Esempio n. 1
0
 def __init__(self, dimensions, similarity, seed=None):
     self.items = []
     self.rng = np.random.RandomState(seed=seed)
     self.vocab = spa.Vocabulary(dimensions)
     self.dimensions = dimensions
     self.similarity = similarity
     self.zero = np.zeros(dimensions)
Esempio n. 2
0
def test_run(Simulator, seed):
    rng = np.random.RandomState(seed)
    vocab = spa.Vocabulary(16, rng=rng)

    with spa.SPA(seed=seed, vocabs=[vocab]) as model:
        model.bind = spa.Bind(dimensions=16)

        def inputA(t):
            if 0 <= t < 0.1:
                return "A"
            else:
                return "B"

        model.input = spa.Input(bind_A=inputA, bind_B="A")

    bind, vocab = model.get_module_output("bind")

    with model:
        p = nengo.Probe(bind, "output", synapse=0.03)

    with Simulator(model) as sim:
        sim.run(0.2)

    error = rmse(vocab.parse("B*A").v, sim.data[p][-1])
    assert error < 0.1

    error = rmse(vocab.parse("A*A").v, sim.data[p][100])
    assert error < 0.1
Esempio n. 3
0
def add_vocabularies(vocab, name1, name2):
    """
    New vocabulary containing semantic pointers from vocab1 and vocab2.
    name1:      name of the first vocabulary
    name2:      name of the second vocabulary
    """

    vocab1, vocab2 = vocab[name1], vocab[name2]
    d1, d2 = vocab1.dimensions, vocab2.dimensions
    assert d1 == d2

    new_vocab = spa.Vocabulary(d1)

    # TODO
    # first add items from vocab1
    for key1 in vocab1.keys:
        vec1 = vocab1[key1].v
        sp1 = name1.capitalize() + '_' + key1
        new_vocab.add(sp1, vec1)

    # and then from vocab2
    for key2 in vocab2.keys:
        vec2 = vocab2[key2].v
        sp2 = name2.capitalize() + '_' + key2
        new_vocab.add(sp2, vec2)

    return new_vocab
Esempio n. 4
0
def create_spa_vocabulary(experiment, randomize=True, D=128):
    """
    Read the experiment specific data from a dictionary `experiment` and create
    a dictionary with a SPA vocabulary for every ensemble.
    If randomize is True random vectors instead of orthogonal ones will be
    created.
    """
    networks = experiment.vocab.keys()
    vocab = {}

    for network in networks:
        try:
            words = experiment.vocab[network]
        except KeyError:
            raise Exception(("Vocabulary for network %s undefined in the " +
                             "experiment %s.") % (network, experiment['name']))

        # orthogonal vectors E, P and A for the affect network
        rand = True
        if 'affect' in network:
            rand = False
        vocab[network] = spa.Vocabulary(D, randomize=rand)

        for word in words:
            vocab[network].parse(word)

        vocab[network].add('NO_EMOTION' if network == 'executive' else 'EMPTY',
                           np.zeros(D))

    return vocab
Esempio n. 5
0
def test_dimension_exception():
    with pytest.raises(Exception):
        with spa.SPA() as model:
            vocab = spa.Vocabulary(16)
            model.state = spa.State(dimensions=12, vocab=vocab)

    with spa.SPA() as model:
        model.state = spa.State(dimensions=12, subdimensions=3)
Esempio n. 6
0
def test_exception():
    with pytest.raises(Exception):
        with spa.SPA() as model:
            vocab = spa.Vocabulary(16)
            model.buffer = spa.Buffer(dimensions=12, vocab=vocab)

    with spa.SPA() as model:
        model.buffer = spa.Buffer(dimensions=12, subdimensions=3)
Esempio n. 7
0
def test_predefined_vocabs(allclose):
    D = 64

    with spa.SPA() as model:
        model.vocab1 = spa.Vocabulary(D)
        model.vocab1.parse("A+B+C")

        model.vocab2 = spa.Vocabulary(D)
        model.vocab1.parse("A+B+C")

        model.buffer1 = spa.Buffer(dimensions=D, vocab=model.vocab1)
        model.buffer2 = spa.Buffer(dimensions=D, vocab=model.vocab2)

        def input(t):
            if t < 0.1:
                return "A"
            elif t < 0.2:
                return "B"
            else:
                return "C"

        model.input = spa.Input(buffer1=input, buffer2=input)

    a1 = model.input.input_nodes["buffer1"].output(t=0.0)
    b1 = model.input.input_nodes["buffer1"].output(t=0.1)
    c1 = model.input.input_nodes["buffer1"].output(t=0.2)

    a2 = model.input.input_nodes["buffer2"].output(t=0.0)
    b2 = model.input.input_nodes["buffer2"].output(t=0.1)
    c2 = model.input.input_nodes["buffer2"].output(t=0.2)

    assert allclose(a1, model.vocab1.parse("A").v)
    assert allclose(b1, model.vocab1.parse("B").v)
    assert allclose(c1, model.vocab1.parse("C").v)

    assert allclose(a2, model.vocab2.parse("A").v)
    assert allclose(b2, model.vocab2.parse("B").v)
    assert allclose(c2, model.vocab2.parse("C").v)

    assert np.dot(a1, a2) < 0.95
    assert np.dot(b1, b2) < 0.95
    assert np.dot(c1, c2) < 0.95
Esempio n. 8
0
def test_predefined_vocabs():
    D = 64

    with spa.SPA() as model:
        model.vocab1 = spa.Vocabulary(D)
        model.vocab1.parse('A+B+C')

        model.vocab2 = spa.Vocabulary(D)
        model.vocab1.parse('A+B+C')

        model.buffer1 = spa.Buffer(dimensions=D, vocab=model.vocab1)
        model.buffer2 = spa.Buffer(dimensions=D, vocab=model.vocab2)

        def input(t):
            if t < 0.1:
                return 'A'
            elif t < 0.2:
                return 'B'
            else:
                return 'C'

        model.input = spa.Input(buffer1=input, buffer2=input)

    a1 = model.input.input_nodes['buffer1'].output(t=0.0)
    b1 = model.input.input_nodes['buffer1'].output(t=0.1)
    c1 = model.input.input_nodes['buffer1'].output(t=0.2)

    a2 = model.input.input_nodes['buffer2'].output(t=0.0)
    b2 = model.input.input_nodes['buffer2'].output(t=0.1)
    c2 = model.input.input_nodes['buffer2'].output(t=0.2)

    assert np.allclose(a1, model.vocab1.parse('A').v)
    assert np.allclose(b1, model.vocab1.parse('B').v)
    assert np.allclose(c1, model.vocab1.parse('C').v)

    assert np.allclose(a2, model.vocab2.parse('A').v)
    assert np.allclose(b2, model.vocab2.parse('B').v)
    assert np.allclose(c2, model.vocab2.parse('C').v)

    assert np.dot(a1, a2) < 0.95
    assert np.dot(b1, b2) < 0.95
    assert np.dot(c1, c2) < 0.95
Esempio n. 9
0
    def posner(cls, dimensions, probe, stimuli, seed, raster=False):
        # Initializes an instance of the model that performs the Posner task
        main_voc = spa.Vocabulary(dimensions)
        feat_voc = spa.Vocabulary(dimensions)
        weight_voc = spa.Vocabulary(dimensions)
        label_voc = spa.Vocabulary(dimensions)

        stimuli.threshold = 0.5

        if probe not in stimuli.train_vectors:
            main_voc.add(probe, stimuli.test_vectors[probe])

        ConceptModel.add_to(main_voc, stimuli.train_vectors)
        ConceptModel.add_to(main_voc, stimuli.label_vectors)
        ConceptModel.add_to(feat_voc, stimuli.label_vectors)
        ConceptModel.add_to(weight_voc, stimuli.label_vectors)
        ConceptModel.add_to(label_voc, stimuli.label_vectors)

        return ConceptModel(probe, stimuli, main_voc, feat_voc, weight_voc,
                            label_voc, seed, raster)
Esempio n. 10
0
    def model(self, p):
        vocab = spa.Vocabulary(p.D)
        for i in range(p.M):
            vocab.parse('M%d' % i)

        order = np.arange(p.n_tests)
        np.random.shuffle(order)

        model = spa.SPA()
        with model:
            model.cue = spa.State(p.D, vocab=vocab)
            for ens in model.cue.all_ensembles:
                ens.neuron_type = nengo.Direct()

            model.accum = spa.State(p.D, vocab=vocab, feedback=p.feedback)

            model.recall = spa.AssociativeMemory(vocab,
                                                 wta_output=True,
                                                 threshold_output=True)

            model.recalled = spa.State(p.D, vocab=vocab)
            for ens in model.recalled.all_ensembles:
                ens.neuron_type = nengo.Direct()

            nengo.Connection(model.cue.output,
                             model.accum.input,
                             transform=p.accum)
            nengo.Connection(model.recall.output, model.recalled.input)
            nengo.Connection(model.accum.output, model.recall.input)

            model.same = nengo.Ensemble(n_neurons=100,
                                        dimensions=1,
                                        encoders=nengo.dists.Choice([[1]]),
                                        intercepts=nengo.dists.Uniform(0.3, 1))

            model.dot = nengo.networks.Product(n_neurons=200, dimensions=p.D)
            nengo.Connection(model.cue.output, model.dot.A)
            nengo.Connection(model.recalled.output, model.dot.B)
            nengo.Connection(model.dot.output,
                             model.same,
                             transform=[[1] * p.D])

            def stim(t):
                index = int(t / p.T_test)
                index2 = order[index % len(order)]
                if index % 2 == 0:
                    return 'X%d' % (index2 % p.M)
                else:
                    return 'M%d' % (index2 % p.M)

            model.input = spa.Input(cue=stim)

            self.p_same = nengo.Probe(model.same, synapse=0.01)
        return model
Esempio n. 11
0
 def build_cleanup(self, net):
     net.vocab = spa.Vocabulary(dimensions=self.cleanup.dimensions)
     net.vocab.parse(" + ".join(s.label for s in self.syllables))
     net.cleanup = spa.AssociativeMemory(net.vocab,
                                         wta_output=True,
                                         threshold_output=True,
                                         **self.cleanup.kwargs())
     net.memory = spa.State(dimensions=self.cleanup.dimensions,
                            vocab=net.vocab,
                            **self.memory.kwargs())
     nengo.Connection(net.cleanup.output, net.memory.input)
Esempio n. 12
0
        def __init__(self):
            D = 64
            self.vocab1 = spa.Vocabulary(D)
            self.vocab1.parse('A+B+C')

            self.vocab2 = spa.Vocabulary(D)
            self.vocab1.parse('A+B+C')

            self.buffer1 = spa.Buffer(dimensions=D, vocab=self.vocab1)
            self.buffer2 = spa.Buffer(dimensions=D, vocab=self.vocab2)

            def input(t):
                if t < 0.1:
                    return 'A'
                elif t < 0.2:
                    return 'B'
                else:
                    return 'C'

            self.input = spa.Input(buffer1=input, buffer2=input)
Esempio n. 13
0
def test_spa_vocab():
    # create a model without a vocab and check that it is empty
    model = spa.SPA()
    assert model._default_vocabs == {}

    # create a model with a vocab and check that it's filled
    va = spa.Vocabulary(16)
    va.parse("PANTS")
    vb = spa.Vocabulary(32)
    vb.parse("SHOES")
    model = spa.SPA(vocabs=[va, vb])
    assert model._default_vocabs[16].keys == ["PANTS"]
    assert model._default_vocabs[32].keys == ["SHOES"]

    # warning on vocabs with duplicate dimensions
    vc = spa.Vocabulary(16)
    vc.parse("SOCKS")
    with warns(UserWarning):
        model = spa.SPA(vocabs=[va, vb, vc])
    assert model._default_vocabs[16].keys == ["SOCKS"]
    assert model._default_vocabs[32].keys == ["SHOES"]
    def get_binding_data(n_inputs,
                         n_pairs,
                         dims,
                         seed,
                         t_int,
                         t_mem,
                         dt=0.001):
        int_steps = int(t_int / dt)
        mem_steps = int(t_mem / dt)
        n_steps = int_steps * n_pairs + mem_steps

        rng = np.random.RandomState(seed)
        vocab = spa.Vocabulary(dimensions=dims, rng=rng, max_similarity=1)

        # initialize arrays for input and output trajectories
        roles = np.zeros((n_inputs, n_steps, dims))
        fills = np.zeros((n_inputs, n_steps, dims))
        cues = np.zeros((n_inputs, n_steps, dims))
        binding = np.zeros((n_inputs, n_steps, dims))
        memory = np.zeros((n_inputs, n_steps, dims))
        output = np.zeros((n_inputs, n_steps, dims))

        # iterate through examples to be generated, fill arrays
        for n in range(n_inputs):
            role_names = ["ROLE_%d_%d" % (n, i) for i in range(n_pairs)]
            filler_names = ["FILLER_%d_%d" % (n, i) for i in range(n_pairs)]

            # each role/filler pair is presented for t_int seconds
            for i in range(n_pairs):
                roles[n, i * int_steps:(i + 1) * int_steps] = vocab.parse(
                    role_names[i]).v
                fills[n, i * int_steps:(i + 1) * int_steps] = vocab.parse(
                    filler_names[i]).v
                binding[n, i * int_steps:(i + 1) * int_steps] = vocab.parse(
                    "%s*%s" % (role_names[i], filler_names[i])).v

            # randomly select a cue
            cue_idx = rng.randint(n_pairs)

            # cue is presented during the memorization period
            cues[n, -mem_steps:, :] = vocab[role_names[cue_idx]].v

            # the goal is to output the associated filler during the
            # memorization phase
            # note: we use nan for the target prior to the memorization phase,
            # to indicate that it doesn't matter what the network output is
            output[n, -mem_steps:, :] = vocab[filler_names[cue_idx]].v
            output[n, :-mem_steps, :] = np.nan

        memory[...] = np.cumsum(binding, axis=1) * dt / t_int

        return roles, fills, cues, binding, memory, output, vocab
Esempio n. 15
0
    def murphy(cls,
               dimensions,
               probe,
               stimuli,
               weights,
               count,
               seed,
               raster=False):
        # Initializes an instance of the model that performs the Murphy task
        features = sorted(
            [w for w in stimuli.features.keys() if str(count) in w])

        probe = '%d*A%d+%d*B%d+%d*C%d+%d*D%d'% \
        (probe[0], count, probe[1], count, probe[2], count, probe[3], count)
        stimuli.memory = 'R1*A%d+R2*B%d+R3*C%d+R4*D%d'% \
        (count, count, count, count)

        main_voc = spa.Vocabulary(dimensions)
        feat_voc = spa.Vocabulary(dimensions)
        weight_voc = spa.Vocabulary(dimensions)
        label_voc = spa.Vocabulary(dimensions)

        for label in stimuli.label_vectors:
            main_voc.add(label, stimuli.label_vectors[label])

        for feature in features:
            main_voc.add(feature, stimuli.features[feature])
            feat_voc.add(feature, stimuli.features[feature])
            weight_voc.add(
                feature, stimuli.features[feature] * 1.5 *
                weights[features.index(feature)])

        ConceptModel.add_to(label_voc, stimuli.label_vectors)
        stimuli.threshold = 0.724

        return ConceptModel(probe, stimuli, main_voc, feat_voc, weight_voc,
                            label_voc, seed, raster)
Esempio n. 16
0
    def brooks(cls, dimensions, probe, stimuli, seed, raster=False):
        # Initializes an instance of the model that performs the Brooks task
        main_voc = spa.Vocabulary(dimensions)
        feat_voc = spa.Vocabulary(dimensions)
        weight_voc = spa.Vocabulary(dimensions)
        label_voc = spa.Vocabulary(dimensions)

        stimuli.threshold = 0.5

        ConceptModel.add_to(main_voc, stimuli.stimuli_A)
        ConceptModel.add_to(main_voc, stimuli.label_vectors)
        ConceptModel.add_to(feat_voc, stimuli.label_vectors)
        ConceptModel.add_to(weight_voc, stimuli.label_vectors)
        ConceptModel.add_to(label_voc, stimuli.label_vectors)

        if probe not in stimuli.stimuli_A.keys():
            main_voc.add(probe, stimuli.test_vectors[probe])

        x = stimuli.labelled_stimuli[probe]
        print 'Correct Labels'
        print x[0], x[1]

        return ConceptModel(probe, stimuli, main_voc, feat_voc, weight_voc,
                            label_voc, seed, raster)
Esempio n. 17
0
    def __init__(self,
                 seed,
                 d=64,
                 beta=0.6,
                 beta_stim=1.,
                 n=10,
                 dt=0.001,
                 stimulus_gen=None):
        self.seed = seed
        self.d = d
        self.beta = beta
        self.n = n
        self.dt = dt

        self.init_phase = 0.5

        self.vocab = spa.Vocabulary(d, rng=np.random.RandomState(seed=seed))
        self.recalled_ctxs = [
            x
            for i, x in zip(range(n), stimulus_vectors(self.vocab, beta_stim))
        ]
# first item, and classify it using the accumulator.  If it is not recognized,
# it will send NO to the motor system.  If it is recognized, then it will
# change attention to W2, reset the accumulator, and classify the next word.
# If that word is recognized, it will output YES, and if it is not recognized
# it will output NO.
#
# You can change what words are presented by changing the "words" variable.

import nengo
import nengo.spa as spa
import numpy as np

D = 16

# define the known words
mem_vocab = spa.Vocabulary(D)
mem_vocab.parse('A+B+C+D+E+F')

# we'll use this to reset the accumulated evidence to zero
reset_vocab = spa.Vocabulary(D)
reset_vocab.parse('EVIDENCE')

# here are the valid motor responses
motor_vocab = spa.Vocabulary(D)
motor_vocab.parse('YES+NO+WAIT')

# and the valid attention signals
attend_vocab = spa.Vocabulary(D)
attend_vocab.parse('W1+W2')

# These are the two words to be presented
Esempio n. 19
0
import nengo
import nengo.spa as spa

D = 16
N = 500

model = spa.SPA(label="circular convolution")
with model:
    
    vocab=spa.Vocabulary(D)
    vocab.parse('BLUE')
    
    a = nengo.Ensemble(N, D)
    b = nengo.Ensemble(N, D)
    c = nengo.Ensemble(N, D)
    d = nengo.Ensemble(N, D)
    e = nengo.Ensemble(N, D)
    
    model.config[a].vocab=vocab
    model.config[b].vocab=vocab

    circonv = nengo.networks.CircularConvolution(100, D)

    circonv2 = nengo.networks.CircularConvolution(100, D, invert_b=True)
    
    nengo.Connection(a, circonv.A)
    nengo.Connection(b, circonv.B)
    nengo.Connection(circonv.output, d)
    nengo.Connection(d, circonv2.A)
    nengo.Connection(c, circonv2.B)
    nengo.Connection(circonv2.output, e)
Esempio n. 20
0
                angle, dist = self.compute_angle_and_distance(obj)
                color = color_map[obj.color]

                if dist < 1:
                    dist = 1.0

                r = 1.0 / dist
                where.extend([np.sin(angle) * r, np.cos(angle) * r])
                what.extend([color])
                self.n_objects += 1
        return what + where


D = 64
dim = 16
vocab = spa.Vocabulary(D)
food_vocab = spa.Vocabulary(D)
goal_vocab = spa.Vocabulary(D)
inter_vocab = spa.Vocabulary(D)
turn_vocab = spa.Vocab(dim)

model = spa.SPA(label="Find Food")

with model:

    def starter(t):
        if t < 0.05:
            return "START_FIND_FOOD"
        else:
            return "0"
Esempio n. 21
0
import nengo.spa as spa

vocab = spa.Vocabulary(512)

data = []
for i in range(100):
    data.extend(vocab.parse('A%d' % i).v)

import pylab
pylab.hist(data, 50)
pylab.show()
Esempio n. 22
0
import nengo
import nengo.spa as spa

D = 256

D_space = 256
vocab_space = spa.Vocabulary(D_space)

model = spa.SPA()
with model:

    model.rule = spa.State(D)

    model.objs = spa.State(D_space, feedback=1, vocab=vocab_space)

    model.status = spa.State(D)

    actions = spa.Actions(
        'dot(rule, OBJ1*BELOW*V+OBJ2*O)*0.4 +'
        '(dot(objs, OBJ1*Y) - dot(objs, OBJ2*Y))+0.5 --> '
        'status=BAD, '
        'objs=-0.1*Y*OBJ1 + 0.1*Y*OBJ2',
        'dot(rule, OBJ1*S+BELOW*V+OBJ2*O)*0.4 - '
        '(dot(objs, OBJ1*Y) - dot(objs, OBJ2*Y))-0.5 --> '
        'status=GOOD',
        'dot(rule, OBJ1*S+LEFT*V+OBJ2*O)*0.4 +'
        '(dot(objs, OBJ1*X) - dot(objs, OBJ2*X))+0.3 --> '
        'status=BAD, '
        'objs=-0.1*X*OBJ1 + 0.1*X*OBJ2',
        'dot(rule, OBJ1*S+LEFT*V+OBJ2*O)*0.4 - '
        '(dot(objs, OBJ1*X) - dot(objs, OBJ2*X))-0.3 --> '
Esempio n. 23
0
    def __init__(self,
                 mapping,
                 D_category=16,
                 D_items=64,
                 threshold=0.4,
                 learning_rate=1e-4):

        #The realted Items are 0-1 2-3 4-5 6-7
        sim_const = 0.9
        sim_matrices = []
        for m in mapping:
            s = len(mapping[m])
            mat = np.random.rand(s, s) / 1000
            for r in range(0, s):
                mat[r][r] = 1
            for i in range(0, s - 1, 2):
                mat[i][i + 1] = sim_const
                mat[i + 1][i] = sim_const
            sim_matrices.append(mat)

        model = spa.SPA()
        self.model = model
        self.mapping = mapping
        self.vocab_category = spa.Vocabulary(D_category)
        self.vocab_items = spa.Vocabulary(D_items)

        #for k in sorted(mapping.keys()): #allocating verctors for categories name
        for cat in range(0, len(mapping)):
            self.vocab_category.parse(mapping.keys()[cat])
            for val in range(0, len(mapping[mapping.keys()[cat]])):
                item = mapping[mapping.keys()[cat]][val]
                if val % 2 == 0:
                    self.vocab_items.parse(item)
                    Temp = self.vocab_items.parse(item)  ########
                else:
                    related = sim_matrices[cat][val][
                        val - 1]  #look at the sim_matrices
                    #print related
                    #print item
                    w = 1.0 / related - 1
                    v = Temp + w * self.vocab_items.create_pointer()
                    v.normalize()
                    self.vocab_items.add(item, v)

        with model:
            model.category = spa.State(D_category, vocab=self.vocab_category)

            model.items = spa.State(D_items, vocab=self.vocab_items)

            def learned(x):
                cats = np.dot(self.vocab_category.vectors, x)
                best_index = np.argmax(
                    cats
                )  #takes the category which has the largest projection of x
                if cats[best_index] < threshold:
                    return self.vocab_items.parse('0').v
                else:  #generate the sum vector
                    k = self.vocab_category.keys[best_index]
                    total = '+'.join(self.mapping[k])
                    v = self.vocab_items.parse(total).v
                    return v / (2 * np.linalg.norm(v))

            c = nengo.Connection(
                model.category.all_ensembles[0],
                model.items.input,
                function=learned,
                learning_rule_type=nengo.PES(learning_rate=learning_rate))

            model.error = spa.State(D_items, vocab=self.vocab_items)
            nengo.Connection(model.items.output, model.error.input)
            nengo.Connection(model.error.output, c.learning_rule)

            self.stim_category_value = np.zeros(D_category)
            self.stim_category = nengo.Node(self.stim_category)
            nengo.Connection(self.stim_category,
                             model.category.input,
                             synapse=None)

            self.stim_correct_value = np.zeros(D_items)
            self.stim_correct = nengo.Node(self.stim_correct)
            nengo.Connection(self.stim_correct,
                             model.error.input,
                             synapse=None,
                             transform=-1)

            self.stim_stoplearn_value = np.zeros(1)
            self.stim_stoplearn = nengo.Node(self.stim_stoplearn)
            for ens in model.error.all_ensembles:
                nengo.Connection(self.stim_stoplearn,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.stim_justmemorize_value = np.zeros(1)
            self.stim_justmemorize = nengo.Node(self.stim_justmemorize)
            for ens in model.items.all_ensembles:
                nengo.Connection(self.stim_justmemorize,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.probe_items = nengo.Probe(model.items.output, synapse=0.01)

        self.sim = nengo.Simulator(self.model)
Esempio n. 24
0
learning = True
initialized = False  #True
learning_rate = 1e-5  #5e-6

# Time between state transitions
time_interval = 0.1  #0.5

states = ['S0', 'S1', 'S2']

actions = ['L', 'R']

n_sa_neurons = DIM * 2 * 15  # number of neurons in the state+action population
n_prod_neurons = DIM * 50  # number of neurons in the product network

# Set all vectors to be orthogonal for now (easy debugging)
vocab = spa.Vocabulary(dimensions=DIM, randomize=False)

# TODO: these vectors might need to be chosen in a smarter way
for sp in states + actions:
    vocab.parse(sp)


class AreaIntercepts(nengo.dists.Distribution):
    dimensions = nengo.params.NumberParam('dimensions')
    base = nengo.dists.DistributionParam('base')

    def __init__(self, dimensions, base=nengo.dists.Uniform(-1, 1)):
        super(AreaIntercepts, self).__init__()
        self.dimensions = dimensions
        self.base = base
Esempio n. 25
0
    def model(self, p):
        vis_items = ['FATIGUE', 'WHISKEY']
        vis_vocab = spa.Vocabulary(p.D)
        self.vis_items = vis_items
        self.vis_vocab = vis_vocab

        result_vocab_items = ['SAME']
        input_items = ['PUSH']
        action_items = ['F1']
        self.result_vocab_items = result_vocab_items
        self.input_items = input_items
        self.action_items = action_items

        ##### Vision and motor system #########
        import vision_system as v
        import motor_system as m
        reload(v)
        reload(m)

        directory = '/home/stacy/github/visual-categorization/assoc_recog_s/images/'
        image_list = v.load_images(directory, items=vis_items)
        output_list = v.vector_gen_function(vis_items, vocab=vis_vocab)
        self.directory = directory
        self.image_list = image_list
        self.output_list = output_list

        model = spa.SPA(label='MAIN')
        with model:
            model.vision_system = v.make_vision_system(
                image_list,
                output_list,
                n_neurons=500,
                AIT_V1_strength=p.AIT_V1_strength,
                AIT_r_transform=p.AIT_r_transform,
                V1_r_transform=p.V1_r_transform)
            model.concept = spa.State(p.D, vocab=vis_vocab)
            nengo.Connection(model.vision_system.AIT, model.concept.input)

            model.compare = spa.Compare(p.D)
            model.wm = spa.State(p.D, vocab=vis_vocab)
            model.result = spa.State(p.D, feedback=p.result_feedback)

            nengo.Connection(model.concept.output,
                             model.compare.inputA,
                             synapse=0.01)
            nengo.Connection(model.wm.output, model.compare.inputB)

            vocab = model.get_input_vocab('result')
            nengo.Connection(model.compare.output,
                             model.result.input,
                             transform=p.compare_to_result_strength *
                             np.array([vocab.parse('SAME').v]).T)

            def result_to_motor(in_vocab, out_vocab):
                mapping = np.zeros((p.D, p.D))
                for i in range(len(input_items)):
                    mapping += np.outer(
                        in_vocab.parse(result_vocab_items[i]).v,
                        out_vocab.parse(input_items[i]).v)
                transform = mapping.T
                return transform

            model.motor_system = m.make_motor_system(
                input_items,
                action_items,
                motor_feedback=p.motor_feedback,
                motor_transform=p.motor_transform,
                finger_feedback=p.finger_feedback,
                motor_to_fingers_strength=p.motor_to_fingers_strength)

            nengo.Connection(model.result.output,
                             model.motor_system.motor_input.input,
                             transform=result_to_motor(
                                 vocab, model.motor_system.motor_vocab))

            def present_func(t):
                if t < 1:
                    index = 0
                else:
                    index = 1
                return image_list[index]

            stim = nengo.Node(present_func)
            nengo.Connection(stim, model.vision_system.presentation_node)

            stim_wm = nengo.Node(
                model.get_input_vocab('wm').parse('FATIGUE').v)
            nengo.Connection(stim_wm, model.wm.input)

            self.V1_probe = nengo.Probe(model.vision_system.V1)
            self.AIT_probe = nengo.Probe(model.vision_system.AIT,
                                         synapse=0.005)

            self.PFC_probe = nengo.Probe(model.compare.output, synapse=0.005)
            self.PMC_probe = nengo.Probe(model.result.output, synapse=0.005)
            self.MC_probe = nengo.Probe(model.motor_system.motor.output,
                                        synapse=0.005)
            self.finger_probe = nengo.Probe(model.motor_system.fingers.output,
                                            synapse=0.005)

            self.final_probe = nengo.Probe(
                model.motor_system.finger_pos.output, synapse=0.005)
            self.mymodel = model
        return model
Esempio n. 26
0
            self.cellcolor = 5


world = grid.World(Cell, map=mymap, directions=4)

body = grid.ContinuousAgent()
world.add(body, x=1, y=2, dir=2)

import nengo
import nengo.spa as spa
import numpy as np
from config import *

# Colour vocabulary
COLOURS = ["GREEN", "RED", "BLUE", "MAGENTA", "YELLOW"]
colour_vocab = spa.Vocabulary(D)
colour_vocab.parse('+'.join(COLOURS))
# Cooldown vocab
cooldown_vocab = spa.Vocabulary(D)
cooldown_vocab.parse('COOLDOWN')


### FUNCTIONS ###
def detect(t):
    """
    Returns distance from wall for each sensor (maximally 4)
    Angles of sensors are -0.5, 0, 0.5 relative to the body's angle
    Angles are in range [0,4) (1=east, 2=south, 3=west)
    """
    angles = (np.linspace(-0.5, 0.5, 3) + body.dir) % world.directions
Esempio n. 27
0
    def model(self, p):
        vocab = spa.Vocabulary(p.D)

        self.stim = FingStim(vocab,
                             p.T_reset,
                             p.T_stim,
                             p.T_answer,
                             p.n_states,
                             max_diff=p.max_diff,
                             mask_base=p.mask_base)

        model = nengo.Network()
        with model:
            array = StateArray(p.D,
                               p.n_states,
                               vocab=vocab,
                               channel_clarity=p.channel_clarity)

            reset = nengo.Node(self.stim.reset)
            nengo.Connection(reset, array.reset, synapse=None)

            mask = nengo.Node(self.stim.mask)
            nengo.Connection(mask, array.mask, synapse=None)

            value = nengo.Node(self.stim.value)
            nengo.Connection(value, array.input, synapse=None)

            correct = nengo.Node(self.stim.answer)

            collect = nengo.Ensemble(n_neurons=p.n_collect,
                                     dimensions=p.n_states)
            readout = nengo.Node(None, size_in=p.n_states)

            pts = []
            target = []
            while len(pts) < p.n_samples:
                i = np.random.choice([1, 2, 3, 4, 5])
                j = np.random.choice([1, 2, 3, 4, 5])
                if i == j:
                    continue
                v = np.zeros(5, dtype=float)
                v[i - 1] = 1
                v[j - 1] = 1
                pts.append(v)
                target.append(v)
            target = np.array(target, dtype=float)
            target += np.random.randn(*target.shape) * p.sample_noise
            pts = np.array(pts, dtype=float)
            pts += np.random.randn(*pts.shape) * p.sample_noise

            nengo.Connection(collect,
                             readout,
                             eval_points=pts,
                             function=target,
                             scale_eval_points=False)

            for i in range(p.n_states):
                nengo.Connection(array.states[i].output,
                                 collect[i],
                                 transform=np.array(
                                     [vocab.parse('TOUCHED').v / 1.5]))

            self.p_answer = nengo.Probe(collect, synapse=0.01)
            '''
            no_report = nengo.Node(self.stim.no_report)

            report = nengo.networks.EnsembleArray(100, p.n_states,
                        encoders=nengo.dists.Choice([[1]]),
                        intercepts=nengo.dists.Uniform(0.6,0.9),
                        radius=1)
            for i in range(p.n_states):
                nengo.Connection(array.states[i].output, report.input[i],
                                    transform=np.array([vocab.parse('TOUCHED').v/1.5]))
            for ens in report.all_ensembles:
                nengo.Connection(no_report, ens.neurons,
                                    transform=-2*np.ones((ens.n_neurons,1)))

            reported = nengo.networks.EnsembleArray(100, p.n_states,
                radius=1, encoders=nengo.dists.Choice([[1]]),
                intercepts=nengo.dists.Uniform(0.05,0.9))


            m=[[-10]*p.n_states for i in range(p.n_states)]
            for i in range(p.n_states):
                m[i][i]=0
            nengo.Connection(report.output, report.input,
                             transform=m, synapse=0.01)


            nengo.Connection(report.output, reported.input,
                             transform=1, synapse=0.2)
            nengo.Connection(reported.output, report.input, transform=-1)
            nengo.Connection(reported.output, reported.input, transform=1.2)


            for ens in report.all_ensembles + reported.all_ensembles:
                nengo.Connection(reset, ens.neurons, transform=-2*np.ones((ens.n_neurons,1)))

            #self.p_answer = nengo.Probe(answer, synapse=0.01)
            '''
        self.locals = locals()
        return model
Esempio n. 28
0
# Set dimensions of semantic pointers. Higher dimensions will make the model more reliable at
# the cost of more neurons. Must be divisible by 16
D = 272 #304 #272 #368  
Dlow = 112 #for goal and motor 
print('\tDimensions: %i, %i' % (D,Dlow))



####### Vocabularies #######

rng_vocabs = np.random.RandomState(seed=fseed)

letters = ['A', 'B', 'C', 'D']#, 'E', 'F', 'G', 'H', 'I', 'J', 'K']
numbers = ['ZERO', 'ONE', 'TWO']#, 'THREE', 'FOUR', 'FIVE']

vocab_concepts = spa.Vocabulary(D,rng=rng_vocabs)
for letter in letters:
    vocab_concepts.parse(letter)
for number in numbers:
    vocab_concepts.parse(number)

# The model also needs to know some slot names:
vocab_concepts.parse('ITEM1')
vocab_concepts.parse('ITEM2')
vocab_concepts.parse('RESULT')
vocab_concepts.parse('IDENTITY')
vocab_concepts.parse('NEXT')


# 2. Vocab with stored (correct) problem/answer combinations
Esempio n. 29
0
    def __init__(self,
                 mapping,
                 D_category=16,
                 D_items=64,
                 threshold=0.4,
                 learning_rate=1e-4):
        model = spa.SPA()
        self.model = model
        self.mapping = mapping
        self.vocab_category = spa.Vocabulary(D_category)
        self.vocab_items = spa.Vocabulary(D_items)
        for k in sorted(
                mapping.keys()):  #allocating verctors for categories name
            self.vocab_category.parse(k)
            for v in mapping[k]:  # allocating vectors to the items
                self.vocab_items.parse(v)

        with model:
            model.category = spa.State(D_category, vocab=self.vocab_category)

            model.items = spa.State(D_items, vocab=self.vocab_items)

            def learned(x):
                #cats = np.dot(self.vocab_category.vectors, x)
                #best_index = np.argmax(cats) #takes the category which has the largest projection of x
                #if cats[best_index] < threshold:
                #   return self.vocab_items.parse('0').v
                #else: #generate the sum vector
                #    k = self.vocab_category.keys[best_index]
                #    total = '+'.join(self.mapping[k])
                #    v = self.vocab_items.parse(total).v
                return self.vocab_items.parse('0').v  # v/(2*np.linalg.norm(v))

            c = nengo.Connection(
                model.category.all_ensembles[0],
                model.items.input,
                function=learned,
                learning_rule_type=nengo.PES(learning_rate=learning_rate))

            model.error = spa.State(D_items, vocab=self.vocab_items)
            nengo.Connection(model.items.output, model.error.input)
            nengo.Connection(model.error.output, c.learning_rule)

            self.stim_category_value = np.zeros(D_category)
            self.stim_category = nengo.Node(self.stim_category)
            nengo.Connection(self.stim_category,
                             model.category.input,
                             synapse=None)

            self.stim_correct_value = np.zeros(D_items)
            self.stim_correct = nengo.Node(self.stim_correct)
            nengo.Connection(self.stim_correct,
                             model.error.input,
                             synapse=None,
                             transform=-1)

            self.stim_stoplearn_value = np.zeros(1)
            self.stim_stoplearn = nengo.Node(self.stim_stoplearn)
            for ens in model.error.all_ensembles:
                nengo.Connection(self.stim_stoplearn,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.stim_justmemorize_value = np.zeros(1)
            self.stim_justmemorize = nengo.Node(self.stim_justmemorize)
            for ens in model.items.all_ensembles:
                nengo.Connection(self.stim_justmemorize,
                                 ens.neurons,
                                 synapse=None,
                                 transform=-10 * np.ones((ens.n_neurons, 1)))

            self.probe_items = nengo.Probe(model.items.output, synapse=0.01)

        self.sim = nengo.Simulator(self.model)
Esempio n. 30
0
import nengo
import numpy as np
import nengo.spa as spa

vocab = spa.Vocabulary(32)
vocab2 = spa.Vocabulary(32)

model = nengo.Network()
with model:
    state = spa.State(32, vocab=vocab)
    bg = nengo.networks.actionselection.BasalGanglia(4)
    nengo.Connection(state.output,
                     bg.input,
                     transform=[
                         vocab.parse('DOG').v,
                         vocab.parse('CAT').v,
                         vocab.parse('RAT').v,
                         vocab.parse('COW').v,
                     ])

    thal = nengo.networks.actionselection.Thalamus(4)
    nengo.Connection(bg.output, thal.input)

    act = spa.State(32, vocab=vocab2)
    channel = spa.State(32, vocab=vocab2)
    motor = spa.State(32, vocab=vocab2)
    nengo.Connection(act.output, channel.input)
    nengo.Connection(channel.output, motor.input)

    nengo.Connection(thal.output,
                     motor.input,