Esempio n. 1
0
    def run_steps(self, N, progress_bar=True):
        if self.closed:
            raise SimulatorClosed("Simulator cannot run because it is closed.")

        if self.n_steps + N >= 2**24:
            # since n_steps is float32, point at which `n_steps == n_steps + 1`
            raise ValueError("Cannot handle more than 2**24 steps")

        if self._cl_probe_plan is not None:
            # -- precondition: the probe buffers have been drained
            bufpositions = self._cl_probe_plan.cl_bufpositions.get()
            assert np.all(bufpositions == 0)

        if progress_bar is None:
            progress_bar = self.progress_bar
        try:
            progress = ProgressTracker(N, progress_bar, "Simulating")
        except TypeError:
            progress = ProgressTracker(N, progress_bar)

        with progress:
            # -- we will go through N steps of the simulator
            #    in groups of up to B at a time, draining
            #    the probe buffers after each group of B
            while N:
                B = min(N, self._max_steps_between_probes)
                self._plans.call_n_times(B)
                self._probe()
                N -= B
                progress.step(n=B)

        if self.profiling > 1:
            self.print_profiling()
Esempio n. 2
0
def test_progress_tracker():
    update_interval = 0.001
    sleep_interval = 20 * update_interval
    stages = 4
    steps = 3
    total_progress = Progress(name_during="total_prog", max_steps=stages)
    progress_bar = ProgressBarMock()
    tracker = ProgressTracker(progress_bar,
                              total_progress,
                              update_interval=update_interval)

    assert not progress_bar.closed
    with tracker:
        for i in range(stages):
            sub_progress = tracker.next_stage(name_during="stage%d" % i,
                                              max_steps=steps)
            with sub_progress:
                for j in range(steps):
                    sub_progress.step()
                    time.sleep(sleep_interval)
                    assert progress_bar.updates[
                        -1].name_during == "stage%d" % i
                    assert progress_bar.updates[-1].n_steps == j + 1

            time.sleep(sleep_interval)
            assert progress_bar.updates[-1].name_during == "total_prog"
            assert progress_bar.updates[-1].n_steps == i

    assert progress_bar.closed
Esempio n. 3
0
    def run_steps(self, steps, progress_bar=None):
        """Simulate for the given number of ``dt`` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                       (Default: True)
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a `.ProgressBar`
            or `.ProgressUpdater` instance.
        """
        if progress_bar is None:
            progress_bar = self.progress_bar

        with ProgressTracker(progress_bar,
                             Progress("Simulating", "Simulation",
                                      steps)) as pt:
            for i in range(steps):
                self.step()
                pt.total_progress.step()
    def publish_loop(self, steps, progress_bar=True):
        manager = yield From(pygazebo.connect())

        def callback_pose(data):
            self.sensor_comp.callback(data)

        publisher = yield From(
            manager.advertise('/gazebo/default/turtlebot/joint_cmd',
                              'gazebo.msgs.JointCmd'))

        subscriber_pose = manager.subscribe('/gazebo/default/pose/info',
                                            'gazebo.msgs.PosesStamped',
                                            callback_pose)
        yield From(subscriber_pose.wait_for_connection())

        msg_left_wheel = pygazebo.msg.joint_cmd_pb2.JointCmd()
        msg_left_wheel.name = 'turtlebot::create::left_wheel'
        msg_right_wheel = pygazebo.msg.joint_cmd_pb2.JointCmd()
        msg_right_wheel.name = 'turtlebot::create::right_wheel'

        print "wait for connection.."
        yield From(trollius.sleep(1.0))

        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                force = self.action_comp.callback()

                max_force_strength = 0.7
                force = np.clip(force, -max_force_strength, max_force_strength)

                msg_right_wheel.force, msg_left_wheel.force = force
                From(publisher.publish(msg_left_wheel))
                From(publisher.publish(msg_right_wheel))
                yield From(trollius.sleep(0.01))
Esempio n. 5
0
    def __init__(self,
                 network,
                 dt=0.001,
                 seed=None,
                 model=None,
                 progress_bar=True,
                 optimize=True):
        self.closed = True  # Start closed in case constructor raises exception
        self.progress_bar = progress_bar
        self.optimize = optimize

        if model is None:
            self.model = Model(
                dt=float(dt),
                label="%s, dt=%f" % (network, dt),
                decoder_cache=get_default_decoder_cache(),
            )
        else:
            self.model = model

        pt = ProgressTracker(progress_bar, Progress("Building", "Build"))
        with pt:
            if network is not None:
                # Build the network into the model
                self.model.build(network,
                                 progress=pt.next_stage("Building", "Build"))

            # Order the steps (they are made in `Simulator.reset`)
            self.dg = operator_dependency_graph(self.model.operators)

            if optimize:
                with pt.next_stage("Building (running optimizer)",
                                   "Optimization"):
                    opmerge_optimize(self.model, self.dg)

        self._step_order = [
            op for op in toposort(self.dg) if hasattr(op, "make_step")
        ]

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Add built states to the raw simulation data dictionary
        self._sim_data = self.model.params

        # Provide a nicer interface to simulation data
        self.data = SimulationData(self._sim_data)

        if seed is None:
            if network is not None and network.seed is not None:
                seed = network.seed + 1
            else:
                seed = np.random.randint(npext.maxint)

        self.closed = False
        self.reset(seed=seed)
Esempio n. 6
0
    def test_at_most_n_updates_are_performed(self):
        progress_bar = ProgressBarMock()
        updater = UpdateN(progress_bar, max_updates=3)

        with ProgressTracker(100, updater) as p:
            for _ in range(100):
                p.step()

        assert progress_bar.n_update_calls > 0
        assert progress_bar.n_update_calls <= 3
Esempio n. 7
0
    def test_updates_every_n_steps(self):
        progress_bar = ProgressBarMock()
        updater = UpdateEveryN(progress_bar, every_n=5)

        with ProgressTracker(100, updater) as p:
            progress_bar.n_update_calls = 0
            for _ in range(5):
                p.step()
            assert progress_bar.n_update_calls == 1

            p.step(2)
            assert progress_bar.n_update_calls == 1
            p.step(3)
            assert progress_bar.n_update_calls == 2
Esempio n. 8
0
    def test_updates_after_interval_has_passed(self, monkeypatch):
        progress_bar = ProgressBarMock()
        updater = UpdateEveryT(progress_bar, every_t=2.)
        t = 1.
        monkeypatch.setattr(time, 'time', lambda: t)

        with ProgressTracker(100, updater) as p:
            p.step()  # Update is allowed to happen on first step.

            progress_bar.n_update_calls = 0
            p.step()
            assert progress_bar.n_update_calls == 0

            t = 2.
            p.step()
            assert progress_bar.n_update_calls == 0

            t = 4.
            p.step()
            assert progress_bar.n_update_calls == 1
Esempio n. 9
0
    def run_steps(self, N, progress_bar=True):
        has_probes = self._cl_probe_plan is not None

        if has_probes:
            # -- precondition: the probe buffers have been drained
            bufpositions = self._cl_probe_plan.cl_bufpositions.get()
            assert np.all(bufpositions == 0)

        with ProgressTracker(N, progress_bar) as progress:
            # -- we will go through N steps of the simulator
            #    in groups of up to B at a time, draining
            #    the probe buffers after each group of B
            while N:
                B = min(N, self._max_steps_between_probes)
                self._plans.call_n_times(B)
                if has_probes:
                    self.drain_probe_buffers()
                N -= B
                self.n_steps += B
                progress.step(n=B)

        if self.profiling > 1:
            self.print_profiling()
Esempio n. 10
0
    def run_steps(self, steps, progress_bar=True):
        """Simulate for the given number of `dt` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                progress.step()
Esempio n. 11
0
def build_network(model, network, progress_bar=False):
    """Builds a `.Network` object into a model.

    The network builder does this by mapping each high-level object to its
    associated signals and operators one-by-one, in the following order:

    1. Ensembles, nodes, neurons
    2. Subnetworks (recursively)
    3. Connections, learning rules
    4. Probes

    Before calling any of the individual objects' build functions, random
    number seeds are assigned to objects that did not have a seed explicitly
    set by the user. Whether the seed was assigned manually or automatically
    is tracked, and the decoder cache is only used when the seed is assigned
    manually.

    Parameters
    ----------
    model : Model
        The model to build into.
    network : Network
        The network to build.
    progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                   (Default: False)
        Progress bar for displaying build progress.

        If True, the default progress bar will be used.
        If False, the progress bar will be disabled.
        For more control over the progress bar, pass in a `.ProgressBar`
        or `.ProgressUpdater` instance.

        Note that this will only affect top-level networks. Subnetworks
        cannot have progress bars displayed.

    Notes
    -----
    Sets ``model.params[network]`` to ``None``.
    """
    def get_seed(obj, rng):
        # Generate a seed no matter what, so that setting a seed or not on
        # one object doesn't affect the seeds of other objects.
        seed = rng.randint(npext.maxint)
        return (seed
                if not hasattr(obj, 'seed') or obj.seed is None else obj.seed)

    if model.toplevel is None:
        model.toplevel = network
        model.seeds[network] = get_seed(network, np.random)
        model.seeded[network] = getattr(network, 'seed', None) is not None
    else:
        progress_bar = False

    max_steps = len(network.all_objects) + 1  # +1 for top level network itself
    progress = ProgressTracker(max_steps, progress_bar, task="Building")

    # Set config
    old_config = model.config
    model.config = network.config

    # assign seeds to children
    rng = np.random.RandomState(model.seeds[network])
    # Put probes last so that they don't influence other seeds
    sorted_types = (Connection, Ensemble, Network, Node, Probe)
    assert all(tp in sorted_types for tp in network.objects)
    for obj_type in sorted_types:
        for obj in network.objects[obj_type]:
            model.seeded[obj] = (model.seeded[network]
                                 or getattr(obj, 'seed', None) is not None)
            model.seeds[obj] = get_seed(obj, rng)

    # If this is the toplevel network, enter the decoder cache
    context = (model.decoder_cache
               if model.toplevel is network else nullcontext())
    with context, progress:

        def build_callback(obj):
            if isinstance(obj, tuple(network.objects)):
                progress.step()

        model.build_callback = build_callback

        logger.debug("Network step 1: Building ensembles and nodes")
        for obj in network.ensembles + network.nodes:
            model.build(obj)

        logger.debug("Network step 2: Building subnetworks")
        for subnetwork in network.networks:
            model.build(subnetwork)

        logger.debug("Network step 3: Building connections")
        for conn in network.connections:
            # NB: we do these in the order in which they're defined, and build
            # the learning rule in the connection builder. Because learning
            # rules are attached to connections, the connection that contains
            # the learning rule (and the learning rule) are always built
            # *before* a connection that attaches to that learning rule.
            # Therefore, we don't have to worry about connection ordering here.
            # TODO: Except perhaps if the connection being learned
            # is in a subnetwork?
            model.build(conn)

        logger.debug("Network step 4: Building probes")
        for probe in network.probes:
            model.build(probe)

        if context is model.decoder_cache:
            model.decoder_cache.shrink()

        progress.step()
        model.build_callback = None

    # Unset config
    model.config = old_config
    model.params[network] = None