Esempio n. 1
0
def test_conv_onchip(Simulator, plt):
    """Tests a fully on-chip conv connection. """
    from nengo._vendor.npconv2d.conv2d import conv2d

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array([[1, 2, 1, 2, 0], [2, 3, 2, 1, 1], [1, 2, 1, 2, 3],
                      [2, 3, 2, 1, 1], [1, 2, 1, 2, 0]],
                     dtype=float)
    image /= image.max()

    input_scale = 119.
    bias = input_scale * image.ravel()

    neuron_type = nengo.SpikingRectifiedLinear()

    y_ref = LoihiSpikingRectifiedLinear().rates(image.ravel(), input_scale, 0)
    y_ref = conv2d(y_ref.reshape(1, 5, 5, 1),
                   kernel.reshape(3, 3, 1, 1),
                   pad='VALID')
    y_ref = LoihiSpikingRectifiedLinear().rates(y_ref.ravel(), 1.,
                                                0.).reshape(3, 3)

    with nengo.Network() as net:
        a = nengo.Ensemble(bias.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([0]),
                           bias=bias)

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(5, 5, 1),
                                                 init=kernel.reshape(
                                                     3, 3, 1, 1))

        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([1]),
                           bias=nengo.dists.Choice([0]))

        nengo.Connection(a.neurons, b.neurons, transform=transform)
        bp = nengo.Probe(b.neurons, synapse=nengo.Alpha(0.02))

    with Simulator(net) as sim:
        sim.run(0.3)

    y_ref = y_ref / input_scale
    y = sim.data[bp][-1].reshape(3, -1) / input_scale

    plt.subplot(121)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(122)
    plt.imshow(y)
    plt.colorbar()

    assert np.allclose(y, y_ref, atol=0.02, rtol=0.1)
Esempio n. 2
0
 def step_conv():
     Y[...] += conv2d.conv2d(X, W, pad=pad, stride=stride)[0]
Esempio n. 3
0
 def step_conv():
     Y[...] += conv2d.conv2d(X, W, pad=pad, stride=stride)[0]
Esempio n. 4
0
def test_convolution(dimensions, padding, channels_last, fixed_kernel,
                     Simulator, allclose, rng, seed):
    input_d = 4
    input_channels = 2
    output_channels = 5
    kernel_d = 3
    kernel_size = (kernel_d, ) if dimensions == 1 else (kernel_d, kernel_d)
    output_d = input_d - kernel_d // 2 * 2 if padding == "valid" else input_d

    input_shape = (input_d, input_channels)
    kernel_shape = (kernel_d, input_channels, output_channels)
    output_shape = (output_d, output_channels)

    if dimensions == 2:
        input_shape = (input_d, ) + input_shape
        kernel_shape = (kernel_d, ) + kernel_shape
        output_shape = (output_d, ) + output_shape

    if not channels_last:
        input_shape = tuple(np.roll(input_shape, 1))
        output_shape = tuple(np.roll(output_shape, 1))

    with nengo.Network(seed=seed) as net:
        x = rng.randn(*input_shape)
        w = rng.randn(
            *kernel_shape) if fixed_kernel else nengo.dists.Uniform(-0.1, 0.1)

        a = nengo.Node(np.ravel(x))
        b = nengo.Node(size_in=np.prod(output_shape))
        conn = nengo.Connection(
            a,
            b,
            synapse=None,
            transform=nengo.Convolution(
                output_channels,
                input_shape,
                init=w,
                padding=padding,
                kernel_size=kernel_size,
                strides=(1, ) if dimensions == 1 else (1, 1),
                channels_last=channels_last,
            ),
        )
        p = nengo.Probe(b)

        # check error handling
        bad_in = nengo.Node([0])
        bad_out = nengo.Node(size_in=5)
        with pytest.raises(ValidationError):
            nengo.Connection(bad_in, b, transform=conn.transform)
        with pytest.raises(ValidationError):
            nengo.Connection(a, bad_out, transform=conn.transform)

    assert conn.transform.output_shape.shape == output_shape
    assert conn.transform.kernel_shape == kernel_shape

    with Simulator(net) as sim:
        sim.step()

    weights = sim.data[conn].weights
    if not channels_last:
        x = np.moveaxis(x, 0, -1)
    if dimensions == 1:
        x = x[:, None, :]
        weights = weights[:, None, :, :]
    truth = conv2d.conv2d(x[None, ...], weights, pad=padding.upper())[0]
    if not channels_last:
        truth = np.moveaxis(truth, -1, 0)

    assert allclose(sim.data[p][0], np.ravel(truth))
Esempio n. 5
0
def test_conv_preslice(Simulator, plt):
    from nengo._vendor.npconv2d.conv2d import conv2d

    kernel = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]], dtype=float)
    kernel /= kernel.max()

    image = np.array([[1, 2, 1, 2, 0], [2, 3, 2, 1, 1], [1, 2, 1, 2, 3],
                      [2, 3, 2, 1, 1], [1, 2, 1, 2, 0]],
                     dtype=float)
    image /= image.max()

    image2 = np.column_stack([c * x for c in image.T for x in (1, -1)])

    input_gain = 149.

    neuron_type = nengo.SpikingRectifiedLinear()

    y_ref = LoihiSpikingRectifiedLinear().rates(image.ravel(), input_gain, 0)
    y_ref = conv2d(y_ref.reshape(1, 5, 5, 1),
                   kernel.reshape(3, 3, 1, 1),
                   pad='VALID')
    y_ref = LoihiSpikingRectifiedLinear().rates(y_ref.ravel(), 1.,
                                                0.).reshape(3, 3)

    with nengo.Network() as net:
        u = nengo.Node(image2.ravel())
        a = nengo.Ensemble(50,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([input_gain]),
                           bias=nengo.dists.Choice([0]))

        transform = nengo_transforms.Convolution(n_filters=1,
                                                 input_shape=(5, 5, 1),
                                                 init=kernel.reshape(
                                                     3, 3, 1, 1))

        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([1]),
                           bias=nengo.dists.Choice([0]))

        nengo.Connection(u, a.neurons, synapse=None)
        nengo.Connection(a.neurons[::2], b.neurons, transform=transform)
        bp = nengo.Probe(b.neurons, synapse=nengo.Alpha(0.02))

    hw_opts = dict(snip_max_spikes_per_step=100)
    with Simulator(net, hardware_options=hw_opts) as sim:
        sim.run(0.3)

    y_ref = y_ref / input_gain
    y = sim.data[bp][-1].reshape(3, -1) / input_gain

    plt.subplot(121)
    plt.imshow(y_ref)
    plt.colorbar()
    plt.subplot(122)
    plt.imshow(y)
    plt.colorbar()

    assert np.allclose(y, y_ref, atol=0.02, rtol=0.1)
Esempio n. 6
0
def test_convolution(
        dimensions,
        padding,
        channels_last,
        fixed_kernel,
        Simulator,
        rng,
        seed):
    input_d = 4
    input_channels = 2
    output_channels = 5
    kernel_d = 3
    kernel_size = (kernel_d,) if dimensions == 1 else (kernel_d, kernel_d)
    output_d = input_d - kernel_d // 2 * 2 if padding == "valid" else input_d

    input_shape = (input_d, input_channels)
    kernel_shape = (kernel_d, input_channels, output_channels)
    output_shape = (output_d, output_channels)

    if dimensions == 2:
        input_shape = (input_d,) + input_shape
        kernel_shape = (kernel_d,) + kernel_shape
        output_shape = (output_d,) + output_shape

    if not channels_last:
        input_shape = tuple(np.roll(input_shape, 1))
        output_shape = tuple(np.roll(output_shape, 1))

    with nengo.Network(seed=seed) as net:
        x = rng.randn(*input_shape)
        w = (rng.randn(*kernel_shape) if fixed_kernel
             else nengo.dists.Uniform(-0.1, 0.1))

        a = nengo.Node(np.ravel(x))
        b = nengo.Node(size_in=np.prod(output_shape))
        conn = nengo.Connection(
            a, b,
            synapse=None,
            transform=nengo.Convolution(
                output_channels,
                input_shape,
                init=w,
                padding=padding,
                kernel_size=kernel_size,
                strides=(1,) if dimensions == 1 else (1, 1),
                channels_last=channels_last))
        p = nengo.Probe(b)

        # check error handling
        bad_in = nengo.Node([0])
        bad_out = nengo.Node(size_in=5)
        with pytest.raises(ValidationError):
            nengo.Connection(bad_in, b, transform=conn.transform)
        with pytest.raises(ValidationError):
            nengo.Connection(a, bad_out, transform=conn.transform)

    assert conn.transform.output_shape.shape == output_shape
    assert conn.transform.kernel_shape == kernel_shape

    with Simulator(net) as sim:
        sim.step()

    weights = sim.data[conn].weights
    if not channels_last:
        x = np.moveaxis(x, 0, -1)
    if dimensions == 1:
        x = x[:, None, :]
        weights = weights[:, None, :, :]
    truth = conv2d.conv2d(x[None, ...], weights, pad=padding.upper())[0]
    if not channels_last:
        truth = np.moveaxis(truth, -1, 0)

    assert np.allclose(sim.data[p][0], np.ravel(truth))