def test_thalamus(Simulator, plt, seed): model = spa.SPA(seed=seed) with model: model.vision = spa.Buffer(dimensions=16, neurons_per_dimension=80) model.vision2 = spa.Buffer(dimensions=16, neurons_per_dimension=80) model.motor = spa.Buffer(dimensions=16, neurons_per_dimension=80) model.motor2 = spa.Buffer(dimensions=32, neurons_per_dimension=80) actions = spa.Actions( 'dot(vision, A) --> motor=A, motor2=vision*vision2', 'dot(vision, B) --> motor=vision, motor2=vision*A*~B', 'dot(vision, ~A) --> motor=~vision, motor2=~vision*vision2') model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg) def input_f(t): if t < 0.1: return 'A' elif t < 0.3: return 'B' elif t < 0.5: return '~A' else: return '0' model.input = spa.Input(vision=input_f, vision2='B*~A') input, vocab = model.get_module_input('motor') input2, vocab2 = model.get_module_input('motor2') p = nengo.Probe(input, 'output', synapse=0.03) p2 = nengo.Probe(input2, 'output', synapse=0.03) sim = Simulator(model) sim.run(0.5) t = sim.trange() data = vocab.dot(sim.data[p].T) data2 = vocab2.dot(sim.data[p2].T) plt.subplot(2, 1, 1) plt.plot(t, data.T) plt.subplot(2, 1, 2) plt.plot(t, data2.T) # Action 1 assert data[0, t == 0.1] > 0.8 assert data[1, t == 0.1] < 0.2 assert data2[0, t == 0.1] < 0.35 assert data2[1, t == 0.1] > 0.4 # Action 2 assert data[0, t == 0.3] < 0.2 assert data[1, t == 0.3] > 0.8 assert data2[0, t == 0.3] > 0.5 assert data2[1, t == 0.3] < 0.3 # Action 3 assert data[0, t == 0.5] > 0.8 assert data[1, t == 0.5] < 0.2 assert data2[0, t == 0.5] < 0.5 assert data2[1, t == 0.5] > 0.4
def model(self, p): model = spa.SPA() with model: model.vision = spa.Buffer(dimensions=p.D) model.phrase = spa.Buffer(dimensions=p.D) model.motor = spa.Buffer(dimensions=p.D) model.noun = spa.Memory(dimensions=p.D, synapse=0.1) model.verb = spa.Memory(dimensions=p.D, synapse=0.1) model.bg = spa.BasalGanglia( spa.Actions( 'dot(vision, WRITE) --> verb=vision', 'dot(vision, ONE+TWO+THREE) --> noun=vision', '0.5*(dot(vision, NONE-WRITE-ONE-TWO-THREE) + ' 'dot(phrase, WRITE*VERB))' '--> motor=phrase*~NOUN', )) model.thal = spa.Thalamus(model.bg) model.cortical = spa.Cortical( spa.Actions( 'phrase=noun*NOUN', 'phrase=verb*VERB', )) def vision_input(t): index = int(t / p.time_per_word) % 3 return ['WRITE', 'ONE', 'NONE'][index] model.input = spa.Input(vision=vision_input) self.motor_vocab = model.get_output_vocab('motor') self.p_thal = nengo.Probe(model.thal.actions.output, synapse=0.03) self.p_motor = nengo.Probe(model.motor.state.output, synapse=0.03) return model
def thalamus_net(d=2, n=20, seed=None): model = spa.SPA(seed=seed) with model: model.vision = spa.Buffer(dimensions=d, neurons_per_dimension=n) model.vision2 = spa.Buffer(dimensions=d, neurons_per_dimension=n) model.motor = spa.Buffer(dimensions=d, neurons_per_dimension=n) model.motor2 = spa.Buffer(dimensions=d * 2, neurons_per_dimension=n) actions = spa.Actions( "dot(vision, A) --> motor=A, motor2=vision*vision2", "dot(vision, B) --> motor=vision, motor2=vision*A*~B", "dot(vision, ~A) --> motor=~vision, motor2=~vision*vision2", ) model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg) def input_f(t): if t < 0.1: return "A" elif t < 0.3: return "B" elif t < 0.5: return "~A" else: return "0" model.input = spa.Input(vision=input_f, vision2="B*~A") return model
def test_routing(Simulator, seed, plt): D = 3 model = spa.SPA(seed=seed) with model: model.ctrl = spa.Buffer(16, label="ctrl") def input_func(t): if t < 0.2: return "A" elif t < 0.4: return "B" else: return "C" model.input = spa.Input(ctrl=input_func) model.buff1 = spa.Buffer(D, label="buff1") model.buff2 = spa.Buffer(D, label="buff2") model.buff3 = spa.Buffer(D, label="buff3") node1 = nengo.Node([0, 1, 0]) node2 = nengo.Node([0, 0, 1]) nengo.Connection(node1, model.buff1.state.input) nengo.Connection(node2, model.buff2.state.input) actions = spa.Actions( "dot(ctrl, A) --> buff3=buff1", "dot(ctrl, B) --> buff3=buff2", "dot(ctrl, C) --> buff3=buff1*buff2", ) model.bg = spa.BasalGanglia(actions) model.thal = spa.Thalamus(model.bg) buff3_probe = nengo.Probe(model.buff3.state.output, synapse=0.03) with Simulator(model) as sim: sim.run(0.6) data = sim.data[buff3_probe] plt.plot(sim.trange(), data) valueA = np.mean(data[150:200], axis=0) # should be [0, 1, 0] valueB = np.mean(data[350:400], axis=0) # should be [0, 0, 1] valueC = np.mean(data[550:600], axis=0) # should be [1, 0, 0] assert valueA[0] < 0.2 assert valueA[1] > 0.8 assert valueA[2] < 0.2 assert valueB[0] < 0.2 assert valueB[1] < 0.2 assert valueB[2] > 0.8 assert valueC[0] > 0.8 assert valueC[1] < 0.2 assert valueC[2] < 0.2
def model(self, p): model = spa.SPA() with model: model.vision = spa.Buffer(dimensions=p.D) model.phrase = spa.Buffer(dimensions=p.D) model.motor = spa.Buffer(dimensions=p.D) model.noun = spa.Memory(dimensions=p.D, synapse=0.1) model.verb = spa.Memory(dimensions=p.D, synapse=0.1) model.bg = spa.BasalGanglia( spa.Actions( 'dot(vision, WRITE) --> verb=vision', 'dot(vision, ONE+TWO+THREE) --> noun=vision', '0.5*(dot(vision, NONE-WRITE-ONE-TWO-THREE) + ' 'dot(phrase, WRITE*VERB))' '--> motor=phrase*~NOUN', )) model.thal = spa.Thalamus(model.bg) model.cortical = spa.Cortical( spa.Actions( 'phrase=noun*NOUN', 'phrase=verb*VERB', )) def vision_input(t): index = int(t / p.time_per_word) % 3 return ['WRITE', 'ONE', 'NONE'][index] model.input = spa.Input(vision=vision_input) self.motor_vocab = model.get_output_vocab('motor') self.p_thal = nengo.Probe(model.thal.actions.output, synapse=0.03) self.p_motor = nengo.Probe(model.motor.state.output, synapse=0.03) split.split_input_nodes(model, max_dim=64) self.replaced = split.split_passthrough(model, max_dim=p.split_max_dim) if p.pass_ensembles > 0: split.pass_ensembles(model, max_dim=p.pass_ensembles) if p.backend == 'nengo_spinnaker': import nengo_spinnaker nengo_spinnaker.add_spinnaker_params(model.config) for node in model.all_nodes: if node.output is None: if node.size_in > p.pf_max_dim: print 'limiting', node model.config[node].n_cores_per_chip = p.pf_cores model.config[node].n_chips = p.pf_n_chips model.config[nengo_spinnaker.Simulator].placer_kwargs = dict( effort=0.1) if p.fixed_seed: for ens in model.all_ensembles: ens.seed = 1 return model
def test_routing_recurrency_compilation(Simulator, seed): D = 2 model = spa.SPA(seed=seed) with model: model.buff1 = spa.Buffer(D, label="buff1") model.buff2 = spa.Buffer(D, label="buff2") actions = spa.Actions("0.5 --> buff2=buff1, buff1=buff2") model.bg = spa.BasalGanglia(actions) model.thal = spa.Thalamus(model.bg) with Simulator(model) as sim: assert sim
def test_thalamus(Simulator): model = spa.SPA(seed=30) with model: model.vision = spa.Buffer(dimensions=16, neurons_per_dimension=80) model.vision2 = spa.Buffer(dimensions=16, neurons_per_dimension=80) model.motor = spa.Buffer(dimensions=16, neurons_per_dimension=80) model.motor2 = spa.Buffer(dimensions=32, neurons_per_dimension=80) actions = spa.Actions( 'dot(vision, A) --> motor=A, motor2=vision*vision2', 'dot(vision, B) --> motor=vision, motor2=vision*A*~B', 'dot(vision, ~A) --> motor=~vision, motor2=~vision*vision2' ) model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg) def input_f(t): if t < 0.1: return 'A' elif t < 0.3: return 'B' elif t < 0.5: return '~A' else: return '0' model.input = spa.Input(vision=input_f, vision2='B*~A') input, vocab = model.get_module_input('motor') input2, vocab2 = model.get_module_input('motor2') p = nengo.Probe(input, 'output', synapse=0.03) p2 = nengo.Probe(input2, 'output', synapse=0.03) sim = Simulator(model) sim.run(0.5) data = vocab.dot(sim.data[p].T) data2 = vocab2.dot(sim.data[p2].T) assert 0.8 < data[0, 100] < 1.1 # Action 1 assert -0.2 < data2[0, 100] < 0.35 assert -0.25 < data[1, 100] < 0.2 assert 0.4 < data2[1, 100] < 0.6 assert -0.2 < data[0, 299] < 0.2 # Action 2 assert 0.6 < data2[0, 299] < 0.95 assert 0.8 < data[1, 299] < 1.1 assert -0.2 < data2[1, 299] < 0.2 assert 0.8 < data[0, 499] < 1.0 # Action 3 assert 0.0 < data2[0, 499] < 0.5 assert -0.2 < data[1, 499] < 0.2 assert 0.4 < data2[1, 499] < 0.7
def test_errors(): # motor does not exist with pytest.raises(SpaParseError): with spa.SPA() as model: model.vision = spa.Buffer(dimensions=16) actions = spa.Actions("0.5 --> motor=A") model.bg = spa.BasalGanglia(actions) # dot products not implemented with pytest.raises(NotImplementedError): with spa.SPA() as model: model.scalar = spa.Buffer(dimensions=16, subdimensions=1) actions = spa.Actions("0.5 --> scalar=dot(scalar, FOO)") model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg)
def test_routing(Simulator): D = 2 model = spa.SPA(seed=123) with model: model.ctrl = spa.Buffer(D, label='ctrl') def input_func(t): if t < 0.25: return 'A' else: return 'B' model.input = spa.Input(ctrl=input_func) model.buff1 = spa.Buffer(D, label='buff1') model.buff2 = spa.Buffer(D, label='buff2') model.buff3 = spa.Buffer(D, label='buff3') node1 = nengo.Node([1, 0]) node2 = nengo.Node([0, 1]) nengo.Connection(node1, model.buff1.state.input) nengo.Connection(node2, model.buff2.state.input) actions = spa.Actions('dot(ctrl, A) --> buff3=buff1', 'dot(ctrl, B) --> buff3=buff2') model.bg = spa.BasalGanglia(actions) model.thal = spa.Thalamus(model.bg) buff1_probe = nengo.Probe(model.buff1.state.output, synapse=0.03) buff2_probe = nengo.Probe(model.buff2.state.output, synapse=0.03) buff3_probe = nengo.Probe(model.buff3.state.output, synapse=0.03) thal_probe = nengo.Probe(model.thal.output, synapse=0.03) sim = nengo.Simulator(model) sim.run(0.5) data1 = sim.data[buff1_probe] data2 = sim.data[buff2_probe] data3 = sim.data[buff3_probe] data_thal = sim.data[thal_probe] trange = sim.trange() assert abs(np.mean(data1[trange < 0.25] - data3[trange < 0.25])) < 0.15 assert abs(np.mean(data2[trange > 0.25] - data3[trange > 0.25])) < 0.15 assert data_thal[249][1] < 0.01 assert data_thal[249][0] > 0.8 assert data_thal[499][1] > 0.8 assert data_thal[499][0] < 0.01
def test_nondefault_routing(Simulator, seed, plt): D = 3 model = spa.SPA(seed=seed) with model: model.ctrl = spa.Buffer(16, label='ctrl') def input_func(t): if t < 0.2: return 'A' elif t < 0.4: return 'B' else: return 'C' model.input = spa.Input(ctrl=input_func) model.buff1 = spa.Buffer(D, label='buff1') model.buff2 = spa.Buffer(D, label='buff2') model.cmp = spa.Compare(D) node1 = nengo.Node([0, 1, 0]) node2 = nengo.Node([0, 0, 1]) nengo.Connection(node1, model.buff1.state.input) nengo.Connection(node2, model.buff2.state.input) actions = spa.Actions('dot(ctrl, A) --> cmp_A=buff1, cmp_B=buff1', 'dot(ctrl, B) --> cmp_A=buff1, cmp_B=buff2', 'dot(ctrl, C) --> cmp_A=buff2, cmp_B=buff2', ) model.bg = spa.BasalGanglia(actions) model.thal = spa.Thalamus(model.bg) compare_probe = nengo.Probe(model.cmp.output, synapse=0.03) sim = Simulator(model) sim.run(0.6) vocab = model.get_output_vocab('cmp') data = sim.data[compare_probe] similarity = np.dot(data, vocab.parse('YES').v) valueA = np.mean(similarity[150:200], axis=0) # should be [1] valueB = np.mean(similarity[350:400], axis=0) # should be [0] valueC = np.mean(similarity[550:600], axis=0) # should be [1] assert valueA > 0.6 assert valueB < 0.3 assert valueC > 0.6
def test_nondefault_routing(Simulator, seed): D = 3 model = spa.SPA(seed=seed) with model: model.ctrl = spa.Buffer(16, label="ctrl") def input_func(t): if t < 0.2: return "A" elif t < 0.4: return "B" else: return "C" model.input = spa.Input(ctrl=input_func) model.buff1 = spa.Buffer(D, label="buff1") model.buff2 = spa.Buffer(D, label="buff2") model.cmp = spa.Compare(D) node1 = nengo.Node([0, 1, 0]) node2 = nengo.Node([0, 0, 1]) nengo.Connection(node1, model.buff1.state.input) nengo.Connection(node2, model.buff2.state.input) actions = spa.Actions( "dot(ctrl, A) --> cmp_A=buff1, cmp_B=buff1", "dot(ctrl, B) --> cmp_A=buff1, cmp_B=buff2", "dot(ctrl, C) --> cmp_A=buff2, cmp_B=buff2", ) model.bg = spa.BasalGanglia(actions) model.thal = spa.Thalamus(model.bg) compare_probe = nengo.Probe(model.cmp.output, synapse=0.03) with Simulator(model) as sim: sim.run(0.6) similarity = sim.data[compare_probe] valueA = np.mean(similarity[150:200], axis=0) # should be [1] valueB = np.mean(similarity[350:400], axis=0) # should be [0] valueC = np.mean(similarity[550:600], axis=0) # should be [1] assert valueA > 0.6 assert valueB < 0.3 assert valueC > 0.6
def model(self, p): model = spa.SPA() with model: model.vision = spa.Buffer(dimensions=p.D) model.state = spa.Memory(dimensions=p.D) actions = ['dot(state, S%d) --> state=S%d' % (i,(i+1)) for i in range(p.n_actions - 1)] actions.append('dot(state, S%d) --> state=vision' % (p.n_actions - 1)) model.bg = spa.BasalGanglia(actions=spa.Actions(*actions)) model.thal = spa.Thalamus(model.bg) model.input = spa.Input(vision='S%d' % p.start, state=lambda t: 'S%d' % p.start if t < 0.1 else '0') self.probe = nengo.Probe(model.thal.actions.output, synapse=0.03) return model
def model(self, p): model = spa.SPA() with model: model.vision = spa.Buffer(dimensions=p.D) model.state = spa.Memory(dimensions=p.D) actions = [ 'dot(state, S%d) --> state=S%d' % (i, (i + 1)) for i in range(p.n_actions - 1) ] actions.append('dot(state, S%d) --> state=vision' % (p.n_actions - 1)) model.bg = spa.BasalGanglia(actions=spa.Actions(*actions)) model.thal = spa.Thalamus(model.bg) model.input = spa.Input(vision='S%d' % p.start, state=lambda t: 'S%d' % p.start if t < 0.1 else '0') self.probe = nengo.Probe(model.thal.actions.output, synapse=0.03) split.split_passthrough(model, max_dim=p.split_max_dim) if p.pass_ensembles > 0: split.pass_ensembles(model, max_dim=p.pass_ensembles) if p.backend == 'nengo_spinnaker': import nengo_spinnaker nengo_spinnaker.add_spinnaker_params(model.config) for node in model.all_nodes: if node.output is None: if node.size_in > p.pf_max_dim: print 'limiting', node model.config[node].n_cores_per_chip = p.pf_cores model.config[node].n_chips = p.pf_n_chips model.config[nengo_spinnaker.Simulator].placer_kwargs = dict( effort=0.1) if p.fixed_seed: for ens in model.all_ensembles: ens.seed = 1 return model
def model(self, p): model = spa.SPA() with model: model.state = spa.Memory(dimensions=p.D) actions = [ 'dot(state, S%d) --> state=S%d' % (i, (i + 1) % p.n_actions) for i in range(p.n_actions) ] model.bg = spa.BasalGanglia(actions=spa.Actions(*actions)) model.thal = spa.Thalamus(model.bg) def state_input(t): if t < 0.1: return 'S0' else: return '0' model.input = spa.Input(state=state_input) self.probe = nengo.Probe(model.thal.actions.output, synapse=0.03) return model
def __init__(self, num_actions): spa.SPA.__init__(self) #Specify the modules to be used self.cortex = spa.Buffer(dimensions=dimensions) # Generate names for actions def int_to_ascii(i): return chr(ord("A") + i) # Generate sequential action names self.action_names = [ int_to_ascii((i / 26) % 26) + int_to_ascii(i % 26) for i in range(num_actions) ] # From this build action mapping action_mappings = [ "dot(cortex, %s) --> cortex = %s" % (a, b) for (a, b) in zip(self.action_names, self.action_names[1:]) ] action_mappings.append("dot(cortex, %s) --> cortex = %s" % (self.action_names[-1], self.action_names[0])) # Build SPA actions actions = spa.Actions(*action_mappings) self.bg = spa.BasalGanglia(actions=actions) self.thal = spa.Thalamus(self.bg) #Specify the input def start(t): if t < 0.05: return self.action_names[0] else: return '0' self.input = spa.Input(cortex=start)
def create_model(): #print trial_info print('---- INTIALIZING MODEL ----') global model model = spa.SPA() with model: #display current stimulus pair (not part of model) if nengo_gui_on and True: model.pair_input = nengo.Node(present_pair) model.pair_display = nengo.Node( display_func, size_in=model.pair_input.size_out) # to show input nengo.Connection(model.pair_input, model.pair_display, synapse=None) # control model.control_net = nengo.Network() with model.control_net: #assuming the model knows which hand to use (which was blocked) model.hand_input = nengo.Node(get_hand) model.target_hand = spa.State(Dmid, vocab=vocab_motor, feedback=1) nengo.Connection(model.hand_input, model.target_hand.input, synapse=None) model.attend = spa.State(D, vocab=vocab_attend, feedback=.5) # vocab_attend model.goal = spa.State(Dlow, vocab=vocab_goal, feedback=.7) # current goal ### vision ### # set up network parameters n_vis = X_train.shape[1] # nr of pixels, dimensions of network n_hid = 1000 # nr of gabor encoders/neurons # random state to start rng = np.random.RandomState(9) encoders = Gabor().generate( n_hid, (4, 4), rng=rng) # gabor encoders, 11x11 apparently, why? encoders = Mask( (14, 90)).populate(encoders, rng=rng, flatten=True) # use them on part of the image model.visual_net = nengo.Network() with model.visual_net: #represent currently attended item model.attended_item = nengo.Node(present_item2, size_in=D) nengo.Connection(model.attend.output, model.attended_item) model.vision_gabor = nengo.Ensemble( n_hid, n_vis, eval_points=X_train, neuron_type=nengo.LIF(), intercepts=nengo.dists.Uniform(-0.1, 0.1), #intercepts=nengo.dists.Choice([-0.5]), #should we comment this out? not sure what's happening #max_rates=nengo.dists.Choice([100]), encoders=encoders) #recurrent connection (time constant 500 ms) # strength = 1 - (100/500) = .8 zeros = np.zeros_like(X_train) nengo.Connection( model.vision_gabor, model.vision_gabor, synapse=0.005, #.1 eval_points=np.vstack( [X_train, zeros, np.random.randn(*X_train.shape)]), transform=.5) model.visual_representation = nengo.Ensemble(n_hid, dimensions=Dmid) model.visconn = nengo.Connection( model.vision_gabor, model.visual_representation, synapse=0.005, #was .005 eval_points=X_train, function=train_targets, solver=nengo.solvers.LstsqL2(reg=0.01)) nengo.Connection(model.attended_item, model.vision_gabor, synapse=.02) #.03) #synapse? # display attended item, only in gui if nengo_gui_on: # show what's being looked at model.display_attended = nengo.Node( display_func, size_in=model.attended_item.size_out) # to show input nengo.Connection(model.attended_item, model.display_attended, synapse=None) #add node to plot total visual activity model.visual_activation = nengo.Node(None, size_in=1) nengo.Connection(model.vision_gabor.neurons, model.visual_activation, transform=np.ones((1, n_hid)), synapse=None) ### central cognition ### # concepts model.concepts = spa.AssociativeMemory( vocab_all_words, #vocab_concepts, wta_output=True, wta_inhibit_scale=1, #was 1 #default_output_key='NONE', #what to say if input doesn't match threshold=0.3 ) # how strong does input need to be for it to recognize nengo.Connection( model.visual_representation, model.concepts.input, transform=.8 * vision_mapping ) #not too fast to concepts, might have to be increased to have model react faster to first word. #concepts accumulator model.concepts_evidence = spa.State( 1, feedback=1, feedback_synapse=0.005 ) #the lower the synapse, the faster it accumulates (was .1) concepts_evidence_scale = 2.5 nengo.Connection(model.concepts.am.elem_output, model.concepts_evidence.input, transform=concepts_evidence_scale * np.ones( (1, model.concepts.am.elem_output.size_out)), synapse=0.005) #concepts switch model.do_concepts = spa.AssociativeMemory(vocab_reset, default_output_key='CLEAR', threshold=.2) nengo.Connection( model.do_concepts.am.ensembles[-1], model.concepts_evidence.all_ensembles[0].neurons, transform=np.ones( (model.concepts_evidence.all_ensembles[0].n_neurons, 1)) * -10, synapse=0.005) # pair representation model.vis_pair = spa.State( D, vocab=vocab_all_words, feedback=1.0, feedback_synapse=.05 ) #was 2, 1.6 works ok, but everything gets activated. #learned words model.dm_learned_words = spa.AssociativeMemory( vocab_learned_words, threshold=.2 ) #default_output_key='NONE' familiarity should be continuous over all items, so no wta nengo.Connection(model.dm_learned_words.output, model.dm_learned_words.input, transform=.4, synapse=.02) # this stores the accumulated evidence for or against familiarity model.familiarity = spa.State( 1, feedback=.9, feedback_synapse=0.1) #fb syn influences speed of acc familiarity_scale = 0.2 #keep stable for negative fam #nengo.Connection(model.dm_learned_words.am.ensembles[-1], model.familiarity.input, transform=-(familiarity_scale+0.8)) #accumulate to -1 nengo.Connection( model.dm_learned_words.am.elem_output, model.familiarity.input, #am.element_output == all outputs, we sum transform=(familiarity_scale + .1) * np.ones( (1, model.dm_learned_words.am.elem_output.size_out)) ) #accumulate to 1 model.do_fam = spa.AssociativeMemory(vocab_reset, default_output_key='CLEAR', threshold=.2) nengo.Connection( model.do_fam.am.ensembles[-1], model.familiarity.all_ensembles[0].neurons, transform=np.ones( (model.familiarity.all_ensembles[0].n_neurons, 1)) * -10, synapse=0.005) #negative accumulator nengo.Connection( model.do_fam.am.elem_output, model.familiarity.input, transform=-familiarity_scale * np.ones( (1, model.do_fam.am.elem_output.size_out))) #accumulate to -1 #fam model.dm_pairs = spa.AssociativeMemory(vocab_learned_pairs, input_keys=list_of_pairs,wta_output=True) #fam nengo.Connection(model.dm_pairs.output,model.dm_pairs.input,transform=.5) #this works: #fam model.representation = spa.AssociativeMemory(vocab_learned_pairs, input_keys=list_of_pairs, wta_output=True) #fam nengo.Connection(model.representation.output, model.representation.input, transform=2) #fam model.rep_filled = spa.State(1,feedback_synapse=.005) #no fb syn specified #fam nengo.Connection(model.representation.am.elem_output,model.rep_filled.input, #am.element_output == all outputs, we sum #fam transform=.8*np.ones((1,model.representation.am.elem_output.size_out)),synapse=0) #this doesn't: #model.representation = spa.State(D,feedback=1) #model.rep_filled = spa.State(1,feedback_synapse=.005) #no fb syn specified #nengo.Connection(model.representation.output,model.rep_filled.input, #am.element_output == all outputs, we sum # transform=.8*np.ones((1,model.representation.output.size_out)),synapse=0) # this shouldn't really be fixed I think #fam model.comparison = spa.Compare(D, vocab=vocab_concepts) #motor model.motor_net = nengo.Network() with model.motor_net: #input multiplier model.motor_input = spa.State(Dmid, vocab=vocab_motor) #higher motor area (SMA?) model.motor = spa.State(Dmid, vocab=vocab_motor, feedback=.7) #connect input multiplier with higher motor area nengo.Connection(model.motor_input.output, model.motor.input, synapse=.1, transform=2) #finger area model.fingers = spa.AssociativeMemory( vocab_fingers, input_keys=['L1', 'L2', 'R1', 'R2'], wta_output=True) nengo.Connection(model.fingers.output, model.fingers.input, synapse=0.1, transform=0.3) #feedback #conncetion between higher order area (hand, finger), to lower area nengo.Connection(model.motor.output, model.fingers.input, transform=.25 * motor_mapping) #was .2 #finger position (spinal?) model.finger_pos = nengo.networks.EnsembleArray(n_neurons=50, n_ensembles=4) nengo.Connection(model.finger_pos.output, model.finger_pos.input, synapse=0.1, transform=0.8) #feedback #connection between finger area and finger position nengo.Connection(model.fingers.am.elem_output, model.finger_pos.input, transform=1.0 * np.diag([0.55, .54, .56, .55])) #fix these model.bg = spa.BasalGanglia( spa.Actions( #wait & start a_aa_wait='dot(goal,WAIT) - .9 --> goal=0', a_attend_item1= 'dot(goal,DO_TASK) - .1 --> goal=RECOG, attend=ITEM1, do_concepts=GO', #attend words b_attending_item1= 'dot(goal,RECOG) + dot(attend,ITEM1) - concepts_evidence - .3 --> goal=RECOG, attend=ITEM1, do_concepts=GO', # vis_pair=2.5*(ITEM1*concepts)', c_attend_item2= 'dot(goal,RECOG) + dot(attend,ITEM1) + concepts_evidence - 1.6 --> goal=RECOG2, attend=ITEM2, vis_pair=3*(ITEM1*concepts)', d_attending_item2= 'dot(goal,RECOG2+RECOG) + dot(attend,ITEM2) - concepts_evidence - .4 --> goal=RECOG2, attend=ITEM2, do_concepts=GO, dm_learned_words=1.0*(~ITEM1*vis_pair)', #vis_pair=1.2*(ITEM2*concepts) e_judge_familiarity= 'dot(goal,RECOG2) + dot(attend,ITEM2) + concepts_evidence - 1.8 --> goal=FAMILIARITY, do_fam=GO, vis_pair=1.9*(ITEM2*concepts), dm_learned_words=2.0*(~ITEM1*vis_pair+~ITEM2*vis_pair)', #judge familiarity f_judge_familiarity= 'dot(goal,FAMILIARITY) - .1 --> goal=FAMILIARITY, do_fam=GO, dm_learned_words=.8*(~ITEM1*vis_pair+~ITEM2*vis_pair)', g_respond_unfamiliar= 'dot(goal,FAMILIARITY) - familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RESPOND, do_fam=GO, motor_input=1.6*(target_hand+MIDDLE)', h_respond_familiar= 'dot(goal,FAMILIARITY) + familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RESPOND, do_fam=GO, motor_input=1.6*(target_hand+INDEX)', x_response_done= '1.1*dot(goal,RESPOND) + 1.5*dot(fingers,L1+L2+R1+R2) - .7--> goal=2*END', y_end='dot(goal,END)-.1 --> goal=END', z_threshold='.05 --> goal=0' #possible to match complete buffer, ie is representation filled? # motor_input=1.5*target_hand+MIDDLE, )) #'dot(attention, W1) - evidence - 0.8 --> motor=NO, attention=W1', #'dot(attention, W1) + evidence - 0.8 --> attention=W2, reset=EVIDENCE', #'dot(attention, W1) --> attention=W1', # if we don't set attention it goes back to 0 #'dot(attention, W2) - evidence - 0.8 --> motor=NO, attention=W2', #'dot(attention, W2) + evidence - 0.8 --> motor=YES, attention=W2', #'dot(attention, W2) --> attention=W2', # option might be feedback on attention, then no rule 3/6 but default rule model.thalamus = spa.Thalamus(model.bg) model.cortical = spa.Cortical( # cortical connection: shorthand for doing everything with states and connections spa.Actions( # 'motor_input = .04*target_hand', # 'dm_learned_words = .1*vis_pair', #'dm_pairs = 2*stimulus' #'vis_pair = 2*attend*concepts+concepts', #fam 'comparison_A = 2*vis_pair', #fam 'comparison_B = 2*representation*~attend', )) #probes model.pr_motor_pos = nengo.Probe( model.finger_pos.output, synapse=.01) #raw vector (dimensions x time) model.pr_motor = nengo.Probe(model.fingers.output, synapse=.01) #model.pr_motor1 = nengo.Probe(model.motor.output, synapse=.01) if not nengo_gui_on: model.pr_vision_gabor = nengo.Probe( model.vision_gabor.neurons, synapse=.005 ) #do we need synapse, or should we do something with the spikes model.pr_familiarity = nengo.Probe( model.dm_learned_words.am.elem_output, synapse=.01) #element output, don't include default model.pr_concepts = nengo.Probe( model.concepts.am.elem_output, synapse=.01) # element output, don't include default #multiply spikes with the connection weights #input model.input = spa.Input(goal=goal_func) #print(sum(ens.n_neurons for ens in model.all_ensembles)) #return model #to show select BG rules # get names rules if nengo_gui_on and False: vocab_actions = spa.Vocabulary(model.bg.output.size_out) for i, action in enumerate(model.bg.actions.actions): vocab_actions.add(action.name.upper(), np.eye(model.bg.output.size_out)[i]) model.actions = spa.State(model.bg.output.size_out, vocab=vocab_actions) nengo.Connection(model.thalamus.output, model.actions.input) for net in model.networks: if net.label is not None and net.label.startswith('channel'): net.label = ''
def main(): model = spa.SPA(label="Vector Storage") with model: # Dimensionality of each representation num_dimensions = 2 sub_dimensions = 2 # Create the vocabulary vocab = Vocabulary(num_dimensions, randomize=False) # Form the inputs stored_value_1 = [1] * num_dimensions stored_value_1 = [ s / np.linalg.norm(stored_value_1) for s in stored_value_1 ] vocab.add("Stored_value_1", stored_value_1) stored_value_2 = [(-1**i) for i in range(num_dimensions)] stored_value_2 = [ s / np.linalg.norm(stored_value_2) for s in stored_value_2 ] vocab.add("Stored_value_2", stored_value_2) def first_input(t): if t < 10: return "Stored_value_2" else: return "Stored_value_1" def second_input(t): if t < 5: return "Stored_value_1" else: return "Stored_value_2" # Buffers to store the input model.buffer1 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True) model.buffer2 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True) # Probe to visualize the values stored in the buffers buffer_1_probe = nengo.Probe(model.buffer1.state.output) buffer_2_probe = nengo.Probe(model.buffer2.state.output) # Connect up the inputs model.input = spa.Input(buffer1=first_input) model.input = spa.Input(buffer2=second_input) # Buffer to store the output model.buffer3 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True) buffer_3_probe = nengo.Probe(model.buffer3.state.output) # Control system actions = spa.Actions( 'dot(buffer1, Stored_value_2) --> buffer3=Stored_value_2', 'dot(buffer1, Stored_value_1) --> buffer3=Stored_value_1+Stored_value_2' ) model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg) # Start the simulator sim = nengo.Simulator(model) # Dynamic plotting plt.ion() # Dynamic updating of plots fig = plt.figure(figsize=(15, 8)) plt.show() ax = fig.gca() ax.set_title("Vector Storage") while True: sim.run(1) # Run for an additional 1 second plt.clf() # Clear the figure plt.plot(sim.trange(), similarity(sim.data, buffer_1_probe, vocab), label="Buffer 1 Value") # Plot the entire dataset so far plt.plot(sim.trange(), similarity(sim.data, buffer_2_probe, vocab), label="Buffer 2 Value") plt.plot(sim.trange(), similarity(sim.data, buffer_3_probe, vocab), label="Buffer 3 Value") print sim.data[buffer_1_probe][-1] print sim.data[buffer_2_probe][-1] print sim.data[buffer_3_probe][-1] plt.legend(vocab.keys * 3, loc=2) plt.draw() # Re-draw
def Spaun(): model = spa.SPA(label='Spaun', seed=cfg.seed) with model: model.config[nengo.Ensemble].max_rates = cfg.max_rates model.config[nengo.Ensemble].neuron_type = cfg.neuron_type model.config[nengo.Ensemble].n_neurons = cfg.n_neurons_ens model.config[nengo.Connection].synapse = cfg.pstc model.stim = Stimulus() model.vis = Vision() model.ps = ProdSys() model.reward = RewardEval() model.enc = InfoEnc() model.mem = Memory() model.trfm = TrfmSys() model.dec = InfoDec() model.mtr = Motor() model.monitor = Monitor() model.learn_conns = [] if hasattr(model, 'vis') and hasattr(model, 'ps'): copy_draw_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, ZER)) --> ps_task = W, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, W-DEC) - dot(vis, QM) --> ps_state = ps_state'] # noqa recog_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, ONE)) --> ps_task = R, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, R-DEC) - dot(vis, QM) --> ps_state = ps_state'] # noqa learn_state_action = ['0.5 * (dot(ps_task, X) + dot(vis, TWO)) - dot(vis, QM) --> ps_task = L, ps_state = LEARN, ps_dec = FWD'] # noqa # '0.5 * (dot(ps_task, L) + dot(vis, {:s} + {:s})) --> ps_state = LEARN'.format(*vocab.reward_sp_strs)] # noqa if hasattr(model, 'reward'): learn_action = ['0.5 * dot(ps_task, L) - dot(vis, QM) --> ps_action = %s, ps_state = LEARN, ps_dec = NONE' % # noqa s for s in vocab.ps_action_learn_sp_strs] else: learn_action = [] mem_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, THR)) --> ps_task = M, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, M-DEC) - dot(vis, F + R + QM) --> ps_state = ps_state', # noqa '0.5 * (dot(ps_task, M-DEC) + dot(vis, F)) - dot(vis, QM) --> ps_dec = FWD', # noqa '0.5 * (dot(ps_task, M-DEC) + dot(vis, R)) - dot(vis, QM) --> ps_dec = REV'] # noqa if hasattr(model, 'trfm'): count_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, FOR)) --> ps_task = C, ps_state = TRANS0, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, C-DEC) + dot(ps_state, TRANS0)) - dot(vis, QM) --> ps_state = CNT0', # noqa '0.5 * (dot(ps_task, C-DEC) + dot(ps_state, CNT0)) - dot(vis, QM) --> ps_state = CNT1', # noqa '(0.25 * (dot(ps_task, DEC) + dot(ps_state, CNT1)) + 0.5 * dot(trfm_compare, NO_MATCH)) + (dot(ps_dec, CNT) - 1) - dot(vis, QM) --> ps_dec = CNT, ps_state = CNT1', # noqa '(0.25 * (dot(ps_task, DEC) + dot(ps_state, CNT1)) + 0.5 * dot(trfm_compare, MATCH)) + (dot(ps_dec, CNT) - 1) - dot(vis, QM) --> ps_dec = FWD, ps_state = TRANS0'] # noqa qa_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, FIV)) --> ps_task = A, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, A-DEC) - dot(vis, K + P + QM) --> ps_state = ps_state', # noqa '0.5 * (dot(ps_task, A-DEC) + dot(vis, K)) - dot(vis, QM) --> ps_state = QAK', # noqa '0.5 * (dot(ps_task, A-DEC) + dot(vis, P)) - dot(vis, QM) --> ps_state = QAP'] # noqa rvc_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, SIX)) --> ps_task = V, ps_state = TRANS0, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, V-DEC) + dot(ps_state, TRANS0)) - dot(vis, QM) --> ps_state = TRANS1', # noqa '0.5 * (dot(ps_task, V-DEC) + dot(ps_state, TRANS1)) - dot(vis, QM) --> ps_state = TRANS0'] # noqa fi_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, SEV)) --> ps_task = F, ps_state = TRANS0, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, F-DEC) + dot(ps_state, TRANS0)) - dot(vis, QM) --> ps_state = TRANS1', # noqa '0.5 * (dot(ps_task, F-DEC) + dot(ps_state, TRANS1)) - dot(vis, QM) --> ps_state = TRANS2', # noqa '0.5 * (dot(ps_task, F-DEC) + dot(ps_state, TRANS2)) - dot(vis, QM) --> ps_state = TRANS0'] # noqa else: count_action = [] qa_action = [] rvc_action = [] fi_action = [] decode_action = \ ['dot(vis, QM) - 0.75 * dot(ps_task, W + C + V + F + L) --> ps_task = DEC, ps_state = ps_state, ps_dec = ps_dec', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, W)) --> ps_task = DEC, ps_state = ps_state, ps_dec = DECW', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, C)) --> ps_task = DEC, ps_state = ps_state, ps_dec = CNT', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, V + F)) --> ps_task = DEC, ps_state = ps_state, ps_dec = DECI', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, L)) --> ps_task = L, ps_state = LEARN, ps_dec = FWD', # noqa 'dot(ps_task, DEC) - dot(ps_dec, CNT) - dot(vis, QM + A) --> ps_task = ps_task, ps_state = ps_state, ps_dec = ps_dec'] # noqa default_action = \ [] # List learning task spa actions first, so we know the precise # indicies of the learning task actions (i.e. the first N) all_actions = (learn_action + learn_state_action + copy_draw_action + recog_action + mem_action + count_action + qa_action + rvc_action + fi_action + decode_action + default_action) actions = spa.Actions(*all_actions) model.bg = spa.BasalGanglia(actions=actions, input_synapse=0.008, label='Basal Ganglia') model.thal = spa.Thalamus(model.bg, subdim_channel=1, mutual_inhibit=1, route_inhibit=5.0, label='Thalamus') # ----- Set up connections (and save record of modules) ----- if hasattr(model, 'vis'): model.vis.setup_connections(model) if hasattr(model, 'ps'): model.ps.setup_connections(model) if hasattr(model, 'bg'): if hasattr(model, 'reward'): with model.bg: # Generate random biases for each learn action, so that # there is some randomness to the initial action choice bias_node = nengo.Node(1) bias_ens = nengo.Ensemble(cfg.n_neurons_ens, 1, label='BG Bias Ensemble') nengo.Connection(bias_node, bias_ens) for i in range(len(learn_action)): init_trfm = (np.random.random() * cfg.learn_init_trfm_max) trfm_val = cfg.learn_init_trfm_bias + init_trfm model.learn_conns.append( nengo.Connection(bias_ens, model.bg.input[i], transform=trfm_val)) cfg.learn_init_transforms.append(trfm_val) logger.write("# learn_init_trfms: %s\n" % (str(cfg.learn_init_transforms))) if hasattr(model, 'thal'): pass if hasattr(model, 'reward'): model.reward.setup_connections(model, model.learn_conns) if hasattr(model, 'enc'): model.enc.setup_connections(model) if hasattr(model, 'mem'): model.mem.setup_connections(model) if hasattr(model, 'trfm'): model.trfm.setup_connections(model) if hasattr(model, 'dec'): model.dec.setup_connections(model) if hasattr(model, 'mtr'): model.mtr.setup_connections(model) if hasattr(model, 'monitor'): model.monitor.setup_connections(model) return model
def _test_sequence(Simulator, plt, seed, outfile, prune_passthrough): dimensions = 32 subdimensions = 16 T = 4.0 seq_length = 6 with spa.SPA(seed=seed) as model: model.state = spa.Memory(dimensions=dimensions, subdimensions=subdimensions) seq_actions = [ 'dot(state,A%d) --> state=A%d' % (i, (i + 1) % seq_length) for i in range(seq_length) ] model.bg = spa.BasalGanglia(spa.Actions(*seq_actions)) model.thal = spa.Thalamus(model.bg) def stim_state(t): if t < 0.1: return 'A0' else: return '0' model.input = spa.Input(state=stim_state) p_state = nengo.Probe(model.state.state.output, synapse=0.01) if 'spinnaker' in Simulator.__module__: nengo_spinnaker.add_spinnaker_params(model.config) model.config[ model.input.input_nodes['state']].function_of_time = True vocab = model.get_input_vocab('state') if prune_passthrough: model = remove_passthrough_nodes(model) sim = Simulator(model) sim.run(T) t = sim.trange() data = sim.data[p_state] ideal = np.array([vocab.parse('A%d' % i).v for i in range(seq_length)]) dotp = np.dot(data, ideal.T) best = np.argmax(dotp, axis=1) delta = np.diff(best) indexes = np.where(delta != 0) # [:, 1:] ignores the first transition, which is meaningless delta_t = np.diff(indexes)[:, 1:] * 0.001 mean = np.mean(delta_t) std = np.std(delta_t) outfile.write('"n_neurons": %d,\n' % sum(e.n_neurons for e in model.all_ensembles)) outfile.write('"simtime": %f,\n' % T) outfile.write('"timing_mean": %f,\n' % mean) outfile.write('"timing_std": %f,\n' % std) figsize = (onecolumn, 4.0) if horizontal else (onecolumn * 2, 3.0) setup(figsize=figsize, palette_args={ 'palette': "cubehelix", 'n_colors': 6 }) plt.plot(t[t < 1.0], dotp[t < 1.0]) for transition in t[indexes[0]]: plt.axvline(transition, c='0.5', lw=1, ls=':') plt.ylabel('Similarity to item') plt.xlabel('Time (s)') plt.xlim(right=1.0) sns.despine() if prune_passthrough: plt.saveas = 'results-4.svg' else: plt.saveas = 'results-5.svg' if hasattr(sim, 'close'): sim.close()
def main(): model = spa.SPA(label="Vector Storage") with model: # Dimensionality of each representation num_dimensions = 30 sub_dimensions = 1 # Create the vocabulary vocab = Vocabulary(num_dimensions, randomize=False) # Form the inputs manually by directly defining their vectors stored_value_1 = np.random.rand(num_dimensions) - [0.5 ] * num_dimensions stored_value_1 = [ s / np.linalg.norm(stored_value_1) for s in stored_value_1 ] vocab.add("Stored_value_1", stored_value_1) stored_value_2 = np.random.rand(num_dimensions) - [0.5 ] * num_dimensions stored_value_2 = [ s / np.linalg.norm(stored_value_2) for s in stored_value_2 ] vocab.add("Stored_value_2", stored_value_2) stored_value_3 = np.random.rand(num_dimensions) - [0.5 ] * num_dimensions stored_value_3 = [ s / np.linalg.norm(stored_value_3) for s in stored_value_3 ] vocab.add("Stored_value_3", stored_value_3) # Create a semantic pointer corresponding to the "correct" answer for the operation sum_vector = np.subtract(np.add(stored_value_1, stored_value_2), stored_value_3) sum_vector = sum_vector / np.linalg.norm(sum_vector) vocab.add("Sum", sum_vector) # Define the control signal inputs as random vectors r1 = [1] * num_dimensions r1 = r1 / np.linalg.norm(r1) r2 = [(-1)**k for k in range(num_dimensions)] r2 = r2 / np.linalg.norm(r2) vocab.add("Hold_signal", r1) vocab.add("Start_signal", r2) # Control when the vector operation takes place def control_input(t): if t < 1: return "Hold_signal" else: return "Start_signal" # inputs to the input word buffers def first_input(t): return "Stored_value_1" def second_input(t): return "Stored_value_2" def third_input(t): return "Stored_value_3" # Control buffer model.control = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) control_probe = nengo.Probe(model.control.state.output) # Buffers to store the inputs: e.g., King, Man, Woman model.word_buffer1 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) model.word_buffer2 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) model.word_buffer3 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) # Probe to visualize the values stored in the buffers buffer_1_probe = nengo.Probe(model.word_buffer1.state.output) buffer_2_probe = nengo.Probe(model.word_buffer2.state.output) buffer_3_probe = nengo.Probe(model.word_buffer3.state.output) # Buffer to hold the result: e.g. Queen model.result = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) result_probe = nengo.Probe(model.result.state.output) # Control system actions = spa.Actions( 'dot(control, Start_signal) --> result = word_buffer1 + word_buffer2 - word_buffer3' ) model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg, subdim_channel=sub_dimensions) # Connect up the inputs model.input = spa.Input(control=control_input, word_buffer1=first_input, word_buffer2=second_input, word_buffer3=third_input) # Start the simulator sim = nengo.Simulator(model) # Dynamic plotting plt.ion() # Dynamic updating of plots fig = plt.figure(figsize=(15, 8)) plt.show() ax = fig.gca() ax.set_title("Vector Storage") while True: sim.run(1) # Run for an additional 1 second plt.clf() # Clear the figure plt.plot(sim.trange(), similarity(sim.data, result_probe, vocab), label="Buffer 3 Value") plt.legend(vocab.keys * 3, loc=2) plt.draw() # Re-draw print sim.data[buffer_1_probe][-1] print sim.data[buffer_2_probe][-1] print sim.data[buffer_3_probe][-1] print sim.data[result_probe][-1] print "\n" plt.show()
e_store_result_and_update_count = 'dot(goal,COUNT) + letter_memory_status - .4 --> goal=COUNT, answer=%i*~NEXT*letter_memory, number_memory=6*IDENTITY*count' % store_weight, f_store_count_and_compare = 'dot(goal,COUNT) + 1.5*number_memory_status - .4 --> goal=1.4*COMPARE_COUNT+.6*COUNT, count=%i*~NEXT*number_memory, comparison_cleanA=arg2, comparison_cleanB=~NEXT*number_memory' % store_weight, g_update_result = 'dot(goal,COMPARE_COUNT) - 2*comparison_status -.9 --> goal=COUNT, letter_memory=3*IDENTITY*answer', h_answer_counted = 'dot(goal,COMPARE_COUNT) + 2*comparison_status - .3 --> goal=1.4*COMPARE-COUNT', #Compare and respond v_compare = 'dot(goal,COMPARE) --> goal=(.8*COMPARE)+RESPOND, comparison2_cleanA=2*target, comparison2_cleanB=2*answer, do_learn=GO, in_layer=ITEM1*arg1+ITEM2*arg2+RESULT*answer, correct=ITEM1*arg1+ITEM2*arg2+RESULT*answer', w_respond_match = 'dot(goal,RESPOND) + comparison2_status - 0.3 --> goal=DONE-COMPARE, motor=YES', x_respond_mismatch = 'dot(goal,RESPOND) - comparison2_status - 0.3 --> goal=DONE-COMPARE, motor=NO', y_done = 'dot(goal,DONE) + dot(motor,YES+NO) - .5 --> goal=2*DONE', z_threshold = '0.1 -->' ) model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg, synapse_channel = .04) #to show BG/thalamus rules vocab_actions = spa.Vocabulary(model.bg.output.size_out) for i, action in enumerate(model.bg.actions.actions): vocab_actions.add(action.name.upper(), np.eye(model.bg.output.size_out)[i]) model.actions = spa.State(model.bg.output.size_out,subdimensions=model.bg.output.size_out, vocab=vocab_actions) nengo.Connection(model.thalamus.output, model.actions.input,synapse=None) for net in model.networks: if net.label is not None and net.label.startswith('channel'): net.label = ''
def __init__(self): self.scalar = spa.Buffer(dimensions=16, subdimensions=1) actions = spa.Actions('0.5 --> scalar=dot(scalar, FOO)') self.bg = spa.BasalGanglia(actions) self.thalamus = spa.Thalamus(self.bg)
def create_model(): #print trial_info print('---- INTIALIZING MODEL ----') global model model = spa.SPA() with model: #display current stimulus pair (not part of model) if nengo_gui_on and True: model.pair_input = nengo.Node(present_pair) model.pair_display = nengo.Node( display_func, size_in=model.pair_input.size_out) # to show input nengo.Connection(model.pair_input, model.pair_display, synapse=None) # control model.control_net = nengo.Network() with model.control_net: #assuming the model knows which hand to use (which was blocked) model.hand_input = nengo.Node(get_hand) model.target_hand = spa.State(Dmid, vocab=vocab_motor, feedback=1) nengo.Connection(model.hand_input, model.target_hand.input, synapse=None) model.attend = spa.State(D, vocab=vocab_attend, feedback=.5) # vocab_attend model.goal = spa.State(Dlow, vocab=vocab_goal, feedback=.7) # current goal ### vision ### # set up network parameters n_vis = X_train.shape[1] # nr of pixels, dimensions of network n_hid = 1000 # nr of gabor encoders/neurons # random state to start rng = np.random.RandomState(9) encoders = Gabor().generate( n_hid, (4, 4), rng=rng) # gabor encoders, 11x11 apparently, why? encoders = Mask( (14, 90)).populate(encoders, rng=rng, flatten=True) # use them on part of the image model.visual_net = nengo.Network() with model.visual_net: #represent currently attended item model.attended_item = nengo.Node(present_item2, size_in=D) nengo.Connection(model.attend.output, model.attended_item) model.vision_gabor = nengo.Ensemble( n_hid, n_vis, eval_points=X_train, # neuron_type=nengo.LIF(), neuron_type=nengo.AdaptiveLIF( tau_n=.01, inc_n=.05 ), #to get a better fit, use more realistic neurons that adapt to input intercepts=nengo.dists.Uniform(-0.1, 0.1), #intercepts=nengo.dists.Choice([-0.5]), #should we comment this out? not sure what's happening #max_rates=nengo.dists.Choice([100]), encoders=encoders) #recurrent connection (time constant 500 ms) # strength = 1 - (100/500) = .8 zeros = np.zeros_like(X_train) nengo.Connection( model.vision_gabor, model.vision_gabor, synapse=0.005, #.1 eval_points=np.vstack( [X_train, zeros, np.random.randn(*X_train.shape)]), transform=.5) model.visual_representation = nengo.Ensemble(n_hid, dimensions=Dmid) model.visconn = nengo.Connection( model.vision_gabor, model.visual_representation, synapse=0.005, #was .005 eval_points=X_train, function=train_targets, solver=nengo.solvers.LstsqL2(reg=0.01)) nengo.Connection(model.attended_item, model.vision_gabor, synapse=.02) #.03) #synapse? # display attended item, only in gui if nengo_gui_on: # show what's being looked at model.display_attended = nengo.Node( display_func, size_in=model.attended_item.size_out) # to show input nengo.Connection(model.attended_item, model.display_attended, synapse=None) #add node to plot total visual activity model.visual_activation = nengo.Node(None, size_in=1) nengo.Connection(model.vision_gabor.neurons, model.visual_activation, transform=np.ones((1, n_hid)), synapse=None) ### central cognition ### ##### Concepts ##### model.concepts = spa.AssociativeMemory( vocab_all_words, #vocab_concepts, wta_output=True, wta_inhibit_scale=1, #was 1 #default_output_key='NONE', #what to say if input doesn't match threshold=0.3 ) # how strong does input need to be for it to recognize nengo.Connection( model.visual_representation, model.concepts.input, transform=.8 * vision_mapping ) #not too fast to concepts, might have to be increased to have model react faster to first word. #concepts accumulator model.concepts_evidence = spa.State( 1, feedback=1, feedback_synapse=0.005 ) #the lower the synapse, the faster it accumulates (was .1) concepts_evidence_scale = 2.5 nengo.Connection(model.concepts.am.elem_output, model.concepts_evidence.input, transform=concepts_evidence_scale * np.ones( (1, model.concepts.am.elem_output.size_out)), synapse=0.005) #concepts switch model.do_concepts = spa.AssociativeMemory(vocab_reset, default_output_key='CLEAR', threshold=.2) nengo.Connection( model.do_concepts.am.ensembles[-1], model.concepts_evidence.all_ensembles[0].neurons, transform=np.ones( (model.concepts_evidence.all_ensembles[0].n_neurons, 1)) * -10, synapse=0.005) ###### Visual Representation ###### model.vis_pair = spa.State( D, vocab=vocab_all_words, feedback=1.0, feedback_synapse=.05 ) #was 2, 1.6 works ok, but everything gets activated. ##### Familiarity ##### # Assoc Mem with Learned Words # - familiarity signal should be continuous over all items, so no wta model.dm_learned_words = spa.AssociativeMemory(vocab_learned_words, threshold=.2) nengo.Connection(model.dm_learned_words.output, model.dm_learned_words.input, transform=.4, synapse=.02) # Familiarity Accumulator model.familiarity = spa.State( 1, feedback=.9, feedback_synapse=0.1) #fb syn influences speed of acc #familiarity_scale = 0.2 #keep stable for negative fam # familiarity accumulator switch model.do_fam = spa.AssociativeMemory(vocab_reset, default_output_key='CLEAR', threshold=.2) # reset nengo.Connection( model.do_fam.am.ensembles[-1], model.familiarity.all_ensembles[0].neurons, transform=np.ones( (model.familiarity.all_ensembles[0].n_neurons, 1)) * -10, synapse=0.005) #first a sum to represent summed similarity model.summed_similarity = nengo.Ensemble(n_neurons=100, dimensions=1) nengo.Connection( model.dm_learned_words.am.elem_output, model.summed_similarity, transform=np.ones( (1, model.dm_learned_words.am.elem_output.size_out))) #take sum #then a connection to accumulate this summed sim def familiarity_acc_transform(summed_sim): fam_scale = .5 fam_threshold = 0 #actually, kind of bias fam_max = 1 return fam_scale * (2 * ((summed_sim - fam_threshold) / (fam_max - fam_threshold)) - 1) nengo.Connection(model.summed_similarity, model.familiarity.input, function=familiarity_acc_transform) ##### Recollection & Representation ##### model.dm_pairs = spa.AssociativeMemory( vocab_learned_pairs, wta_output=True) #input_keys=list_of_pairs nengo.Connection(model.dm_pairs.output, model.dm_pairs.input, transform=.5, synapse=.05) #representation rep_scale = 0.5 model.representation = spa.State(D, vocab=vocab_all_words, feedback=1.0) model.rep_filled = spa.State( 1, feedback=.9, feedback_synapse=.1) #fb syn influences speed of acc model.do_rep = spa.AssociativeMemory(vocab_reset, default_output_key='CLEAR', threshold=.2) nengo.Connection( model.do_rep.am.ensembles[-1], model.rep_filled.all_ensembles[0].neurons, transform=np.ones( (model.rep_filled.all_ensembles[0].n_neurons, 1)) * -10, synapse=0.005) nengo.Connection(model.representation.output, model.rep_filled.input, transform=rep_scale * np.reshape(sum(vocab_learned_pairs.vectors), ((1, D)))) ###### Comparison ##### model.comparison = spa.Compare(D, vocab=vocab_all_words, neurons_per_multiply=500, input_magnitude=.3) #turns out comparison is not an accumulator - we also need one of those. model.comparison_accumulator = spa.State( 1, feedback=.9, feedback_synapse=0.05) #fb syn influences speed of acc model.do_compare = spa.AssociativeMemory(vocab_reset, default_output_key='CLEAR', threshold=.2) #reset nengo.Connection( model.do_compare.am.ensembles[-1], model.comparison_accumulator.all_ensembles[0].neurons, transform=np.ones( (model.comparison_accumulator.all_ensembles[0].n_neurons, 1)) * -10, synapse=0.005) #error because we apply a function to a 'passthrough' node, inbetween ensemble as a solution: model.comparison_result = nengo.Ensemble(n_neurons=100, dimensions=1) nengo.Connection(model.comparison.output, model.comparison_result) def comparison_acc_transform(comparison): comparison_scale = .6 comparison_threshold = 0 #actually, kind of bias comparison_max = .6 return comparison_scale * (2 * ( (comparison - comparison_threshold) / (comparison_max - comparison_threshold)) - 1) nengo.Connection(model.comparison_result, model.comparison_accumulator.input, function=comparison_acc_transform) #motor model.motor_net = nengo.Network() with model.motor_net: #input multiplier model.motor_input = spa.State(Dmid, vocab=vocab_motor) #higher motor area (SMA?) model.motor = spa.State(Dmid, vocab=vocab_motor, feedback=.7) #connect input multiplier with higher motor area nengo.Connection(model.motor_input.output, model.motor.input, synapse=.1, transform=2) #finger area model.fingers = spa.AssociativeMemory( vocab_fingers, input_keys=['L1', 'L2', 'R1', 'R2'], wta_output=True) nengo.Connection(model.fingers.output, model.fingers.input, synapse=0.1, transform=0.3) #feedback #conncetion between higher order area (hand, finger), to lower area nengo.Connection(model.motor.output, model.fingers.input, transform=.25 * motor_mapping) #was .2 #finger position (spinal?) model.finger_pos = nengo.networks.EnsembleArray(n_neurons=50, n_ensembles=4) nengo.Connection(model.finger_pos.output, model.finger_pos.input, synapse=0.1, transform=0.8) #feedback #connection between finger area and finger position nengo.Connection(model.fingers.am.elem_output, model.finger_pos.input, transform=1.0 * np.diag([0.55, .54, .56, .55])) #fix these model.bg = spa.BasalGanglia( spa.Actions( #wait & start a_aa_wait='dot(goal,WAIT) - .9 --> goal=0', a_attend_item1= 'dot(goal,DO_TASK) - .0 --> goal=RECOG, attend=ITEM1, do_concepts=GO', #attend words b_attending_item1= 'dot(goal,RECOG) + dot(attend,ITEM1) - concepts_evidence - .3 --> goal=RECOG, attend=ITEM1, do_concepts=GO', # vis_pair=2.5*(ITEM1*concepts)', c_attend_item2= 'dot(goal,RECOG) + dot(attend,ITEM1) + concepts_evidence - 1.6 --> goal=RECOG2, attend=ITEM2, vis_pair=3*(ITEM1*concepts)', d_attending_item2= 'dot(goal,RECOG2+RECOG) + dot(attend,ITEM2) - concepts_evidence - .4 --> goal=RECOG2, attend=ITEM2, do_concepts=GO, dm_learned_words=1.0*(~ITEM1*vis_pair)', #vis_pair=1.2*(ITEM2*concepts) e_start_familiarity= 'dot(goal,RECOG2) + dot(attend,ITEM2) + concepts_evidence - 1.8 --> goal=FAMILIARITY, do_fam=GO, vis_pair=1.9*(ITEM2*concepts), dm_learned_words=2.0*(~ITEM1*vis_pair+~ITEM2*vis_pair)', #judge familiarity f_accumulate_familiarity= '1.1*dot(goal,FAMILIARITY) - 0.2 --> goal=FAMILIARITY-RECOG2, do_fam=GO, dm_learned_words=.8*(~ITEM1*vis_pair+~ITEM2*vis_pair)', g_respond_unfamiliar= 'dot(goal,FAMILIARITY) - familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RESPOND_MISMATCH-FAMILIARITY, do_fam=GO, motor_input=1.6*(target_hand+MIDDLE)', #g2_respond_familiar = 'dot(goal,FAMILIARITY) + familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RESPOND, do_fam=GO, motor_input=1.6*(target_hand+INDEX)', #recollection & representation h_recollection= 'dot(goal,FAMILIARITY) + familiarity - .5*dot(fingers,L1+L2+R1+R2) - .6 --> goal=RECOLLECTION-FAMILIARITY, dm_pairs = vis_pair', i_representation= 'dot(goal,RECOLLECTION) - rep_filled - .1 --> goal=RECOLLECTION, dm_pairs = vis_pair, representation=3*dm_pairs, do_rep=GO', #comparison & respond j_10_compare_word1= 'dot(goal,RECOLLECTION+1.4*COMPARE_ITEM1) + rep_filled - .9 --> goal=COMPARE_ITEM1-RECOLLECTION, do_rep=GO, do_compare=GO, comparison_A = ~ITEM1*vis_pair, comparison_B = ~ITEM1*representation', k_11_match_word1= 'dot(goal,COMPARE_ITEM1) + comparison_accumulator - .7 --> goal=COMPARE_ITEM2-COMPARE_ITEM1, do_rep=GO, comparison_A = ~ITEM1*vis_pair, comparison_B = ~ITEM1*representation', l_12_mismatch_word1= 'dot(goal,COMPARE_ITEM1) + .4 * dot(goal,RESPOND_MISMATCH) - comparison_accumulator - .7 --> goal=RESPOND_MISMATCH-COMPARE_ITEM1, do_rep=GO, motor_input=1.6*(target_hand+MIDDLE), do_compare=GO, comparison_A = ~ITEM1*vis_pair, comparison_B = ~ITEM1*representation', compare_word2= 'dot(goal,COMPARE_ITEM2) - .5 --> goal=COMPARE_ITEM2, do_compare=GO, comparison_A = ~ITEM2*vis_pair, comparison_B = ~ITEM2*representation', m_match_word2= 'dot(goal,COMPARE_ITEM2) + comparison_accumulator - .7 --> goal=RESPOND_MATCH-COMPARE_ITEM2, motor_input=1.6*(target_hand+INDEX), do_compare=GO, comparison_A = ~ITEM2*vis_pair, comparison_B = ~ITEM2*representation', n_mismatch_word2= 'dot(goal,COMPARE_ITEM2) - comparison_accumulator - dot(fingers,L1+L2+R1+R2)- .7 --> goal=RESPOND_MISMATCH-COMPARE_ITEM2, motor_input=1.6*(target_hand+MIDDLE),do_compare=GO, comparison_A = ~ITEM2*vis_pair, comparison_B = ~ITEM2*representation', #respond o_respond_match= 'dot(goal,RESPOND_MATCH) - .1 --> goal=RESPOND_MATCH, motor_input=1.6*(target_hand+INDEX)', p_respond_mismatch= 'dot(goal,RESPOND_MISMATCH) - .1 --> goal=RESPOND_MISMATCH, motor_input=1.6*(target_hand+MIDDLE)', #finish x_response_done= 'dot(goal,RESPOND_MATCH) + dot(goal,RESPOND_MISMATCH) + 2*dot(fingers,L1+L2+R1+R2) - .7 --> goal=2*END', y_end= 'dot(goal,END)-.1 --> goal=END-RESPOND_MATCH-RESPOND_MISMATCH', z_threshold='.05 --> goal=0' #possible to match complete buffer, ie is representation filled? # motor_input=1.5*target_hand+MIDDLE, )) print(model.bg.actions.count) #print(model.bg.dimensions) model.thalamus = spa.Thalamus(model.bg) model.cortical = spa.Cortical( # cortical connection: shorthand for doing everything with states and connections spa.Actions( # 'motor_input = .04*target_hand', # 'dm_learned_words = .1*vis_pair', #'dm_pairs = 2*stimulus' #'vis_pair = 2*attend*concepts+concepts', #fam 'comparison_A = 2*vis_pair', #fam 'comparison_B = 2*representation*~attend', )) #probes model.pr_motor_pos = nengo.Probe( model.finger_pos.output, synapse=.01) #raw vector (dimensions x time) model.pr_motor = nengo.Probe(model.fingers.output, synapse=.01) #model.pr_motor1 = nengo.Probe(model.motor.output, synapse=.01) if not nengo_gui_on: model.pr_vision_gabor = nengo.Probe( model.vision_gabor.neurons, synapse=.005 ) #do we need synapse, or should we do something with the spikes model.pr_familiarity = nengo.Probe( model.dm_learned_words.am.elem_output, synapse=.01) #element output, don't include default model.pr_concepts = nengo.Probe( model.concepts.am.elem_output, synapse=.01) # element output, don't include default #multiply spikes with the connection weights #input model.input = spa.Input(goal=goal_func) #print(sum(ens.n_neurons for ens in model.all_ensembles)) #return model #to show select BG rules # get names rules if nengo_gui_on: vocab_actions = spa.Vocabulary(model.bg.output.size_out) for i, action in enumerate(model.bg.actions.actions): vocab_actions.add(action.name.upper(), np.eye(model.bg.output.size_out)[i]) model.actions = spa.State(model.bg.output.size_out, subdimensions=model.bg.output.size_out, vocab=vocab_actions) nengo.Connection(model.thalamus.output, model.actions.input) for net in model.networks: if net.label is not None and net.label.startswith('channel'): net.label = ''
def run(self): n_neurons = 40 subdim = 16 direct = False output = self.stimuli.output # vector output from coherence score threshold = self.stimuli.threshold # for correct answer on inf task g_transform = np.transpose(np.ones((1, self.dimensions))) # mem gate model = spa.SPA(label='ConceptModel', seed=self.seed) with model: # Vision Component model.vision = spa.Buffer(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.main_voc, direct=direct) # Memory Component model.sp_mem = spa.Buffer(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.main_voc, direct=direct) model.context_mem = spa.Memory(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.main_voc, tau=0.01 / 0.3, direct=direct) # Inferential Evaluation Subsystem model.inference = spa.Buffer(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.feat_voc, direct=direct) model.score = spa.Memory(dimensions=1, neurons_per_dimension=3000, synapse=0.05, direct=direct) model.gatesignal = spa.Memory(dimensions=1, neurons_per_dimension=500, synapse=0.05, direct=direct) model.cleanup1 = spa.AssociativeMemory( input_vocab=self.feat_voc, output_vocab=self.weight_voc, n_neurons_per_ensemble=250, threshold=0.25) # Perceptual Evaluation Subsystem model.cleanup2 = spa.AssociativeMemory(input_vocab=self.label_voc, output_vocab=self.label_voc, n_neurons_per_ensemble=1000, threshold=threshold) # Shared Component model.decision = spa.Memory(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.label_voc, tau=0.01 / 0.3, synapse=0.05, direct=direct) # Motor Component model.motor = spa.Memory(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.label_voc, synapse=0.1, direct=direct) # Convenient probing of rule applications if self.raster: model.apps = spa.Buffer(dimensions=self.dimensions, subdimensions=subdim, neurons_per_dimension=n_neurons, vocab=self.feat_voc, direct=direct) self.pApps = nengo.Probe(model.apps.state.output, synapse=0.03) self.appSpikes = nengo.Probe(model.apps.state.ea_ensembles[3], 'spikes') nengo.Connection(model.cleanup1.output, model.apps.state.input) # Action definitions actions = spa.Actions( 'dot(vision, POSNER) --> context_mem=VIS', 'dot(vision, BROOKS) --> context_mem=VIS', 'dot(vision, MURPHY) --> context_mem=INFER', 'dot(context_mem, VIS) --> gatesignal=2, context_mem=R5', 'dot(context_mem, INFER) --> context_mem=R1', 'dot(context_mem, R1) --> inference=sp_mem*~R1, context_mem=R2', 'dot(context_mem, R2) --> inference=sp_mem*~R2, context_mem=R3', 'dot(context_mem, R3) --> inference=sp_mem*~R3, context_mem=R4', 'dot(context_mem, R4) --> inference=sp_mem*~R4, context_mem=R5', 'dot(context_mem, R5) --> motor=decision') # Basal ganglia and thalamus model.bg = spa.BasalGanglia(actions) model.thal = spa.Thalamus(model.bg) # Subnetworks defined outside of SPA model.product = Product(600, self.dimensions) model.vis_gate = Product(300, self.dimensions) model.mem_gate = Product(300, self.dimensions) model.conv = CircularConvolution(250, self.dimensions, invert_a=True) # Connections for gate with memory for perceptual evaluation tasks nengo.Connection(model.vision.state.output, model.vis_gate.B) nengo.Connection(model.gatesignal.state.output, model.vis_gate.A, transform=g_transform) nengo.Connection(model.vis_gate.output, model.conv.A) nengo.Connection(model.sp_mem.state.output, model.mem_gate.B) nengo.Connection(model.gatesignal.state.output, model.mem_gate.A, transform=g_transform) nengo.Connection(model.mem_gate.output, model.conv.B) nengo.Connection(model.conv.output, model.decision.state.input) # Connections for inferential evaluation tasks nengo.Connection(model.inference.state.output, model.cleanup1.input) nengo.Connection(model.cleanup1.output, model.product.A) nengo.Connection(model.vision.state.output, model.product.B) nengo.Connection(model.cleanup2.output, model.decision.state.input) nengo.Connection(model.product.output, model.score.state.input, transform=model.product.dot_product_transform()) nengo.Connection(model.score.state.output, model.cleanup2.input, transform=np.transpose(output)) # Input to visual buffer def vision(t): if t < 0.08: return self.stimuli.task if 0.0801 <= t < 1: return self.probe else: return '0' model.input = spa.Input(vision=vision, sp_mem=self.stimuli.memory) # Inhibit the gate with inference actions actions = [2, 4, 5, 6, 7, 8] target = model.gatesignal for action in actions: for e in target.all_ensembles: nengo.Connection(model.thal.actions.ensembles[action], e.neurons, transform=[[-2]] * e.n_neurons) # Set radius for ensemble computing scalar coherence score. for ens in model.score.state.ensembles: ens.radius = 2 # Define probes for semantic pointer plots self.pVision = nengo.Probe(model.vision.state.output, synapse=0.03) self.pMotor = nengo.Probe(model.motor.state.output, synapse=0.03) self.pMemory = nengo.Probe(model.sp_mem.state.output, synapse=0.03) self.pContext = nengo.Probe(model.context_mem.state.output, synapse=0.03) self.pScore = nengo.Probe(model.score.state.output, synapse=0.03) self.pDecision = nengo.Probe(model.decision.state.output, synapse=0.03) self.pActions = nengo.Probe(model.thal.actions.output, synapse=0.01) self.pUtility = nengo.Probe(model.bg.input, synapse=0.01) # Define probes for spike rasters self.visSpikes = nengo.Probe(model.vision.state.ea_ensembles[3], 'spikes') self.conSpikes = nengo.Probe( model.context_mem.state.ea_ensembles[5], 'spikes') self.memSpikes = nengo.Probe(model.sp_mem.state.ea_ensembles[7], 'spikes') self.motSpikes = nengo.Probe(model.motor.state.ea_ensembles[1], 'spikes') self.scoSpikes = nengo.Probe(model.score.state.ea_ensembles[0], 'spikes') # Run the model sim = nengo.Simulator(model) sim.run(0.45) # Save graph if plotting chosen if self.raster: graph = Plotter(self, sim) if self.stimuli.task == 'MURPHY': graph.plot_spikes_inf() else: graph.plot_spikes_vis() # Assess correctness of output self.measure_output(sim)
def create_model( trial_info=('Target', 1, 'Short', 'CARGO', 'HOOD'), hand='LEFT', seedin=1): initialize_vocabs() print trial_info global global_item1 global global_item2 global_item1 = trial_info[3] global_item2 = trial_info[4] global model model = spa.SPA(seed=seedin) with model: #display current stimulus pair model.pair_input = nengo.Node(present_pair) model.pair_display = nengo.Node( display_func, size_in=model.pair_input.size_out) # to show input nengo.Connection(model.pair_input, model.pair_display, synapse=None) #visual model.visual_net = nengo.Network() with model.visual_net: if not extended_visual: model.stimulus = spa.State(D, vocab=vocab_concepts, feedback=1) model.stim = spa.Input(stimulus=present_item_simple) else: #represent currently attended item model.attended_item = nengo.Node(present_item) model.vision_process = nengo.Ensemble( n_hid, n_vis, eval_points=X_train, neuron_type=nengo.LIFRate(), intercepts=nengo.dists.Choice([-0.5 ]), #can switch these off max_rates=nengo.dists.Choice([100]), # why? encoders=encoders) # 1000 neurons, nrofpix = dimensions # visual_representation = nengo.Node(size_in=Dmid) #output, in this case 466 outputs model.visual_representation = nengo.Ensemble( n_hid, dimensions=Dmid) # output, in this case 466 outputs model.visconn = nengo.Connection( model.vision_process, model.visual_representation, synapse=0.005, eval_points=X_train, function=train_targets, solver=nengo.solvers.LstsqL2(reg=0.01)) nengo.Connection(model.attended_item, model.vision_process, synapse=None) # display attended item model.display_node = nengo.Node( display_func, size_in=model.attended_item.size_out) # to show input nengo.Connection(model.attended_item, model.display_node, synapse=None) #control model.control_net = nengo.Network() with model.control_net: model.attend = spa.State( D, vocab=vocab_concepts, feedback=.5) #if attend item, goes to concepts model.goal = spa.State(D, vocab_goal, feedback=1) #current goal model.target_hand = spa.State(Dmid, vocab=vocab_motor, feedback=1) # concepts model.concepts = spa.AssociativeMemory(vocab_concepts, wta_output=True, wta_inhibit_scale=1) if not extended_visual: nengo.Connection(model.stimulus.output, model.concepts.input) else: nengo.Connection(model.visual_representation, model.concepts.input, transform=vision_mapping) # pair representation model.vis_pair = spa.State(D, vocab=vocab_concepts, feedback=1) model.dm_items = spa.AssociativeMemory( vocab_items ) #familiarity should be continuous over all items, so no wta nengo.Connection(model.dm_items.output, model.dm_items.input, transform=.5, synapse=.01) model.familiarity = spa.State( 1, feedback_synapse=.01) #no fb syn specified nengo.Connection( model.dm_items.am.elem_output, model.familiarity.input, #am.element_output == all outputs, we sum transform=.8 * np.ones( (1, model.dm_items.am.elem_output.size_out))) #model.dm_pairs = spa.AssociativeMemory(vocab_concepts, input_keys=list_of_pairs,wta_output=True) #nengo.Connection(model.dm_items.output,model.dm_pairs.input) #motor model.motor_net = nengo.Network() with model.motor_net: #input multiplier model.motor_input = spa.State(Dmid, vocab=vocab_motor) #higher motor area (SMA?) model.motor = spa.State(Dmid, vocab=vocab_motor, feedback=1) #connect input multiplier with higher motor area nengo.Connection(model.motor_input.output, model.motor.input, synapse=.1, transform=10) #finger area model.fingers = spa.AssociativeMemory( vocab_fingers, input_keys=['L1', 'L2', 'R1', 'R2'], wta_output=True) #conncetion between higher order area (hand, finger), to lower area nengo.Connection(model.motor.output, model.fingers.input, transform=.4 * motor_mapping) #finger position (spinal?) model.finger_pos = nengo.networks.EnsembleArray(n_neurons=50, n_ensembles=4) nengo.Connection(model.finger_pos.output, model.finger_pos.input, synapse=0.1, transform=0.3) #feedback #connection between finger area and finger position nengo.Connection(model.fingers.am.elem_output, model.finger_pos.input, transform=np.diag([0.55, .53, .57, .55])) #fix these model.bg = spa.BasalGanglia( spa.Actions( 'dot(goal,DO_TASK)-.5 --> dm_items=vis_pair, goal=RECOG, attend=ITEM1', 'dot(goal,RECOG)+dot(attend,ITEM1)+familiarity-2 --> goal=RECOG2, dm_items=vis_pair, attend=ITEM2', 'dot(goal,RECOG)+dot(attend,ITEM1)+(1-familiarity)-2 --> goal=RECOG2, attend=ITEM2', #motor_input=1.5*target_hand+MIDDLE, 'dot(goal,RECOG2)+dot(attend,ITEM2)+familiarity-1.3 --> goal=RESPOND, dm_items=vis_pair,motor_input=1.2*target_hand+INDEX, attend=ITEM2', 'dot(goal,RECOG2)+dot(attend,ITEM2)+(1-familiarity)-1.3 --> goal=RESPOND, motor_input=1.5*target_hand+MIDDLE, attend=ITEM2', 'dot(goal,RESPOND)+dot(motor,MIDDLE+INDEX)-1.4 --> goal=END', 'dot(goal,END) --> goal=END', #'.6 -->', )) model.thalamus = spa.Thalamus(model.bg) model.cortical = spa.Cortical( # cortical connection: shorthand for doing everything with states and connections spa.Actions( # 'motor_input = .04*target_hand', #'dm_items = .8*concepts', #.5 #'dm_pairs = 2*stimulus' 'vis_pair = attend*concepts+concepts', )) #probes #model.pr_goal = nengo.Probe(model.goal.output,synapse=.01) #sample_every=.01 seconds, etc... model.pr_motor_pos = nengo.Probe( model.finger_pos.output, synapse=.01) #raw vector (dimensions x time) model.pr_motor = nengo.Probe(model.fingers.output, synapse=.01) model.pr_motor1 = nengo.Probe(model.motor.output, synapse=.01) #model.pr_target = nengo.Probe(model.target_hand.output, synapse=.01) #input model.input = spa.Input( goal=lambda t: 'DO_TASK' if t < 0.05 else '0', target_hand=hand, #attend=lambda t: 'ITEM1' if t < 0.1 else 'ITEM2', )
def main(): print "Loading Word2Vec model..." word2vec_model = gensim.models.Word2Vec.load("word2vec_model_1_cleaned") word2vec_model.init_sims(replace=True) word2vec_vocab = word2vec_model.index2word import readline readline.parse_and_bind("tab: complete") def complete(text, state): results = [x for x in word2vec_vocab if x.startswith(text)] + [None] return results[state] readline.set_completer(complete) print "This program uses an SPA network in Nengo to perform vector operations on a semantically structured word-vector space *learned* from a sentence corpus." print "When trained on a large corpus of English sentences, for example, it should produce: Vector[king] - Vector[man] + Vector[woman] = Vector[king]" print "For now, it just does subtraction..." print "\nPress <tab> twice to see all your autocomplete options." print "_______________________________________________________" line1 = raw_input('\nFirst word:> ') line2 = raw_input('\nSecond word:> ') if line1 and line2 in word2vec_vocab: val1 = word2vec_model[line1] val2 = word2vec_model[line2] diff = val1 - val2 dot_products = [ np.dot(word2vec_model[word2vec_model.index2word[i]], diff) for i in range(len(word2vec_model.index2word)) ] closest_word = word2vec_model.index2word[dot_products.index( max(dot_products))] print "\nWhat the Nengo model SHOULD return is something like: %s" % closest_word print "\nDefining SPA network..." model = spa.SPA(label="Vector Storage") with model: # Dimensionality of each representation num_dimensions = 100 sub_dimensions = 1 # Create the vocabulary vocab = Vocabulary(num_dimensions, randomize=False) stored_value_1 = val1 vocab.add("Stored_value_1", stored_value_1) stored_value_2 = val2 vocab.add("Stored_value_2", stored_value_2) # Create a semantic pointer corresponding to the "correct" answer for the operation sum_vector = np.subtract(stored_value_1, stored_value_2) sum_vector = sum_vector / np.linalg.norm(sum_vector) vocab.add("Correct_target", sum_vector) # Define the control signal inputs as random vectors r1 = [1] * num_dimensions r1 = r1 / np.linalg.norm(r1) r2 = [(-1)**k for k in range(num_dimensions)] r2 = r2 / np.linalg.norm(r2) vocab.add("Hold_signal", r1) vocab.add("Start_signal", r2) # Control when the vector operation takes place def control_input(t): if t < 1: return "Hold_signal" else: return "Start_signal" # Control buffer model.control = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) control_probe = nengo.Probe(model.control.state.output) # Inputs to the word input buffers def first_input(t): return "Stored_value_1" def second_input(t): return "Stored_value_2" # Buffers to store the inputs: model.word_buffer1 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) model.word_buffer2 = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) # Probe to visualize the values stored in the buffers buffer_1_probe = nengo.Probe(model.word_buffer1.state.output) buffer_2_probe = nengo.Probe(model.word_buffer2.state.output) # Buffer to hold the result: model.result = spa.Buffer(dimensions=num_dimensions, subdimensions=sub_dimensions, neurons_per_dimension=200, direct=True, vocab=vocab) result_probe = nengo.Probe(model.result.state.output) # Control system actions = spa.Actions( 'dot(control, Start_signal) --> result = word_buffer1 - word_buffer2', 'dot(control, Hold_signal) --> result = Hold_signal') model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg, subdim_channel=sub_dimensions) # Connect up the inputs model.input = spa.Input(control=control_input, word_buffer1=first_input, word_buffer2=second_input) # Start the simulator sim = nengo.Simulator(model) # Dynamic plotting plt.ion() # Dynamic updating of plots fig = plt.figure(figsize=(15, 8)) plt.show() ax = fig.gca() ax.set_title("Vector Storage") while True: sim.run(0.5) # Run for an additional 1 second plt.clf() # Clear the figure plt.plot(sim.trange(), similarity(sim.data, result_probe, vocab), label="Buffer 3 Value") legend_symbols = vocab.keys plt.legend(legend_symbols, loc=2) plt.draw() # Re-draw # Go back to our manually-stored vocabulary and see how well it did diff = sim.data[result_probe][-1] dot_products = [ np.dot(word2vec_model[word2vec_model.index2word[i]], diff) for i in range(len(word2vec_model.index2word)) ] closest_word = word2vec_model.index2word[dot_products.index( max(dot_products))] print "Time: %f" % sim.trange()[-1] print "\nWhat the Nengo model DID return is something like: %s" % closest_word print "\n" plt.show()
def simulate(lg=.2, le=.2, save_dir=None, sim_time=6): nengo.rc.set('progress', 'progress_bar', 'nengo.utils.progress.TerminalProgressBar') d = 64 n = 50 * d # class for delayed connection delay_t = 0.2 # 200 ms pro Silbe dt = 0.001 delay = Delay(dimensions=d, timesteps=int(delay_t / dt)) # SPA-Model: model = spa.SPA() with model: # --------------------- SPA representations ---------------- # High level SPs model.visual = spa.Buffer(dimensions=d) model.phonemic = spa.Buffer(dimensions=d) model.premotor = spa.Buffer(dimensions=d) model.audiexpect = spa.Buffer(dimensions=d) model.motor = spa.Buffer(dimensions=d) model.motor1 = nengo.Ensemble(n, dimensions=d) model.motor2 = nengo.Ensemble(n, dimensions=d) model.somato = spa.Buffer(dimensions=d) model.delaynode = nengo.Node(delay.step, size_in=d, size_out=d) # High level routing actions = spa.Actions( 'dot(visual, BA) --> phonemic=BA', '0.2 --> phonemic=NEUTRAL, premotor=NEUTRAL, audiexpect=NEUTRAL, motor=NEUTRAL', 'dot(phonemic, BA) --> premotor=BA, motor=BA_EXEC, audiexpect=BA', 'dot(phonemic, DA) --> premotor=DA, motor=DA_EXEC, audiexpect=DA', 'dot(phonemic, GA) --> premotor=GA, motor=GA_EXEC, audiexpect=GA', 'dot(phonemic, PA) --> premotor=PA, motor=PA_EXEC, audiexpect=PA', 'dot(phonemic, TA) --> premotor=TA, motor=TA_EXEC, audiexpect=TA', 'dot(phonemic, KA) --> premotor=KA, motor=KA_EXEC, audiexpect=KA', 'dot(somato, BA_EXEC) --> phonemic=DA', 'dot(somato, DA_EXEC) --> phonemic=GA', 'dot(somato, GA_EXEC) --> phonemic=PA', 'dot(somato, PA_EXEC) --> phonemic=TA', 'dot(somato, TA_EXEC) --> phonemic=KA', 'dot(somato, KA_EXEC) --> phonemic=BA', ) nengo.networks.actionselection.Weights.lg = lg nengo.networks.actionselection.Weights.le = le nengo.networks.actionselection.Weights.wt = 1.0 nengo.networks.actionselection.Weights.wp = 0.9 nengo.networks.actionselection.Weights.wp_snr = 0.9 # not used yet model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg) # model delay: nengo.Connection(model.motor.state.output, model.motor1, synapse=0.01) # no delay: #nengo.Connection(model.motor1, model.motor2, synapse=0.01) # delay: nengo.Connection(model.motor1, model.delaynode) nengo.Connection(model.delaynode, model.motor2) nengo.Connection(model.motor2, model.somato.state.input, synapse=0.01) # Provide input to high-level def start(t): if t < 0.25: return 'ZERO' elif t < 0.45: return 'BA' else: return 'ZERO' model.input = spa.Input(visual=start) # set up probes visual = nengo.Probe(model.visual.state.output, synapse=0.03) phonemic = nengo.Probe(model.phonemic.state.output, synapse=0.03) premotor = nengo.Probe(model.premotor.state.output, synapse=0.03) audiexpect = nengo.Probe(model.audiexpect.state.output, synapse=0.03) motor = nengo.Probe(model.motor.state.output, synapse=0.03) somato = nengo.Probe(model.somato.state.output, synapse=0.03) with nengo.Simulator(model) as sim: sim.run(sim_time) plt.figure(figsize=(18, 16)) plt.subplot(6, 1, 1) plt.plot(sim.trange(), model.similarity(sim.data, visual)) plt.legend(model.get_input_vocab('visual').keys, fontsize='x-small') plt.ylabel('Visual') plt.subplot(6, 1, 2) plt.plot(sim.trange(), model.similarity(sim.data, phonemic)) plt.legend(model.get_input_vocab('phonemic').keys, fontsize='x-small') plt.ylabel('Phonemic') plt.subplot(6, 1, 3) plt.plot(sim.trange(), model.similarity(sim.data, audiexpect)) plt.legend(model.get_input_vocab('audiexpect').keys, fontsize='x-small') plt.ylabel('Audi_expect') plt.subplot(6, 1, 4) plt.plot(sim.trange(), model.similarity(sim.data, premotor)) plt.legend(model.get_input_vocab('premotor').keys, fontsize='x-small') plt.ylabel('Premotor') plt.subplot(6, 1, 5) plt.plot(sim.trange(), model.similarity(sim.data, motor)) plt.legend(model.get_input_vocab('motor').keys, fontsize='x-small') plt.ylabel('Motor') plt.subplot(6, 1, 6) plt.plot(sim.trange(), model.similarity(sim.data, somato)) plt.legend(model.get_input_vocab('somato').keys, fontsize='x-small') plt.ylabel('Somato') if save_dir is not None: plt.savefig(save_dir) plt.close()
def Spaun(): model = spa.SPA(label='Spaun', seed=cfg.seed) with model: model.config[nengo.Ensemble].max_rates = cfg.max_rates model.config[nengo.Ensemble].neuron_type = cfg.neuron_type model.config[nengo.Connection].synapse = cfg.pstc if 'S' in cfg.spaun_modules: model.stim = Stimulus() model.instr_stim = InstrStimulus() model.monitor = Monitor() if 'V' in cfg.spaun_modules: model.vis = Vision() if 'P' in cfg.spaun_modules: model.ps = ProdSys() if 'R' in cfg.spaun_modules: model.reward = RewardEval() if 'E' in cfg.spaun_modules: model.enc = InfoEnc() if 'W' in cfg.spaun_modules: model.mem = Memory() if 'T' in cfg.spaun_modules: model.trfm = TrfmSys() if 'D' in cfg.spaun_modules: model.dec = InfoDec() if 'M' in cfg.spaun_modules: model.mtr = Motor() if 'I' in cfg.spaun_modules: model.instr = InstrProcess() model.learn_conns = [] if hasattr(model, 'vis') and hasattr(model, 'ps'): copy_draw_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, ZER)) --> ps_task = W, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, W-DEC) - dot(vis, QM) --> ps_state = ps_state'] # noqa # Copy drawing task format: A0[r]?X recog_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, ONE)) --> ps_task = R, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, R-DEC) - dot(vis, QM) --> ps_state = ps_state'] # noqa # Digit recognition task format: A1[r]?X learn_state_action = ['0.5 * (dot(ps_task, X) + dot(vis, TWO)) - dot(vis, QM) --> ps_task = L, ps_state = LEARN, ps_dec = FWD'] # noqa # Learning task format: A2?X<REWARD>?X<REWARD>?X<REWARD>?X<REWARD>?X<REWARD> # noqa if hasattr(model, 'reward'): learn_action = ['0.5 * (dot(ps_task, 2*L) - 1) - dot(vis, QM) --> ps_action = %s, ps_state = LEARN, ps_dec = NONE' % # noqa s for s in vocab.ps_action_learn_sp_strs] else: learn_action = [] mem_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, THR)) --> ps_task = M, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, M-DEC) - dot(vis, F + R + QM) --> ps_state = ps_state', # noqa '0.5 * (dot(ps_task, M) + dot(vis, F)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_dec = FWD', # noqa '0.5 * (dot(ps_task, M) + dot(vis, R)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_dec = REV'] # noqa # Working memory task format: A3[rr..rr]?XXX # Reverse recall task format: A3[rr..rr]R?XXX if hasattr(model, 'trfm'): count_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, FOR)) --> ps_task = C, ps_state = TRANS0, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, C) + dot(ps_state, TRANS0)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = CNT0', # noqa '0.5 * (dot(ps_task, C) + dot(ps_state, CNT0)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = CNT1', # noqa '(0.25 * (dot(ps_task, DEC) + dot(ps_state, CNT1)) + 0.5 * dot(trfm_compare, NO_MATCH)) + (dot(ps_dec, CNT) - 1) - dot(vis, QM) --> ps_dec = CNT, ps_state = CNT1', # noqa '(0.25 * (dot(ps_task, DEC) + dot(ps_state, CNT1)) + 0.5 * dot(trfm_compare, MATCH)) + (dot(ps_dec, CNT) - 1) - dot(vis, QM) --> ps_dec = FWD, ps_state = TRANS0'] # noqa # Counting task format: A4[START_NUM][NUM_COUNT]?X..X qa_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, FIV)) --> ps_task = A, ps_state = TRANS0, ps_dec = FWD', # noqa 'dot(ps_task, A-DEC) - dot(vis, K + P + QM) --> ps_state = ps_state', # noqa '0.5 * (dot(ps_task, A) + dot(vis, K)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = QAK', # noqa '0.5 * (dot(ps_task, A) + dot(vis, P)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = QAP'] # noqa # Question answering task format: A5[rr..rr]P[r]?X (probing item in position) # noqa # A5[rr..rr]K[r]?X (probing position of item (kind)) # noqa rvc_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, SIX)) --> ps_task = V, ps_state = TRANS0, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, V) + dot(ps_state, TRANS0)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANS1', # noqa '0.5 * (dot(ps_task, V) + dot(ps_state, TRANS1)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANS0'] # noqa # Rapid variable creation task format: A6{[rr..rr][rr..rr]:NUM_EXAMPLES}?XX..XX # noqa fi_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, SEV)) --> ps_task = F, ps_state = TRANS0, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, F) + dot(ps_state, TRANS0)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANS1', # noqa '0.5 * (dot(ps_task, F) + dot(ps_state, TRANS1)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANS2', # noqa '0.5 * (dot(ps_task, F) + dot(ps_state, TRANS2)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANS0'] # noqa # Fluid intelligence task format: A7[CELL1_1][CELL1_2][CELL1_3][CELL2_1][CELL2_2][CELL2_3][CELL3_1][CELL3_2]?XX..XX # noqa # Reaction task react_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, EIG)) --> ps_task = REACT, ps_state = DIRECT, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, REACT) + dot(vis_mem, ONE)) --> trfm_input = POS1*THR', # noqa '0.5 * (dot(ps_task, REACT) + dot(vis_mem, TWO)) --> trfm_input = POS1*FOR'] # noqa # Stimulus response (hardcoded reaction) task format: A8?1X<expected 3>?2X<expected 4> # noqa # Compare task -- See two items, check if their class matches each other # noqa match_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, C)) --> ps_task = CMP, ps_state = TRANS1, ps_dec = FWD', # noqa '0.5 * (dot(ps_task, CMP) + dot(ps_state, TRANS1)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANS2', # noqa '0.5 * (dot(ps_task, CMP) + dot(ps_state, TRANS2)) - dot(vis, QM) - dot(ps_task, DEC) --> ps_state = TRANSC'] # noqa # List / item matching task format: AC[r][r]?X<expected 1 if match, 0 if not> # noqa # AC[rr..rr][rr..rr]?X<expected 1 if any item in first list appears in second list, 0 if not> # noqa else: count_action = [] qa_action = [] rvc_action = [] fi_action = [] react_action = [] match_action = [] if hasattr(model, 'trfm') and hasattr(model, 'instr'): instr_action = \ ['0.5 * (dot(ps_task, X) + dot(vis, NIN)) --> ps_task = INSTR, ps_state = DIRECT, ps_dec = FWD', # noqa # 'dot(ps_task, INSTR) - dot(vis, QM + A) --> trfm_input = instr_data', # noqa - Note: this is the bg 'instr' rule in it's simplified form 'dot(ps_task, INSTR) - dot(vis, QM + A + M + P + CLOSE) - dot(ps_state, INSTRP) --> instr_en = ENABLE, ps_task = instr_task, ps_state = instr_state, ps_dec = instr_dec, trfm_input = instr_data', # noqa '1.5 * dot(vis, M + V) --> ps_task = INSTR, ps_state = TRANS0, ps_dec = FWD', # noqa - Note: V no longer keeps state, dec information from before. Need to set in instruction '0.5 * (dot(ps_task, INSTR) + dot(vis, P)) --> ps_task = INSTR, ps_state = INSTRP', # noqa '0.5 * (dot(ps_task, INSTR) + dot(ps_state, INSTRP)) --> ps_task = INSTR, ps_state = TRANS0', # noqa # 'dot(instr_util, INSTR) - dot(ps_task, INSTR) --> instr_en = ENABLE, ps_task = instr_task, ps_state = instr_state, ps_dec = instr_dec, trfm_input = instr_data', # noqa - Note: this is the untested 'use output of IPS to set PS states' implementation ] # noqa # Instructed tasks task formats: # Instructed stimulus response task format: A9?rX<expected answer from instruction>?rX<expected answer from instruction> # noqa # Instructed custom task format: M<0-9>[INSTRUCTED TASK FORMAT]?XX..XX # noqa # Instructed positional task formats: MP<0-9>[INSTRUCTED TASK FORMAT]?XX..XX V[INSTRUCTED TASK FORMAT]?XX..XX # noqa # - P<0-9> selects appropriate instruction from list of instructions # noqa # - V increments instruction position by 1 else: instr_action = [] decode_action = \ ['dot(vis, QM) - 0.6 * dot(ps_task, W+C+V+F+L+REACT) --> ps_task = ps_task + DEC, ps_state = ps_state + 0.5 * TRANS0, ps_dec = ps_dec + 0.5 * FWD', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, W-DEC)) --> ps_task = W + DEC, ps_state = ps_state, ps_dec = DECW', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, C-DEC)) --> ps_task = C + DEC, ps_state = ps_state, ps_dec = CNT', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, V+F-DEC)) --> ps_task = ps_task + DEC, ps_state = ps_state, ps_dec = DECI', # noqa '0.7 * dot(vis, QM) + 0.3 * dot(ps_task, L) --> ps_task = L + DEC, ps_state = LEARN, ps_dec = FWD', # noqa '0.5 * (dot(vis, QM) + dot(ps_task, REACT)) --> ps_task = REACT + DEC, ps_state = DIRECT, ps_dec = FWD', # noqa '0.75 * dot(ps_task, DEC-REACT-INSTR) - dot(ps_state, LEARN) - dot(ps_dec, CNT) - dot(vis, QM + A + M) --> ps_task = ps_task, ps_state = ps_state, ps_dec = ps_dec'] # noqa default_action = \ [] # List learning task spa actions first, so we know the precise # indicies of the learning task actions (i.e. the first N) all_actions = (learn_action + learn_state_action + copy_draw_action + recog_action + mem_action + count_action + qa_action + rvc_action + fi_action + decode_action + default_action + react_action + instr_action + match_action) actions = spa.Actions(*all_actions) model.bg = spa.BasalGanglia(actions=actions, input_synapse=0.008, label='Basal Ganglia') model.thal = spa.Thalamus(model.bg, subdim_channel=1, mutual_inhibit=1, route_inhibit=5.0, label='Thalamus') # ----- Set up connections (and save record of modules) ----- if hasattr(model, 'vis'): model.vis.setup_connections(model) if hasattr(model, 'ps'): model.ps.setup_connections(model) # Modify any 'channel' ensemble arrays to have # get_optimal_sp_radius radius sizes for net in model.ps.all_networks: if net.label is not None and net.label[:7] == 'channel': for ens in net.all_ensembles: ens.radius = cfg.get_optimal_sp_radius() if hasattr(model, 'bg'): if hasattr(model, 'reward'): # Clear learning transforms del cfg.learn_init_transforms[:] with model.bg: # Generate random biases for each learn action, so that # there is some randomness to the initial action choice bias_node = nengo.Node(1) bias_ens = nengo.Ensemble(cfg.n_neurons_ens, 1, label='BG Bias Ensemble') nengo.Connection(bias_node, bias_ens) for i in range(len(learn_action)): init_trfm = (np.random.random() * cfg.learn_init_trfm_max) trfm_val = cfg.learn_init_trfm_bias + init_trfm model.learn_conns.append( nengo.Connection(bias_ens, model.bg.input[i], transform=trfm_val)) cfg.learn_init_transforms.append(trfm_val) logger.write("# learn_init_trfms: %s\n" % (str(cfg.learn_init_transforms))) if hasattr(model, 'thal'): pass if hasattr(model, 'reward'): model.reward.setup_connections(model, model.learn_conns) if hasattr(model, 'enc'): model.enc.setup_connections(model) if hasattr(model, 'mem'): model.mem.setup_connections(model) if hasattr(model, 'trfm'): model.trfm.setup_connections(model) # Modify any 'channel' ensemble arrays to have # get_optimal_sp_radius radius sizes for net in model.trfm.all_networks: if net.label is not None and net.label[:7] == 'channel': for ens in net.all_ensembles: ens.radius = cfg.get_optimal_sp_radius() if hasattr(model, 'dec'): model.dec.setup_connections(model) if hasattr(model, 'mtr'): model.mtr.setup_connections(model) if hasattr(model, 'instr'): model.instr.setup_connections(model) if hasattr(model, 'monitor'): model.monitor.setup_connections(model) return model
import nengo import nengo.spa as spa D = 32 # the dimensionality of the vectors model = spa.SPA() with model: model.vision = spa.Buffer(D) model.speech = spa.Buffer(D) actions = spa.Actions( 'dot(vision, DOG) --> speech=BARK', 'dot(vision, CAT) --> speech=MEOW', 'dot(vision, RAT) --> speech=SQUEAK', 'dot(vision, COW) --> speech=MOO', ) model.bg = spa.BasalGanglia(actions) model.thalamus = spa.Thalamus(model.bg)
feedback_synapse=0.01) model.vision = spa.State(dimensions=dimensions) # Specify the action mapping actions = spa.Actions( 'dot(vision, START) --> state = vision', 'dot(state, A) --> state = B', 'dot(state, B) --> state = C', 'dot(state, C) --> state = D', 'dot(state, D) --> state = E', 'dot(state, E) --> state = A' ) #Creating the BG and Thalamus components that confirm to the specified rules model.BG = spa.BasalGanglia(actions=actions) model.thal = spa.Thalamus(model.BG) #Change the seed of this RNG to change the vocabulary rng = np.random.RandomState(0) vocab = Vocabulary(dimensions=dimensions) #Create the transformation matrix (pd) and the cleanup ensemble (cleanupA) pd = [vocab['A'].v.tolist()] model.cleanup = spa.State(neurons_per_dimension=100, dimensions=1) #Function that provides the model with an initial input semantic pointer. def start(t): if t < 0.4: return '0.8*START+D' else: return '0'