=config.problem_type,
            is_testing=True,
            n_samples=n_samples,
            use_sigmoid=False)
        expected_output_distribution_shape = [
            len(y_true), n_samples, config.n_output
        ]
        self.assertEqual(list(output_distribution.shape),
                         expected_output_distribution_shape)
Esempio n. 2
0
    def _calculate_possible_inputs_when_adding_connection(
            genome: Genome, out_node_key: int, config: BaseConfiguration):
        # all nodes
        possible_input_keys_set = set(genome.node_genes.keys()).union(
            set(genome.get_input_nodes_keys()))

        # no connection between two output nodes
        possible_input_keys_set -= set(genome.get_output_nodes_keys())

        if config.feed_forward:
            # avoid self-recurrency
            possible_input_keys_set -= {out_node_key}
            # pass

        # REMOVE POSSIBLE CONNECTIONS
        possible_connection_set = set(
            itertools.product(list(possible_input_keys_set), [out_node_key]))

        # remove already existing connections: don't duplicate connections
        possible_connection_set -= set(genome.connection_genes.keys())

        # remove possible connections that introduce cycles
        possible_connection_set = \
            ArchitectureMutation._remove_connection_that_introduces_cycles(genome=genome,
                                                                           possible_connection_set=possible_connection_set)

        # # remove possible connections that introduce multihop jumps
        # possible_connection_set = \
        #     Mutation._remove_connection_that_introduces_multihop_jumps(genome=genome,
        #                                                                possible_connection_set=possible_connection_set)
        if len(possible_connection_set) == 0:
            return []
        possible_input_keys_set = list(zip(*list(possible_connection_set)))[0]
        return possible_input_keys_set
Esempio n. 3
0
def generate_genome_with_hidden_units(n_input, n_output, n_hidden=3):
    # nodes
    node_genes = {}
    for i in range(n_output + n_hidden):
        node_genes = add_node(node_genes, key=i)

    # connections
    # input to hidden
    connection_genes = {}
    input_hidden_tuples = list(
        product(list(range(-1, -n_input - 1, -1)),
                list(range(n_output, n_output + n_hidden))))
    for tuple_ in input_hidden_tuples:
        connection_genes = add_connection(connection_genes, key=tuple_)

    # hidden to output
    hidden_output_tuples = list(
        product(list(range(n_output, n_output + n_hidden)),
                list(range(0, n_output))))
    for tuple_ in hidden_output_tuples:
        connection_genes = add_connection(connection_genes, key=tuple_)

    # initialize genome
    genome = Genome(key=1)
    genome.node_genes = node_genes
    genome.connection_genes = connection_genes
    return genome
Esempio n. 4
0
def plot_genome_network(genome: Genome, filename='./network.png', view=True):
    return plot_network(nodes=list(genome.node_genes.keys()),
                        edges=list(genome.connection_genes.keys()),
                        input_nodes=genome.get_input_nodes_keys(),
                        output_nodes=genome.get_output_nodes_keys(),
                        filename=filename,
                        view=view)
Esempio n. 5
0
    def initialze_network(self, **kwargs):
        number_hidden_nodes = kwargs['number_hidden_nodes']
        number_genes = kwargs['number_genes']
        new_weight_range = kwargs['new_weight_range']
        genome = Genome()
        genes = []

        genome.allocate_hidden_nodes(number_hidden_nodes)

        self.input_node1 = genome.add_input_node()
        self.input_node2 = genome.add_input_node()

        self.output_node = genome.add_output_node()

        genes.append(
            Gene(0, self.output_node,
                 new_weight_range - 2 * new_weight_range * random.random()))
        genes.append(
            Gene(self.input_node1, self.output_node,
                 new_weight_range - 2 * new_weight_range * random.random()))
        genes.append(
            Gene(self.input_node2, self.output_node,
                 new_weight_range - 2 * new_weight_range * random.random()))

        genome.set_genes(genes)

        genome.allocate_genes(number_genes)

        return Network(genome)
Esempio n. 6
0
    def test_mate(self):
        Genome.reset()

        for pair in Genome.GENE_INNOVATION_PAIRS:
            print(pair[0])
            print(pair[1])

        genome_parent_1 = TestGenome()
        genome_parent_2 = TestGenome()
        genome_child = TestGenome()

        network_parent_1 = Network(genome_parent_1)
        network_parent_2 = Network(genome_parent_2)
        network_child = Network(genome_child)

        genome_parent_1.add_new_node(0)
        genome_parent_2.add_new_node(1)
        genome_child.add_new_node(2)

        Genome.mate(genome_parent_1, genome_parent_2, genome_child)

        network_child.set_up(genome_child)

        for i in range(-1, -4, -1):
            self.assertTrue(network_child.genome.genes[i].enabled)
            self.assertTrue(network_child.genome.genes[i].used)

        self.assertEqual(network_child.genome.genes[3].innovation, 1)
        self.assertEqual(network_child.genome.genes[4].innovation, 2)
        self.assertEqual(network_child.genome.genes[5].innovation, 3)
Esempio n. 7
0
    def test_execute(self):
        Genome.reset()
        network = XORNetwork()

        value_11 = 1
        value_12 = 0

        value_21 = 0
        value_22 = 1

        value_31 = 0
        value_32 = 0

        value_41 = 1
        value_42 = 1

        input_values_node_ids1 = [(value_11, network.input_node_id_1),
                                  (value_12, network.input_node_id_2)]
        input_values_node_ids2 = [(value_21, network.input_node_id_1),
                                  (value_22, network.input_node_id_2)]
        input_values_node_ids3 = [(value_31, network.input_node_id_1),
                                  (value_32, network.input_node_id_2)]
        input_values_node_ids4 = [(value_41, network.input_node_id_1),
                                  (value_42, network.input_node_id_2)]

        results1 = network.execute(input_values_node_ids1)
        results2 = network.execute(input_values_node_ids2)
        results3 = network.execute(input_values_node_ids3)
        results4 = network.execute(input_values_node_ids4)

        self.assertEqual(int(value_11 != value_12), round(results1[5]))
        self.assertEqual(int(value_21 != value_22), round(results2[5]))
        self.assertEqual(int(value_31 != value_32), round(results3[5]))
        self.assertEqual(int(value_41 != value_42), round(results4[5]))
Esempio n. 8
0
	def test_add_node(self):
		Genome.reset()

		genome = Genome()

		genome.allocate_hidden_nodes(3)

		input_node_id_1 = genome.add_input_node()
		input_node_id_2 = genome.add_input_node()

		hidden_node_id_1 = genome.add_hidden_node()
		hidden_node_id_2 = genome.add_hidden_node()
		hidden_node_id_3 = genome.add_hidden_node()

		output_node_id_1 = genome.add_output_node()
		output_node_id_2 = genome.add_output_node()

		#Inserted check
		self.assertTrue(input_node_id_1 in range(len(genome.nodes)))
		self.assertTrue(input_node_id_2 in range(len(genome.nodes)))

		self.assertTrue(hidden_node_id_1 in range(len(genome.nodes)))
		self.assertTrue(hidden_node_id_2 in range(len(genome.nodes)))
		self.assertTrue(hidden_node_id_3 in range(len(genome.nodes)))

		self.assertTrue(output_node_id_1 in range(len(genome.nodes)))
		self.assertTrue(output_node_id_2 in range(len(genome.nodes)))

		#Added to output ndoes check
		self.assertFalse(input_node_id_1 in genome.output_nodes_ids)
		self.assertFalse(input_node_id_2 in genome.output_nodes_ids)

		self.assertFalse(hidden_node_id_1 in genome.output_nodes_ids)
		self.assertFalse(hidden_node_id_2 in genome.output_nodes_ids)
		self.assertFalse(hidden_node_id_3 in genome.output_nodes_ids)

		self.assertTrue(output_node_id_1 in genome.output_nodes_ids)
		self.assertTrue(output_node_id_2 in genome.output_nodes_ids)

		#Type set check
		self.assertEqual(genome.nodes[input_node_id_1].type, Type.INPUT)
		self.assertEqual(genome.nodes[input_node_id_2].type, Type.INPUT)

		self.assertEqual(genome.nodes[hidden_node_id_1].type, Type.HIDDEN)
		self.assertEqual(genome.nodes[hidden_node_id_2].type, Type.HIDDEN)
		self.assertEqual(genome.nodes[hidden_node_id_3].type, Type.HIDDEN)

		self.assertEqual(genome.nodes[output_node_id_1].type, Type.OUTPUT)
		self.assertEqual(genome.nodes[output_node_id_2].type, Type.OUTPUT)

		#ID set check
		self.assertEqual(genome.nodes[input_node_id_1].id, input_node_id_1)
		self.assertEqual(genome.nodes[input_node_id_2].id, input_node_id_2)

		self.assertEqual(genome.nodes[hidden_node_id_1].id, hidden_node_id_1)
		self.assertEqual(genome.nodes[hidden_node_id_2].id, hidden_node_id_2)
		self.assertEqual(genome.nodes[hidden_node_id_3].id, hidden_node_id_3)

		self.assertEqual(genome.nodes[output_node_id_1].id, output_node_id_1)
		self.assertEqual(genome.nodes[output_node_id_2].id, output_node_id_2)
Esempio n. 9
0
def generate_genome_given_graph(graph, connection_weights):
    genome = Genome(key='foo')

    unique_node_keys = []
    input_nodes = []
    for connection in graph:
        for node_key in connection:
            if node_key not in unique_node_keys:
                unique_node_keys.append(node_key)

            if node_key < 0:
                input_nodes.append(node_key)
    input_nodes = set(input_nodes)

    unique_node_keys = list(
        set(unique_node_keys + genome.get_output_nodes_keys()) - input_nodes)
    nodes = {}
    for node_key in unique_node_keys:
        node = NodeGene(key=node_key).random_initialization()
        node.set_mean(0)
        node.set_std(STD)
        nodes[node_key] = node

    connections = {}
    for connection_key, weight in zip(graph, connection_weights):
        connection = ConnectionGene(key=connection_key)
        connection.set_mean(weight)
        connection.set_std(STD)
        connections[connection_key] = connection

    genome.connection_genes = connections
    genome.node_genes = nodes
    return genome
    def create(self):
        genomes = []
        for i in range(self.genome_params.population_size):
            g = Genome(self.genome_params)
            g.connect()
            genomes.append(g)

        return genomes
Esempio n. 11
0
    def breed(self):
        c1 = self.clients.select_random()
        c2 = self.clients.select_random()

        if c1.score > c2.score:
            return Genome.crossover(c1.genome, c2.genome)
        elif c1.score < c2.score:
            return Genome.crossover(c2.genome, c1.genome)
        else:
            return Genome.crossover(c1.genome, c2.genome, equal=True)
Esempio n. 12
0
 def setUp(self):
     self.config = Config('../tests/conf_tester.conf')
     NodeGene.counter = 1
     LinkGene.innovation_counter = 0
     self.test_node_genes = [NodeGene(node_type='INPUT',),
                             NodeGene(node_type='INPUT'),
                             NodeGene(node_type='OUTPUT'),
                             NodeGene(node_type='OUTPUT')]
     self.test_link_genes = [LinkGene(2, 3, weight=1), LinkGene(1, 3, weight=1)]
     self.genome = Genome(self.config, node_genes=self.test_node_genes, link_genes=self.test_link_genes)
Esempio n. 13
0
def generate_genome_without_hidden_units():
    # output nodes
    node_genes = {}
    node_genes = add_node(node_genes, key=0)

    connection_genes = {}
    connection_genes = add_connection(connection_genes, key=(-1, 0))
    connection_genes = add_connection(connection_genes, key=(-2, 0))

    genome = Genome(key=1)
    genome.node_genes = node_genes
    genome.connection_genes = connection_genes
    return genome
Esempio n. 14
0
    def initialize_population(self):
        population = {}
        for i in range(self.pop_size):
            key = next(self.genome_indexer)
            if self.config.initial_genome_filename is None:
                genome = Genome(key=key)
                genome.create_random_genome()
            else:
                filename = self.config.initial_genome_filename
                genome = Genome.create_from_file(filename=filename, key=key)

            population[key] = genome
            self.ancestors[key] = tuple()
        return population
Esempio n. 15
0
    def test_classification_case(self):
        config = create_configuration(filename='/classification-miso.json')
        genome = Genome(key=1)
        genome.create_random_genome()
        n_samples = 5

        estimator = PredictionDistributionEstimatorGenome(genome=genome, config=config, testing=True,
                                                          n_samples=n_samples)\
            .estimate() \
            .enrich_with_dispersion_quantile() \
            .calculate_metrics_by_dispersion_quantile()

        results = estimator.results
        self.assertTrue(isinstance(results, pd.DataFrame))
Esempio n. 16
0
    def _remove_connection_that_introduces_multihop_jumps(
            genome: Genome, possible_connection_set: set) -> set:
        output_node_keys = genome.get_output_nodes_keys()
        input_node_keys = genome.get_input_nodes_keys()
        connections_to_remove = []
        for connection in possible_connection_set:
            connections = list(genome.connection_genes.keys()) + [connection]

            if adds_multihop_jump(connections=connections,
                                  output_node_keys=output_node_keys,
                                  input_node_keys=input_node_keys):
                connections_to_remove.append(connection)
        possible_connection_set -= set(connections_to_remove)
        return possible_connection_set
Esempio n. 17
0
	def test_distance(self):
		Genome.reset()

		genome1 = TestGenome3()
		genome2 = TestGenome2()
		species = Species(genome1)

		genome2.add_new_node(0)

		distance1 = species.compare(genome1)
		distance2 = species.compare(genome2)

		self.assertEqual(distance1, 0.0)
		self.assertEqual(distance2, 2.0/3.0)
Esempio n. 18
0
 def test_genome_doesnt_create_inputs_as_sinks(self):
     link_tester = [LinkGene(0, 1), LinkGene(3, 2), LinkGene(2, 4)]
     try:
         genome = Genome(self.config, node_genes=self.test_node_genes, link_genes=link_tester)
         self.fail("Genome should raise exception if input is sink")
     except ValueError:
         pass
Esempio n. 19
0
 def test_genome_doesnt_create_duplicate_links(self):
     link_tester = [LinkGene(0, 3), LinkGene(1, 3), LinkGene(2, 4)]
     try:
         genome = Genome(self.config, node_genes=self.test_node_genes, link_genes=link_tester)
         self.fail("Genome should raise exception if duplicate links exist")
     except AssertionError:
         pass
Esempio n. 20
0
 def test_genome_only_links_to_valid_nodes(self):
     link_tester = [LinkGene(0, 3), LinkGene(1, 3), LinkGene(2, 4), LinkGene(0, 5)]
     try:
         genome = Genome(self.config, node_genes=self.test_node_genes, link_genes=link_tester)
         self.fail("Genome should raise exception if link connects to non-existing node")
     except ValueError:
         pass
Esempio n. 21
0
def convert_stochastic_network_to_genome(network: ComplexStochasticNetwork, original_genome: Genome = None, fitness=None,
                                         fix_std=True) -> Genome:
    if original_genome is None:
        raise ValueError('Not implemented')

    genome = original_genome.copy()

    for layer_index in range(network.n_layers):
        stochastic_linear_layer = getattr(network, f'layer_{layer_index}')
        layer = network.layers[layer_index]

        for bias_index, node_key in enumerate(layer.output_keys):
            # if node_key in genome.node_genes.keys():
            genome.node_genes[node_key].set_mean(stochastic_linear_layer.qb_mean[bias_index])
            if fix_std:
                bias_logvar = DEFAULT_LOGVAR
            else:
                bias_logvar = stochastic_linear_layer.qb_logvar[bias_index]
            genome.node_genes[node_key].set_log_var(bias_logvar)

        for connection_input_index, input_node_key in enumerate(layer.input_keys):
            for connection_output_index, output_node_key in enumerate(layer.output_keys):
                connection_key = (input_node_key, output_node_key)
                mean = stochastic_linear_layer.qw_mean[connection_output_index, connection_input_index]
                if fix_std:
                    weight_logvar = DEFAULT_LOGVAR
                else:
                    weight_logvar = stochastic_linear_layer.qw_logvar[connection_output_index, connection_input_index]
                if connection_key in genome.connection_genes.keys():
                    genome.connection_genes[connection_key].set_mean(mean)
                    genome.connection_genes[connection_key].set_log_var(weight_logvar)

    genome.fitness = fitness

    return genome
Esempio n. 22
0
 def test_genome_needs_right_number_output_genes(self):
     try:
         self.config.num_outputs = 3
         genome = Genome(self.config, node_genes=self.test_node_genes)
         self.config.num_outputs = 2
         self.fail("Should raise exception if n_outputs does not match number of output genes")
     except AssertionError:
         pass
Esempio n. 23
0
 def test_draw_random_phenome(self):
     self.config.num_inputs = 3
     self.config.num_outputs = 3
     gen = Genome(self.config)
     phenome = FeedForwardPhenome(genome=gen, config=self.config)
     self.config.num_inputs = 2
     self.config.num_outputs = 2
     phenome.draw(testing=True)
Esempio n. 24
0
    def _get_execution_configuration(self, report):
        genome_dict = report.data['best_individual']
        best_individual_fitness = report.data['best_individual_fitness']
        print(f'Fitness of best individual: {best_individual_fitness}')

        genome = Genome.from_dict(genome_dict)
        config = genome.genome_config
        return config
Esempio n. 25
0
 def test_genome_does_not_allow_duplicate_node_indices(self):
     print(len(self.test_node_genes))
     self.test_node_genes[0].idx = 1
     self.test_node_genes[1].idx = 1
     try:
         genome = Genome(self.config, node_genes=self.test_node_genes)
     except AssertionError:
         pass
Esempio n. 26
0
    def test_mutate_delete_connection(self):
        genome = Genome(key='foo').create_random_genome()

        possible_connections_to_delete = \
            set(ArchitectureMutation._calculate_possible_connections_to_delete(genome=genome))
        expected_possible_connections_to_delete = {(-1, 0), (-2, 0)}
        self.assertSetEqual(expected_possible_connections_to_delete,
                            possible_connections_to_delete)
Esempio n. 27
0
 def _read_population(self, generation):
     file_dir = self._get_configuration_directory()
     filename = f'{file_dir}/generation_{generation}_population.json'
     _wait_for_file_to_be_available(filename=filename, timeout=60)
     genomes = read_json_file_to_dict(filename=filename)
     population = {}
     for genome_dict in genomes:
         genome = Genome.create_from_julia_dict(genome_dict)
         population[genome.key] = genome
     return population
Esempio n. 28
0
 def test_randomly_created_genome(self):
     config = self.config
     config.num_outputs = 3
     config.num_inputs = 3
     genome = Genome(config)
     self.config = Config('../tests/conf_tester.conf')
     assert len(genome.output_genes) == 3, \
         "Genome should have 3 outputs, has %i" % len(genome.output_genes)
     assert len(genome.input_genes) == 3, \
         "Genome should have 3 inputs, has %i" % len(genome.input_genes)
Esempio n. 29
0
    def test_mutate_delete_connection_when_two_input_one_hidden(self):
        self.config.n_initial_hidden_neurons = 1
        genome = Genome(key='foo').create_random_genome()

        possible_connections_to_delete = set(
            ArchitectureMutation._calculate_possible_connections_to_delete(
                genome=genome))
        expected_possible_connections_to_delete = {(-1, 1), (-2, 1), (1, 0)}
        self.assertSetEqual(expected_possible_connections_to_delete,
                            possible_connections_to_delete)
Esempio n. 30
0
    def test_genome_json(self):
        """Test whether genome objects can be saved to and loaded from JSON."""
        genome = GenomeUnitTest.generate_genome()

        dump = json.dumps(genome.to_json())
        genome_load = Genome.from_json(json.loads(dump))

        self.assertEqual(len(genome), len(genome_load))
        self.assertEqual(
            genome.connection_genes.union(genome_load.connection_genes),
            genome.connection_genes)