Esempio n. 1
0
def calculate_representative_cell_size_v2(dataFolder, jobName):
    """
    The easiest way to calculate the area is to use e3post to generate a
    slice across the entire nozzle flow-field. The resulting data file
    contains "volume" information for each cell. For 2D grids this is
    actually the area (method tip from Rowan G. 14-01-2013)
    """
    # Save the current working directory for later use 
    workingDir = os.getcwd()
    # Change into the simulation directory
    os.chdir(dataFolder)
    
    # We check first that the required slice file has not already been
    # created.
    if not os.path.exists(jobName+".data"):
        # e3post will require the gas model file so we search for it...
        if os.path.exists("gas-model.lua"):
            gmodelFile = 'gas-model.lua'
        else:
            gmodelFile = glob.glob("cea-lut-*.lua.gz")[0]
        run_command(E3BIN+('/e3post.py --job=%s --tindx=0001 --gmodel-file=%s ' %
                          (jobName, gmodelFile))
                    +('--output-file=%s ' % (jobName+".data"))
                    +'--slice-list=":,:,:,0" ')
    
    # Now read in data from the slice file
    variable_list, data = get_slice_data(jobName+".data")
    # Calculate the total area (volume) and determine the 
    # representative cell size
    total_volume = sum(data['volume'])
    h = np.sqrt( total_volume/np.shape(data['volume'])[0] )
    # Change back into the working directory
    os.chdir(workingDir)
    return h
Esempio n. 2
0
def perturb_CoreRadiusFraction(var, perturbedVariables,\
                               DictOfCases, levels):
    """
    Perturbation of the CoreRadiusFraction may be completed
    as a post-processing step using the nominal condition
    flow solution. We don't need to compute separate solutions.

    This function copies the nominal condition solution to a 
    new case file and then runs nenzfr with the --just-stats
    option and the perturbed CoreRadiusFraction value. 
    """
    
    for kk in range(levels):
        if kk != 0:
            caseString = 'case'+"{0:02}".format(\
                 perturbedVariables.index(var))+\
                 "{0:01}".format(kk)
            # Only if required to we proceed with copying the
            # nominal case data and calling 'nenzfr.py'
            if not os.path.exists(caseString):
                print "Perturbing "+var
                #command_text = 'rm -r '+caseString
                #run_command(command_text)
                
                # Copy nominal case data into a new case
                # directory
                command_text = 'cp -r case000 '+caseString
                run_command(command_text)
                # Change into new directory and call nenzfr --just-stats
                os.chdir(caseString)
                command_text = 'nenzfr.py --just-stats --CoreRadiusFraction='+\
                  str(DictOfCases[caseString][perturbedVariables.index(var)])
                run_command(command_text)
                os.chdir('../')
Esempio n. 3
0
def set_case_running(caseString, caseDict, textString):
    """
    A short function to set a given case running in an appropriately
    named sub-directory.
    """
    print 60 * "-"
    print caseString
    print textString

    # Create sub-directory for the current case
    run_command('mkdir ./' + caseString)

    # Set up the run script for Nenzfr
    scriptFileName, cfgFileName = prepare_run_script(caseDict, \
        caseDict['jobName'].strip('"')+'_'+caseString, caseDict['Cluster'])

    # Move the run script to its sub-directory
    command_text = 'mv ' + scriptFileName + ' ./' + caseString + '/' + scriptFileName
    run_command(command_text)

    # Move the cfg file to its sub-directory too
    command_text = 'mv ' + cfgFileName + ' ./' + caseString + '/' + cfgFileName
    run_command(command_text)

    # If require, copy the equilibrium gas LUT to the sub-directory
    if caseDict['chemModel'] == 'eq':
        command_text = 'cp ./' + caseDict[
            'gmodelFile'] + ' ./' + caseString + '/'
        run_command(command_text)

    # Change into the sub-directory, ensure the run script is exectuable and
    # then run it
    os.chdir(caseString)
    run_command('chmod u+x ' + scriptFileName)
    print ""
    print caseDict['runCMD'] + scriptFileName
    print ""
    # I am not sure how to replace the following line with the run_command function
    os.system(caseDict['runCMD'] + scriptFileName)
    os.chdir('../')
    return
Esempio n. 4
0
def run_nenzfr(cfg):
    """Function that accepts a config dictionary and runs Nenzfr.
    """
    
    # First, check our input and assign any default values required:
    cfg = input_checker(cfg)
    #bail out here if there is an issue
    if cfg['bad_input']:
        return -2
    #
    # Get the nozzle contour file into the current work directory.
    if not os.path.exists(cfg['contourFileName']):
        run_command('cp '+E3BIN+'/nenzfr_data_files/'+cfg['contourFileName']+' .')
    # Set up the equilibrium gas-model file as a look-up table.
    if not cfg['justStats']:
        if cfg['chemModel'] in ['eq',]:
            if cfg['gasName'] in ['n2']:
                eqGasModelFile = 'cea-lut-'+upper(cfg['gasName'])+'.lua.gz'
            else:
                eqGasModelFile = 'cea-lut-'+cfg['gasName']+'.lua.gz'
            if not os.path.exists(eqGasModelFile):
                run_command('build-cea-lut.py --gas='+cfg['gasName'])
            gmodelFile = eqGasModelFile
        else:
            # We'll assume that the gas-model file of default name is set up.
            # TODO: Luke, this needs to be modified, I suspect.
            gmodelFile = 'gas-model.lua'
    #
    # If we have already run a calculation, it may be that we just want
    # to extract the exit-flow statistics again.
    if cfg['justStats']:
        gmodelFile = read_gmodelFile_from_config(cfg['jobName'])
        print_stats(cfg['exitSliceFileName'],cfg['jobName'],cfg['coreRfraction'],gmodelFile)
        return 0
    #
    # Here each facility type will be doing different things (no estcj for expansion tube)
    if cfg['facility'] == 'reflected-shock-tunnel':
        #
        # Runs estcj to get the equilibrium shock-tube conditions up to the nozzle-supply region.
        command_text = E3BIN+('/estcj.py --gas=%s --T1=%g --p1=%g --Vs=%g --pe=%g --task=st --ofn=%s' % 
                              (cfg['gasName'], cfg['T1'], cfg['p1'], cfg['Vs'], cfg['pe'], cfg['jobName']))
        run_command(command_text)
    # Switch off block-sequencing flag if we have selected to run in MPI block-marching mode.
    if cfg['blockMarching']: 
        sequenceBlocksFlag = 0
    else: 
        sequenceBlocksFlag = 1
        cfg['nbj'] = 1
    # Set up the input script for Eilmer3.
    # the majority of the inputs will already be in our cfg dictionary,
    # but we'll add any things that are still needed
    # add HOME and sequenceBlocksFlag
    cfg['HOME'] = '$HOME'; cfg['seq_blocks'] = sequenceBlocksFlag
    # now need to put in empty variables for the other facilities so the
    # template file works properly
    if cfg['facility'] == 'reflected-shock-tunnel':
        # need to set the expansion tube and gun tunnel parameters to nothing for the substitution
        cfg['T7'] = None; cfg['p7'] = None; cfg['V7'] = None
        cfg['T0'] = None; cfg['p0'] = None
        cfg['pitot_input_file'] = None
    elif cfg['facility'] == 'expansion-tube':
        # need to set the reflected shock tunnel and gun tunnel parameters to nothing for the substitution
        cfg['T1'] = None; cfg['p1'] = None; cfg['Vs'] = None 
        cfg['pe'] = None; cfg['T0'] = None; cfg['p0'] = None
        if 'pitot_input_file' in cfg:
            cfg['T7'] = None; cfg['p7'] = None; cfg['V7'] = None  
        if 'pitot_input_file' not in cfg:
             cfg['pitot_input_file'] = None
    elif cfg['facility'] == 'gun-tunnel':
        # need to set the reflected shock tunnel and expansion tube parameters to nothing for the substition
        cfg['T1'] = None; cfg['p1'] = None; cfg['Vs'] = None; cfg['pe'] = None
        cfg['T7'] = None; cfg['p7'] = None; cfg['V7'] = None
        cfg['pitot_input_file'] = None
        
    # need to put an extra set of quotes around some of the strings for when
    # they are put into the eilmer 3 template
    cfg['facility'] = quote(cfg['facility'])
    cfg['contourFileName'] = quote(cfg['contourFileName'])
    cfg['gridFileName'] = quote(cfg['gridFileName'])
    cfg['chemModel'] = quote(cfg['chemModel'])  
    cfg['gasName'] = quote(cfg['gasName'])
    cfg['reactionSchemeFile'] = quote(cfg['reactionSchemeFile'])
    cfg['thermalSchemeFile'] = quote(cfg['thermalSchemeFile'])
    if cfg['pitot_input_file']:
        cfg['pitot_input_file'] = quote(cfg['pitot_input_file'])
          
    prepare_input_script(cfg, cfg['jobName'])
    run_command(E3BIN+('/e3prep.py --job=%s --do-svg --clean-start' % (cfg['jobName'],)))
    # Run the simulation code.
    if cfg['blockMarching']:
        # Run Eilmer3 either in the multi-processor block-marching mode.
        run_command(E3BIN+('/e3march.py --job=%s --run --nbj=%d' % (cfg['jobName'],cfg['nbj'])))
        # Generate slice list for exit plane.
        exitPlaneSlice = '-' + str(cfg['nbj']) + ':-1,-2,:,0'
        # Generate slice list for centreline.
        noOfBlks = None
        fp = file(cfg['jobName'] + '.config')
        for line in fp:
            if 'nblock =' in line:
                tokens = line.split()
                noOfBlks = int(tokens[2])
        if noOfBlks is None:
            raise RuntimeError("Didn't manage to find the number of blocks in config file.")
        centrelineSlice = '0,:,1,0'
        for blk in range(cfg['nbj'], noOfBlks, cfg['nbj']):
            centrelineSlice += ';' + str(blk) + ',:,1,0'
    else:
        # Run Eilmer3 either in the single processor mode
        # where the block-sequencing happens in the C++ code.
        run_command(E3BIN+('/e3shared.exe --job=%s --run' % (cfg['jobName'],)))
        # Generate slice list for exit plane and centreline.
        exitPlaneSlice = '-1,-2,:,0'
        centrelineSlice = ':,:,1,0'
    #
    # Exit plane slice
    run_command(E3BIN+('/e3post.py --job=%s --tindx=0001 --gmodel-file=%s ' % 
                       (cfg['jobName'], gmodelFile))
                +('--output-file=%s ' % (cfg['exitSliceFileName'],))
                +('--slice-list="%s" ' % exitPlaneSlice)
                +'--add-mach --add-pitot --add-total-enthalpy --add-total-p')
    # Centerline slice
    run_command(E3BIN+('/e3post.py --job=%s --tindx=0001 --gmodel-file=%s ' % 
                       (cfg['jobName'], gmodelFile))
                +('--output-file=%s-centreline.data ' % (cfg['jobName'],))
                +('--slice-list="%s" ' % centrelineSlice)
                +'--add-mach --add-pitot --add-total-enthalpy --add-total-p')
    # Generate files for plotting with Paraview.          
    run_command(E3BIN+('/e3post.py --job=%s --vtk-xml --tindx=0001 --gmodel-file=%s ' % 
                       (cfg['jobName'], gmodelFile))
                +'--add-mach --add-pitot --add-total-enthalpy --add-total-p')
    # Compute viscous data at the nozzle wall
    run_command(E3BIN+'/nenzfr_compute_viscous_data.py --job=%s --nbj=%s' % (cfg['jobName'], cfg['nbj']))
    # Generate averaged exit flow properties
    if not cfg['noStats']:
        print_stats(cfg['exitSliceFileName'],cfg['jobName'],cfg['coreRfraction'],gmodelFile)                
    #
    return 
Esempio n. 5
0
E3BIN = os.path.expandvars("$HOME/e3bin")
sys.path.append(E3BIN)

#
# This script must be called from the following directory:
#     work/space_planes_2012/sensitivity_air/
#

# Load some nenzfr data for us to use
data, Var = read_nenzfr_outfile('./case000/nozzle-exit.stats')

# Read gas model file
gmodelFile = read_gmodelFile_from_config('./case000/nozzle')
if not os.path.exists(gmodelFile):
    run_command('cp ./case000/' + gmodelFile + ' ./')

# Define forebody angle
theta_rad = 6.0 * math.pi / 180.0

# Extract a species dictionary from the input data
speciesKeys = [k for k in data.keys() if k.startswith("mass")]
speciesMassFrac = [data[k] for k in speciesKeys]
speciesDict = dict([(k.split('-')[1], v)
                    for k, v in zip(speciesKeys, speciesMassFrac)])

# Create a Thermally Perfect Gas object
thermal = Gas_thermal(name='air5species',
                      speciesDict=speciesDict,
                      gasModelFile=gmodelFile)
thermal.set_pT(p=data['p'], T=data['T[0]'])
Esempio n. 6
0
def main(cfg={}):
    """
    Examine the command-line options to decide the what to do
    and then coordinate a series of Nenzfr calculations with 
    various inputs perturbed around the input nominal condition.
    """
    op = optparse.OptionParser(version=VERSION_STRING)
    op.add_option('-c',
                  '--config_file',
                  dest='config_file',
                  help=("filename for the config file"))
    opt, args = op.parse_args()
    config_file = opt.config_file

    if not cfg:  #if the configuration dictionary has not been filled up already, load it from a file
        try:  #from Rowan's onedval program
            execfile(config_file, globals(), cfg)
        except IOError as e:
            print "Error {0}".format(str(e))
            print "There was a problem reading the config file: '{0}'".format(
                config_file)
            print "Check that it conforms to Python syntax."
            print "Bailing out!"
            sys.exit(1)

    #check inputs using original nenzfr input checker first

    cfg['bad_input'] = False

    cfg = input_checker(cfg)

    # add default pertubations and check new nenzfr perturbed inputs

    # Set the default relative perturbation values (as percentages)
    cfg['defaultPerturbations'] = {
        'p1': 2.5,
        'T1': 2.5,
        'Vs': 2.5,
        'pe': 2.5,
        'Tw': 2.5,
        'BLTrans': 2.5,
        'TurbVisRatio': 2.5,
        'TurbInten': 2.5,
        'CoreRadiusFraction': 2.5
    }

    cfg = nenzfr_perturbed_input_checker(cfg)

    #bail out here if there is an issue
    if cfg['bad_input']:
        return -2

    perturbedDict = cfg['perturbedDict']

    for var in perturbedDict.keys():
        cfg[var] = perturbedDict[var][0]

    # As building an equilibrium gas LUT is so time consuming, we do it here
    # and then copy the resulting LUT into each case sub-directory. The following
    # lines are copied almost verbatim from "nenzfr.py"
    if cfg['chemModel'] in ['eq']:
        if cfg['gasName'] in ['n2']:
            eqGasModelFile = 'cea-lut-' + upper(cfg['gasName']) + '.lua.gz'
        else:
            eqGasModelFile = 'cea-lut-' + cfg['gasName'] + '.lua.gz'
        if not os.path.exists(eqGasModelFile):
            run_command('build-cea-lut.py --gas=' + cfg['gasName'])
        cfg['gmodelFile'] = eqGasModelFile

    if not cfg['createRSA']:  # Perturbing for a sensitivity calculation
        # Calculate Nominal condition
        caseString = 'case' + "{0:02}".format(0) + "{0:01}".format(0)
        textString = "Nominal Condition"
        caseDict = copy.copy(cfg)
        caseDict['caseName'] = caseString
        write_case_config(caseDict)
        # Run the nominal case and write the values of the perturbed variables
        # to a summary file
        set_case_running(caseString, caseDict, textString)
        write_case_summary(cfg['perturbedVariables'], caseDict, caseString, 1)

        # Now run all the perturbed conditions
        for k in range(len(cfg['perturbedVariables'])):
            var = cfg['perturbedVariables'][k]
            perturbCount = cfg['levels']

            for kk in range(perturbCount):
                if kk != 0:
                    caseString = 'case' + "{0:02}".format(k) + "{0:01}".format(
                        kk)
                    textString = var + " perturbed to " + str(
                        perturbedDict[var][kk])
                    # Perturbation of the "CoreRadiusFraction" input may be done
                    # by (re)post processing the nominal case solution using the
                    # --just-stats option in nenzfr. We therefore don't need to
                    # run any separate cases for this variable. The perturbation
                    # is handled by "nenzfr_sensitivity.py".
                    caseDict = copy.copy(cfg)
                    caseDict[var] = perturbedDict[var][kk]
                    caseDict['caseName'] = caseString
                    if var != 'CoreRadiusFraction':
                        # Run the current case
                        set_case_running(caseString, caseDict, textString)
                    # Write current case to the summary file
                    write_case_summary(cfg['perturbedVariables'],caseDict,\
                                       caseString,0)

    else:  # Perturbing to create a LUT
        var1 = cfg['perturbedVariables'][0]  # 'Vs'
        var2 = cfg['perturbedVariables'][1]  # 'pe'

        if cfg['levels'] == 2.5:
            casesToRun = [(2, 1), (1, 1), (0, 0), (2, 2), (1, 2)]
        elif cfg['levels'] == 3:
            casesToRun = [(2, 1), (0, 1), (1, 1), (2, 0), (0, 0), (1, 0),
                          (2, 2), (0, 2), (1, 2)]
        elif cfg['levels'] == 5:
            casesToRun = [(4, 3), (0, 3), (3, 3), (2, 1), (1, 1), (4, 0),
                          (0, 0), (3, 0), (2, 2), (1, 2), (4, 4), (0, 4),
                          (3, 4)]
            #casesToRun = [      (2,3),      (1,3),
            #              (4,1),      (0,1),      (3,1),
            #                    (2,0),      (1,0),
            #              (4,2),      (0,2),      (3,2),
            #                    (2,4),      (1,4)      ]

        # Run the nominal case first
        caseString = 'case' + "{0:01}{0:01}".format(0, 0)
        caseDict = copy.copy(paramDict)
        caseDict['caseName'] = caseString
        textString = "Nominal Case: "+var1+"="+str(perturbedDict[var1][0])+\
                                 "; "+var2+"="+str(perturbedDict[var2][0])
        write_case_config(caseDict)
        set_case_running(caseString, caseDict, textString)
        write_case_summary(cfg['perturbedVariables'], caseDict, caseString, 1)

        # Now run all other cases
        for case in casesToRun:
            if case != (0, 0):
                caseString = 'case' + "{0:01}{1:01}".format(case[0], case[1])
                textString = var1+" perturbed to "+str(perturbedDict[var1][case[0]])+\
                        "\n"+var2+" perturbed to "+str(perturbedDict[var2][case[1]])
                caseDict = copy.copy(paramDict)
                caseDict['caseName'] = caseString
                caseDict[var1] = perturbedDict[var1][case[0]]
                caseDict[var2] = perturbedDict[var2][case[1]]

                set_case_running(caseString, caseDict, textString)
                write_case_summary(cfg['perturbedVariables'], caseDict,
                                   caseString, 0)
Esempio n. 7
0
def objective_function(y):
    """
    Objective function for the design of the internal contour of 
    a T4 nozzle. The input y is a list of coordinates of the 
    Bezier control points for the nozzle. The radial coordinates 
    are specified relative to the radial coordinate of the 
    upstream point.
    """

    nFixedPts = 2  # Number of fixed Bezier control points

    # Targets
    M_target = 7.0  # Target Mach number
    dtheta_target = 0.02  # Target variation in outflow angle (in degrees)
    dM_target = 0.01  # Target variation in Mach number

    # Flag for the inclusion of a secondary penalty function in our optimisation.
    # Switch this on, if your optimised nozzle contour always ends with a negative
    # gradient (i.e. the nozzle curves towards its axis near the exit of the contour.)
    # This secondary penalty function should limit this inward-turning phenomena.
    include_penalty_function = 0

    # Read in the x-coordinates for all points and the y-coordinates for
    # the first nFixedPts points - they are fixed and not changed in the
    # optimisation run.
    x_fixed = []
    y_fixed = []
    fi = open(basename + '.initial.data', 'r')
    fi.readline()  # Skip the first line
    while True:
        buf = fi.readline().strip()
        if len(buf) == 0: break
        tokens = [float(word) for word in buf.split()]
        x_fixed.append(tokens[0])
        y_fixed.append(tokens[1])
    fi.close()

    # Use x and y to create new data file containing Bezier control
    # points to generate the internal contour of the nozzle.
    fo = open(basename + '.data', 'w')
    fo.write('#    x, m    y, m \n')
    for indx in range(nFixedPts):
        fo.write('%.7f %.7f \n' % (x_fixed[indx], y_fixed[indx]))
    y_absolute = y_fixed[nFixedPts - 1]
    for indx in range(nFixedPts, len(y) + nFixedPts):
        y_absolute += y[indx - nFixedPts]
        fo.write('%.7f %.7f \n' % (x_fixed[indx], y_absolute))
    fo.close()

    # Run nenzfr with the given nozzle contour.
    run_command('./run-nenzfr.sh')

    # Read in an extracted slice of data at the exit of the nozzle
    fi = open('nozzle-exit.data', 'r')
    # Keep a list of variables in order of appearance (from nenzfr.py).
    varLine = fi.readline().strip()
    items = varLine.split()
    if items[0] == '#': del items[0]
    if items[0] == 'Variables:': del items[0]
    variable_list = [item.split(':')[1] for item in items]
    # Store the data in lists against these names (from nenzfr.py).
    data = {}
    for var in variable_list:
        data[var] = []
    for line in fi.readlines():
        items = line.strip().split()
        if items[0] == '#': continue
        assert len(items) == len(variable_list)
        for i in range(len(items)):
            data[variable_list[i]].append(float(items[i]))
    fi.close()

    # Secondary functions that contribute to the objective function.
    f_theta = 0.0
    f_M = 0.0  # Initialise both functions to zero first.
    N = 0  # Initialise the counter for the number of cells in the boundary layer.
    for j in range(len(data['pos.y'])):
        # Definition used by Chris Craddock to estimate the boundary layer edge
        if j == 0:
            dMdy = 0.0  # Set to some number so that the first point
            # is not set as the boundary layer edge.
        else:
            dMdy = (data['M_local'][j] - data['M_local'][j-1]) /\
                   (data['pos.y'][j] - data['pos.y'][j-1])
        # If dMdy >= -20.0, then we are in the core flow.
        if dMdy >= -20.0:
            f_theta += (data['vel.y'][j] / data['vel.x'][j])**2
            f_M += (data['M_local'][j] - M_target)**2
            N += 1

    # Weighting parameters.
    phi_theta = 1.0 / tan(radians(dtheta_target))
    phi_M = 1.0 / dM_target

    # Weight the secondary functions by weighting parameters.
    f_theta = phi_theta**2 / N * f_theta
    f_M = phi_M**2 / N * f_M

    # Secondary penalty function
    if include_penalty_function == 1:
        # Whenever the Bezier control points start going towards the nozzle axis,
        # impose a really large penalty. Note though that this means that the
        # optimiser might never reach its target objective of 1.0.
        if min(y) < 0.0:
            f_penalty = 1e9
        else:
            f_penalty = 0.0

    # Objective function
    if include_penalty_function == 1:
        obj_funct = (f_theta + f_M + f_penalty)**2
    else:
        obj_funct = (f_theta + f_M)**2

    # Clean data from current nenzfr run before starting the next run.
    run_command('./clean-data-from-nenzfr-run.sh')

    return obj_funct
Esempio n. 8
0
def main():
    """
    Examine the command-line options to decide the what to do
    and then coordinate the calculations done by Nenzfr.
    """
    op = optparse.OptionParser(version=VERSION_STRING)

    op.add_option('--runCMD',
                  dest='runCMD',
                  default='./',
                  choices=['./', 'qsub '],
                  help=("command used to execute the run-script file "
                        "[default: %default]"))
    op.add_option(
        '--Cluster',
        dest='Cluster',
        default='Mango',
        choices=['Mango', 'Barrine'],
        help=("specify on which cluster the computations are to be ran. "
              "This is used to define which run template script will "
              "be used. Options: "
              "Mango; Barrine [default: %default]"))

    op.add_option('--tstart',
                  dest='tstart',
                  type='float',
                  default='1.5e-3',
                  help=("time at which the first slice of the input pressure "
                        "trace is to begin [default: %default]"))
    op.add_option('--nsteps',
                  dest='nsteps',
                  type='int',
                  default=5,
                  help=("number of slices to use [default: %default]"))
    op.add_option('--dt',
                  dest='dt',
                  type='float',
                  default=0.5e-3,
                  help=("width of each averaging slice [default: %default]"))

    op.add_option(
        '--pefile',
        dest='peFileName',
        default=None,
        help="file specifying the transient equilibrium pressure (in Pa) "
        "[default: %default]")
    op.add_option('--job',
                  dest='jobName',
                  default='nozzle',
                  help="base name for Eilmer3 files [default: %default]")

    # Multitude of options required by nenzfr.
    op.add_option('--gas',
                  dest='gasName',
                  default='air',
                  choices=['air', 'air5species', 'n2', 'co2', 'h2ne'],
                  help=("name of gas model: "
                        "air; "
                        "air5species; "
                        "n2; "
                        "co2; "
                        "h2ne"))
    op.add_option('--p1',
                  dest='p1',
                  type='float',
                  default=None,
                  help=("shock tube fill pressure or static pressure, in Pa"))
    op.add_option('--T1',
                  dest='T1',
                  type='float',
                  default=None,
                  help=("shock tube fill temperature, in degrees K"))
    op.add_option('--Vs',
                  dest='Vs',
                  type='float',
                  default=None,
                  help=("incident shock speed, in m/s"))
    op.add_option('--chem',
                  dest='chemModel',
                  default='eq',
                  choices=['eq', 'neq', 'frz', 'frz2'],
                  help=("chemistry model: "
                        "eq=equilibrium; "
                        "neq=non-equilibrium; "
                        "frz=frozen "
                        "[default: %default]"))
    op.add_option('--area',
                  dest='areaRatio',
                  default=1581.165,
                  help=("nozzle area ratio. only used for estcj calc. "
                        "use when --cfile(--gfile) are "
                        "specified. [default: %default]"))
    op.add_option('--cfile',
                  dest='contourFileName',
                  default='Bezier-control-pts-t4-m10.data',
                  help="file containing Bezier control points "
                  "for nozzle contour [default: %default]")
    op.add_option('--gfile',
                  dest='gridFileName',
                  default='None',
                  help="file containing nozzle grid. "
                  "overrides --cfile if both are given "
                  "[default: %default]")
    op.add_option(
        '--exitfile',
        dest='exitSliceFileName',
        default='nozzle-exit.data',
        help="file for holding the nozzle-exit data [default: %default]")
    op.add_option('--block-marching',
                  dest='blockMarching',
                  action='store_true',
                  default=False,
                  help="run nenzfr in block-marching mode")
    # The following defaults suit a Mach 10 Nozzle calculation.
    op.add_option('--nni',
                  dest='nni',
                  type='int',
                  default=1800,
                  help=("number of axial cells [default: %default]"))
    op.add_option('--nnj',
                  dest='nnj',
                  type='int',
                  default=100,
                  help=("number of radial cells [default: %default]"))
    op.add_option(
        '--nbi',
        dest='nbi',
        type='int',
        default=180,
        help=("number of axial blocks for the divergence section (nozzle_blk) "
              "[default: %default]"))
    op.add_option('--nbj',
                  dest='nbj',
                  type='int',
                  default=1,
                  help=("number of radial blocks [default: %default]"))
    op.add_option(
        '--bx',
        dest='bx',
        type='float',
        default=1.05,
        help=("clustering in the axial direction [default: %default]"))
    op.add_option(
        '--by',
        dest='by',
        type='float',
        default=1.002,
        help=("clustering in the radial direction [default: %default]"))
    op.add_option(
        '--max-time',
        dest='max_time',
        type='float',
        default=6.0e-3,
        help=("overall simulation time for nozzle flow [default: %default]"))
    op.add_option(
        '--max-step',
        dest='max_step',
        type='int',
        default=800000,
        help=("maximum simulation steps allowed [default: %default]"))

    op.add_option('--Twall',
                  dest='Tw',
                  type='float',
                  default=300.0,
                  help=("Nozzle wall temperature, in K "
                        "[default: %default]"))
    op.add_option('--BLTrans',
                  dest='BLTrans',
                  default="x_c[-1]*1.1",
                  help=("Transition location for the Boundary layer. Used "
                        "to define the turbulent portion of the nozzle. "
                        "[default: >nozzle length i.e. laminar nozzle]"))
    op.add_option('--TurbVisRatio',
                  dest='TurbVisRatio',
                  type='float',
                  default=100.0,
                  help=("Turbulent to Laminar Viscosity Ratio "
                        "[default: %default]"))
    op.add_option('--TurbIntensity',
                  dest='TurbInten',
                  type='float',
                  default=0.05,
                  help=("Turbulence intensity at the throat "
                        "[default: %default]"))
    op.add_option('--CoreRadiusFraction',
                  dest="coreRfraction",
                  type='float',
                  default=2.0 / 3.0,
                  help=("Radius of core flow as a fraction of "
                        "the nozzle exit radius [default: %default]"))
    opt, args = op.parse_args()

    # Go ahead with a new calculation.
    # First, make sure that we have the needed parameters.
    bad_input = False
    if opt.p1 is None:
        print "Need to supply a float value for p1."
        bad_input = True
    if opt.T1 is None:
        print "Need to supply a float value for T1."
        bad_input = True
    if opt.Vs is None:
        print "Need to supply a float value for Vs."
        bad_input = True
    if opt.peFileName is None:
        print "Need to supply a string value for pefile."
        bad_input = True
    if opt.blockMarching is True:
        opt.blockMarching = "--block-marching"
    else:
        opt.blockMarching = ""
    if bad_input:
        return -2

    # Calculate the averaged equilibrium pressure for each
    # time interval...
    pe = calculate_pe_values(opt.peFileName, opt.tstart, opt.nsteps, opt.dt)

    # Set up the run script for Nenzfr.
    paramDict = {
        'jobName': quote(opt.jobName),
        'gasName': quote(opt.gasName),
        'T1': opt.T1,
        'p1': opt.p1,
        'Vs': opt.Vs,
        'chemModel': quote(opt.chemModel),
        'contourFileName': quote(opt.contourFileName),
        'gridFileName': quote(opt.gridFileName),
        'exitSliceFileName': quote(opt.exitSliceFileName),
        'areaRatio': opt.areaRatio,
        'blockMarching': opt.blockMarching,
        'nni': opt.nni,
        'nnj': opt.nnj,
        'nbi': opt.nbi,
        'nbj': opt.nbj,
        'bx': opt.bx,
        'by': opt.by,
        'max_time': opt.max_time,
        'max_step': opt.max_step,
        'Tw': opt.Tw,
        'TurbVisRatio': opt.TurbVisRatio,
        'TurbInten': opt.TurbInten,
        'BLTrans': opt.BLTrans,
        'CoreRadiusFraction': opt.coreRfraction
    }

    # As building an equilibrium gas LUT is so time consuming, we do it here
    # and then copy the resulting LUT into each case sub-directory. The following
    # lines are copied almost verbatim from "nenzfr.py"
    if opt.chemModel in ['eq']:
        if opt.gasName in ['n2']:
            eqGasModelFile = 'cea-lut-' + upper(opt.gasName) + '.lua.gz'
        else:
            eqGasModelFile = 'cea-lut-' + opt.gasName + '.lua.gz'
        if not os.path.exists(eqGasModelFile):
            run_command('build-cea-lut.py --gas=' + opt.gasName)
        paramDict['gmodelFile'] = eqGasModelFile

    for k in range(len(pe)):
        # Create sub-directory for the current case.
        caseString = 'case' + "{0:03}".format(k)
        paramDict['caseName'] = caseString

        print 60 * "-"
        print caseString
        print "tstart= %f; pe[k]= %f" % (opt.tstart + k * opt.dt, pe[k])

        run_command('mkdir ./' + caseString)

        # Set up the run script for Nenzfr
        paramDict['pe'] = pe[k]
        scriptFileName = prepare_run_script(paramDict,
                                            opt.jobName + '_' + caseString,
                                            opt.Cluster)

        # Move the run script to its sub-directory
        command_text = 'mv ' + scriptFileName + ' ./' + caseString + '/' + scriptFileName
        run_command(command_text)

        # If require, copy the equilibrium gas LUT to the sub-directory
        if paramDict['chemModel'] in [
                '"eq"',
        ]:
            command_text = 'cp ' + paramDict[
                'gmodelFile'] + ' ./' + caseString + '/'
            run_command(command_text)

        # Change into the sub-directory, ensure the run script is exectuable and
        # then run it
        os.chdir(caseString)
        run_command('chmod u+x ' + scriptFileName)
        print ""
        print opt.runCMD + scriptFileName
        print ""
        # I am not sure how to replace the next line with the run_command function
        os.system(opt.runCMD + scriptFileName)
        os.chdir('../')

    return 0
Esempio n. 9
0
def main():
    """
    Examine the command-line options, load the necessary data and then calculate 
    the Grid Convergence Error for each nozzle exit flow property.
    """
    op = optparse.OptionParser(version=VERSION_STRING)
    
    op.add_option('--run-defaults', dest='runDefaults', action='store_true',
                  default=True, help="calculate GCI using defaults for all other inputs.")

    op.add_option('--job',dest='jobName', default='nozzle',
                  help="base name for Eilmer3 files [default: %default]") 
    
    op.add_option('--caseListFile',dest='caseListFile', default='case_list.txt',
                  help=("the name of a text file containing a list of relative pathnames "
                       "for the simulations whose grid error is to be calculated. Files "
                       "should be listed from finest grid to coarsest grid. Comment "
                       "lines should begin with a #. [default: %default]"))
    
    op.add_option('--casesToFitFile',dest='caseFitList', default='case_list.txt',
                   help=("the name of a text file containing a list of relative pathnames "
                         "for simulations that will be used to generate a line-of-best"
                         "-fit. Only applicable when --method='linear-fit'. Also, the "
                         "list MUST be a sub-set of the files given in --caseListFile."
                         "[default: %default]"))
 
    op.add_option('--safety-factor',dest='safetyFactor', type='float', default=1.0,
                  help=("specify a safety-factor to be applied to the calculated "
                        "convergence error [default: %default]"))
    
    op.add_option('--method', dest='method', choices=['linear-fit','ref-solution'],
                  default='linear-fit', help=("specify the calculation method. "
                  "Choices are (1) 'linear-fit' : fit a straight line and extrapolate "
                  "cell size = zero, or (2) 'ref-solution' : consider the solution on "
                  "the finest grid as the 'truth'. [default: %default]" ))

    op.add_option('--generate-plots', dest='generatePlots', action='store_true',
                  default=False, help=("generate plots showing the convergence trends "
                  "for each freestream property [default: %default]"))

    opt, args = op.parse_args() 

    # Read the case list file
    case_list = read_caseList_file(opt.caseListFile)
    
    # If required read in the list of cases that will be used to 
    # generate a line-of-best fit.
    if opt.method in ['linear-fit',]:
        if opt.caseFitList not in ['case_list.txt',]:
            case_fit_list = read_caseList_file(opt.caseFitList)
            print "Linear model will be fitted using simulations given in ",opt.caseFitList
        else:
            case_fit_list = copy.copy(case_list) 
            print "Linear model will be fitted using simulations given in ",opt.caseListFile
        
        if len(case_fit_list) == 1:
            print "ERROR: case_fit_list contains only one entry."
            print "       This is not enough to generate a linear fit."
            print "       Check input --caseToFitFile"
            return -2
        if len(case_fit_list) == 2:
            print "WARNING: case_fit_list contains only two entries."
            print "         Fitted line may not be robust."
        
    else:
        print "Using ",case_list[0]," as the reference ('truth') solution"
    
    # Read in nozzle exit flow data
    print "Reading exit flow files..."
    FlowData = {}
    exitProperty = {}
    for case in case_list:
        data, props = read_nenzfr_outfile(case+opt.jobName+"-exit.stats")
        # Add dynamic pressure, unit Reynolds number, mass flux and 
        # static-to-dynamic pressure ratio
        data, props = add_extra_variables(data, props)
        FlowData[case] = data
        exitProperty[case] = props 
     
    # Calculate the cell size for each simulation and write a summary
    # file. If a summary file already exists we read that rather then
    # re-calculate the cell size.
    if not os.path.exists("cell_sizes.dat"):
        print "Calculating representative cell size..."
        # Initialise cellsize dictionary and x array...
        cellsize = {}
        x = np.array([])
        # Begin writing a summary file
        fp = open("cell_sizes.dat","w")
        fp.write("# Representative Cell Sizes\n")
        fp.write("# Columns are:\n")
        fp.write("#    case, cell-size (metre)\n")
        # Loop through each case, calculate cell size and its 
        # reciprocal (x = 1/h) and write data to the summary file
        for case in case_list:
            h = calculate_representative_cell_size_v2(case, opt.jobName)
            cellsize[case] = h
            #x = np.append(x, h)
            #fp.write("{0:s}\t{1:1.10e}\t{2:1.10e}\n".format(case,h,1.0/h))
            fp.write("{0:s}\t{1:1.10e}\n".format(case,h))
            print case, ": ",h
        fp.close()
    else:
        print "Reading cell size data from 'cell_sizes.dat'..."
        fp = open("cell_sizes.dat","r")
        contents = fp.readlines()
        fp.close()
        cellsize = {}
        x = np.array([])
        for line in contents:
            if not line.startswith("#"):
                lineData = line.strip().split("\t")
                cellsize[lineData[0]] = np.float(lineData[1])
                #x = np.append(x, np.float(lineData[2]))
                print lineData[0], ": ",lineData[1]
    

    # Now we set about calculating the grid convergence error for
    # each exit-flow property using the desired method
    print "Calculating grid errors for each flow property..."
    linear_fit_params = {}
    grid_errors = {}
    true_value = {}
    for exitVar in exitProperty[case_list[0]]:
        grid_errors[exitVar] = {}
        if opt.method in ['linear-fit',]:
            # Assemble "x" and "y" vectors
            y = np.array([])
            x = np.array([])
            for case in case_fit_list:
                y = np.append(y, FlowData[case][exitVar])
                x = np.append(x, cellsize[case])

            # Straight line fit through data
            slope, intercept, r_value, p_value, std_err = linregress(x,y)
            
            # Store the parameters of the fitterd curve so we may 
            # write them to a file later
            linear_fit_params[exitVar] = {'slope':slope,'intercept':intercept,\
                                      'r_value':r_value,'p_value':p_value,\
                                      'std_err':std_err}
            # Stort the "true" value for later use
            true_value[exitVar] = intercept
            
            # Error relative to the linear fit intercept
            for case in case_list:
                if intercept != 0.:
                    grid_errors[exitVar][case] = \
                               (FlowData[case][exitVar] - intercept)/intercept *\
                               100.0 * opt.safetyFactor
                else:
                    grid_errors[exitVar][case] = float('NaN')
            
        elif opt.method in ['ref-solution',]:
            finest = case_list[0]
            true_value[exitVar] = FlowData[finest][exitVar]
            # Error relative to the finest grid solution
            for case in case_list:
                if true_value[exitVar] != 0.:
                    grid_errors[exitVar][case] = \
                               (FlowData[case][exitVar] - true_value[exitVar])/\
                                true_value[exitVar] * 100.0 * opt.safetyFactor
                else:
                    grid_errors[exitVar][case] = float('NaN')

        elif opt.method in ['roacheGCI']:
            print "Calculation method roacheGCI has not yet been implemented"
            continue
            # Below are my intial attempts at implementing Roache's GCI
            # method. Perhaps when I have time I'll revisit this and 
            # complete the implementation with necessary checks...
            #
            #
            ## Check that the grids follow the recommendation
            #assert h3/h1 > 1.3
            #print "h1=",h1
            #print "h2=",h2
            #print "h3=",h3
            #print "h3/h1=",h3/h1
            ## Calculate ratios of grid cell sizes
            #r21 = h2/h1
            #r32 = h3/h1
            #
            #exitVar = 'p'
            #epsilon32 = coarseGridFlowData[exitVar] - mediumGridFlowData[exitVar]
            #epsilon21 = mediumGridFlowData[exitVar] - fineGridFlowData[exitVar]
            #
            #s = math.copysign(1, epsilon32/epsilon21)
            #
            #print "s=",s
            #print "epsilon32=",epsilon32
            #print "epsilon21=",epsilon21
            #
            #p_old = 1.0 #1/np.log(r21) * np.abs( 2*np.log( np.abs(epsilon32/epsilon21) ) )
            #
            #q_new = np.log( (r21**p_old-s)/(r32**p_old-s) )
            #p_new = 1/np.log(r21) * np.abs( np.log( np.abs(epsilon32/epsilon21) ) + q_new )
            #
            #count = 0
            ##while np.abs(p_new - p_old) > 1.0e-5: #and count < 100:
            ##    count += 1
            ##    p_old = p_new
            ##    q_new = np.log( (r21**p_old-s)/(r32**p_old-s) )
            ##    p_new = 1/np.log(r21) * np.abs( np.log( np.abs(epsilon32/epsilon21) ) + q_new )
            ##    #print np.abs(p_new-p_old)
            ##    #print count
            #
            ##def error_in_p(x, e32=epsilon32, e21=epsilon21, r32=r32, r21=r21, s=s):
            #
            ##p = secant(error_in_p, 1.1, 1.5, tol=1.0e-4,\
            ##           limits=[0,10])
            #
            #exitVar = 'p'
            #epsilon32 = coarseGridFlowData[exitVar] - mediumGridFlowData[exitVar]
            #epsilon21 = mediumGridFlowData[exitVar] - fineGridFlowData[exitVar]

    # Now write out some summary files
    print "Writing data files..."
    if opt.method in ['linear-fit']:
        # For the linear fit method we write a file containing
        # the regression results
        fp = open('linear-fit-regression-params.dat','w')
        fp.write('# property:        slope:    intercept:   r_value:    p_value:      std_err\n')
        for exitVar in exitProperty[case_list[0]]:
            fp.write('{0:>12s}  '.format(exitVar))
            fp.write('{0:>12g}  '.format(linear_fit_params[exitVar]['slope']))
            fp.write('{0:>12g}  '.format(linear_fit_params[exitVar]['intercept']))
            fp.write('{0:>9g}  '.format(linear_fit_params[exitVar]['r_value']))
            fp.write('{0:>10g}  '.format(linear_fit_params[exitVar]['p_value']))
            fp.write('{0:>12g}\n'.format(linear_fit_params[exitVar]['std_err']))
        fp.close()
    
    # Summary of the errors
    fp = open("grid-convergence-errors-"+opt.method+".dat",'w')
    fp.write('# percentage errors relative to the "true-value"\n')
    fp.write('# safety-factor: {0:1.5f}\n'.format(opt.safetyFactor))
    fp.write('# property: "true-value": ')
    for case in case_list:
        if case not in [case_list[-1],]:
            fp.write('{0:s}: '.format(case))
        else:
            fp.write('{0:s}\n'.format(case))
    for exitVar in exitProperty[case_list[0]]:
        fp.write('{0:>12s}  '.format(exitVar))
        fp.write('{0:>12g}  '.format(true_value[exitVar]))
        for case in case_list:
            if case not in [case_list[-1],]:
                fp.write('{0:>10.4f}  '.format(grid_errors[exitVar][case]))
            else:
                fp.write('{0:>10.4f}\n'.format(grid_errors[exitVar][case]))
    fp.close()
    
    # If desired we set about generating plots. Ideally we would use 
    # matplotlib however I couldn't get it to print figures directly
    # to pdf on mango. So I decided to use gnuplot. Some more notes 
    # are given below. 
    if opt.generatePlots is True:
        # Create a directory in which to save the figures
        if not os.path.exists("./figs/"):
            print "Creating figure directory..."
            run_command('mkdir figs')
        
        print "Creating plots (via gnuplot)..." 
        # Data file for use with gnuplot
        fp1 = open('data.dat','w')
        for case in case_list:
            fp1.write('{0:s}\t'.format(case))
            fp1.write('{0:g}\t'.format(cellsize[case]))
            for exitVar in exitProperty[case_list[0]]:
                fp1.write('{0:g}\t'.format(FlowData[case][exitVar]))
            fp1.write('\n')
        fp1.close()
        # Linear-fit data file for use with gnuplot
        if opt.method in ['linear-fit',]:
            fp2 = open('fitted.dat','w')
            #print cellsize.values()
            #print np.max(cellsize.values())
            xFit = np.linspace(0,np.max(cellsize.values())*1.1,200)
            for k in range(len(xFit)):
                fp2.write('{0:g}\t'.format(xFit[k]))
                for exitVar in exitProperty[case_list[0]]:
                     yFit = linear_fit_params[exitVar]['intercept'] +\
                            linear_fit_params[exitVar]['slope']*xFit[k]
                     fp2.write('{0:g}\t'.format(yFit))
                fp2.write('\n')
            fp2.close()
        # gnuplot script
        fp2 = open('gnuplot_script.txt','w')
        column = 0
        for exitVar in exitProperty[case_list[0]]:
            column += 1
            fp2.write('# {0:s}\n'.format(exitVar))
            fp2.write('reset\n')
            fp2.write('set terminal postscript enhanced color eps font ')
            fp2.write('"Palatino,20" size 7.7cm,7.8cm\n')
            if exitVar in ['p/q',]:
                fp2.write('set output "./figs/{0:s}.eps"\n'.format('p-on-q'))
            else:
                fp2.write('set output "./figs/{0:s}.eps"\n'.format(exitVar))
            fp2.write('set bmargin at screen 0.1474\n')
            fp2.write('set tmargin at screen 0.85\n')
            fp2.write('set lmargin at screen 0.235\n')
            fp2.write('set rmargin at screen 0.96\n')
            fp2.write('set xlabel "Cell size, 10^{-4} m"\n')
            #fp2.write('set ylabel "{0:s}"\n'.format(exitVar))
            fp2.write('set format y "%g"\n')
            if exitVar in ['total_h','Re_u',]:
                fp2.write('set title "{0:s}, 10^6"\n'.format(exitVar))
            else:
                fp2.write('set title "{0:s}"\n'.format(exitVar))
            fp2.write('#set key tmargin left Left reverse samplen 2 font ",18" maxrows 2 width 5\n')
            if exitVar in ['total_h','Re_u']:
                fp2.write('plot "data.dat" using ($2*10000):(${0:d}/1e6) '.format(column+2))
                fp2.write('notitle with points pt 7 lc 1 ps 1.5,\\\n')
                fp2.write('     "fitted.dat" using ($1*10000):(${0:d}/1e6) '.format(column+1))
                fp2.write('notitle with lines lt 1 lw 1.5\n')
            else:
                fp2.write('plot "data.dat" using ($2*10000):{0:d} '.format(column+2))
                fp2.write('notitle with points pt 7 lc 1 ps 1.5,\\\n')
                fp2.write('     "fitted.dat" using ($1*10000):{0:d} '.format(column+1))
                fp2.write('notitle with lines lt 1 lw 1.5\n')
            fp2.write('\n')
        fp2.close()

        run_command('gnuplot < gnuplot_script.txt')

        # I couldn't get the following to work on mango. There are
        # issues with the version of matplotlib and other missing
        # programs (dvipng ??) and I don't have the time nor
        # patience to sort it out.
        # 
        ## Some setup. Alter as desired to suit your needs
        #params = {'text.usetex': True,
        #          'font.family': 'serif',
        #          'font.serif': 'Palatino',
        #          'axes.labelsize': 10,
        #          'text.fontsize': 9,
        #          'legend.fontsize': 9,
        #          'xtick.labelsize': 10,
        #          'ytick.labelsize': 10,
        #          'figure.figsize': [3,3],
        #          'figure.dpi': 300,
        #          'lines.linewidth': 2} 
        #plt.rcParams.update(params)
        # 
        ## Loop over each freestream property
        #for exitVar in ['p',]: #exitProperty[case_list[0]]:
        #    print "Creating figure for:",exitVar
        #    # Assemble data to be plotted
        #    y = np.array([])
        #    x = np.array([])
        #    for case in case_list:
        #        y = np.append(y, FlowData[case][exitVar])
        #        x = np.append(x, cellsize[case])
        #    
        #    if opt.method in ['linear-fit',]:
        #        xFit = np.linspace(0,np.max(x)*1.1,250)
        #        yFit = linear_fit_params[exitVar]['intercept'] +\
        #               linear_fit_params[exitVar]['slope']*xFit
        #    
        #    # Create plot
        #    plt.figure(1)
        #    plt.clf()
        #    plt.plot(x*10000,y,'.b',xFit*10000,yFit,'-r')
        #    plt.ylabel(exitVar)
        #    plt.xlabel('Cell size, 10^{-4} m')
        #    figName = "./figs/"+exitVar+".pdf"
        #    plt.tight_layout()
        #    plt.savefig(figName)
    

    
    return 0
Esempio n. 10
0
def main():
    """
    Examine the command-line options and then calculate the sensitivties
    and uncertainties of each forebody flow property based on a set of 
    nenzfr results generated by "nenzfr_perturbed.py".
    """
    op = optparse.OptionParser(version=VERSION_STRING)

    op.add_option('--run-defaults', dest='runDefaults', action='store_true',
                  default=True, help="calculate sensitivities and "
                  "uncertainties using all the default values.")
    
    op.add_option('--job', dest='jobName', default='nozzle',
                  help="base name for Eilmer3 files [default: %default]")
    op.add_option('--exitStatsFile', dest='exitStatsFileName',
                  default='nozzle-exit.stats',
                  help="file that holds the averaged nozzle-exit "
                       "data and is to be read in for each perturbation "
                       "case [default: %default]")
    op.add_option('--estcjFile', dest='estcjFile', default='nozzle-estcj.dat',
                  help="file that holds the estcj result and is to be read in "
                       "for each perturbation case. [default: %default]")
     
    op.add_option('--levels', dest='levels', default=3,choices=['3','5'],
                  help=("specify how many points are to be used in the "
                        "calculation of the gradient. Includes the nominal.  "
                        "Options: 3, 5 [default: %default]"))
    
    # The default values for the following inputs are based on those given in 
    # Rainer Kirchhartz' PhD Thesis (Appendix B)
    op.add_option('--Xp1', dest='p1', default=0.0325, type='float',
                  help=("relative uncertainty in shock tube fill pressure. "
                        "[default: %default]" ))
    op.add_option('--XT1', dest='T1', default=0.02, type='float',
                  help=("relative uncertainty in shock tube fill temperature. "
                        "[default: %default]"))
    op.add_option('--XVs', dest='Vs', default=0.05, type='float',
                  help=("relative uncertainty in the incident shock speed. "
                        "[default: %default]"))
    op.add_option('--Xpe', dest='pe', default=0.025, type='float',
                  help=("relative uncertainty in the equilibrium pressure "
                        "(after shock reflection). [default: %default]"))
    # The default values for the following inputs are guestimates :)
    op.add_option('--XTwall', dest='Tw', default=0.04, type='float',
                  help=("relative uncertainty in nozzle wall temperature. "
                        "[default: %default]"))
    op.add_option('--XBLTrans', dest='BLTrans', default=1.00, type='float',
                  help=("relative uncertainty in the boundary layer "
                        "transition location. [default: %default]"))
    op.add_option('--XTurbVisRatio', dest='TurbVisRatio', default=1.00,
                  type='float',
                  help=("relative uncertainty in turbulent-to-laminar "
                        "viscosity ratio at the throat. "
                        "[default: %default]"))
    op.add_option('--XTurbIntensity', dest='TurbInten', default=0.8,
                  type='float', 
                  help=("relative uncertainty in turbulence intensity "
                        "at the throat. [default: %default]"))
    op.add_option('--XCoreRadiusFraction', dest="coreRfraction", default=0.05,
                  type='float',
                  help=("relative uncertainty in the core flow radius "
                        "fraction. [default: %default]")) 
    op.add_option('--ForebodyAngle',dest='fbAngle', default=6.0, type='float',
                  help=("Angle of forebody relative to nozzle axis in "
                        "degrees [default: %default]"))
    op.add_option('--XForebodyAngle',dest='XfbAngle', default=0.0167, type='float',
                  help=("relative uncertainty in the forebody angle "
                        "[default: %default]"))
    opt, args = op.parse_args()
 
    # Convert to integer
    opt.levels = int(opt.levels)

    # Check to see if the "forebody_conditions.dat" file exists in
    # the current directory. If it does, we delete it..
    if os.path.exists("forebody_conditions.dat"):
        run_command('rm forebody_conditions.dat')

    # Read the sensitivity_case_summary file to get the perturbed
    # variables and their various values
    perturbedVariables, DictOfCases = read_case_summary()
    
    # Add the forebody angle to the list of perturbed variables
    # and to the DictOfCases. We also add two cases which represent
    # the perturbation of the forebody angle
    perturbedVariables.append('fbAngle')
    for k in DictOfCases.keys():
        DictOfCases[k].append(opt.fbAngle)
    DictOfCases['case091'] = copy.copy(DictOfCases['case000'])
    DictOfCases['case091'][-1] = opt.fbAngle*1.01
    DictOfCases['case092'] = copy.copy(DictOfCases['case000'])
    DictOfCases['case092'][-1] = opt.fbAngle*0.99
    
    # Create a dictionary of the relative uncertainties of each 
    # variable that may have been perturbed
    inputUncertainties = {'p1':opt.p1, 'T1':opt.T1, 'Vs':opt.Vs, 'pe':opt.pe,
                          'Tw':opt.Tw, 'TurbVisRatio':opt.TurbVisRatio,
                          'TurbInten':opt.TurbInten, 'BLTrans':opt.BLTrans,
                          'CoreRadiusFraction':opt.coreRfraction,
                          'fbAngle':opt.XfbAngle}
    
    # Define the name of the nominal case and load the exit plane data
    nominal = 'case000'
    nominalData, exitVar = read_nenzfr_outfile('./'+nominal+'/'+\
                                               opt.exitStatsFileName)
    
    # Define the file name for gas model
    gmodelFile = read_gmodelFile_from_config('./'+nominal+'/'+opt.jobName)
    if not os.path.exists(gmodelFile):
        run_command('cp ./'+nominal+'/'+gmodelFile+' ./')
    
    # Calculate forebody flow properties for nominal condition 
    fbNomData, fbVar = calculate_forebody(nominalData, \
                    DictOfCases[nominal][-1], gmodelFile)
    # Write out the data to summary file 
    write_forebody_summary(fbNomData, fbVar, nominal) 
    
    nominalValues = get_values(fbNomData, fbVar)
    
    # Loop through each of the perturbed variables
    sensitivity = {}
    sensitivity_abs = {}
    uncertainty = {}
    for k in range(len(perturbedVariables)):
        var = perturbedVariables[k]
        
        if var == 'CoreRadiusFraction':
            perturb_CoreRadiusFraction(var, perturbedVariables,\
                                       DictOfCases, opt.levels)
        # Define the name of the relevant perturbed cases and load the 
        # associated data
        if var not in ['fbAngle']:
            high = 'case'+"{0:02}".format(k)+'1'
            highData, dontNeed  = read_nenzfr_outfile('./'+high+'/'+\
                                                      opt.exitStatsFileName)
            fbHighData, dontNeed = calculate_forebody(highData, \
                                          DictOfCases[high][-1], gmodelFile)
            # Write out the data to summary file
            write_forebody_summary(fbHighData, fbVar, high)
            
            low = 'case'+"{0:02}".format(k)+'2'
            lowData, dontNeed = read_nenzfr_outfile('./'+low+'/'+\
                                                    opt.exitStatsFileName)
            fbLowData, dontNeed = calculate_forebody(lowData, \
                                         DictOfCases[low][-1], gmodelFile)
            # Write out the data to summary file
            write_forebody_summary(fbLowData, fbVar, low)
            
        else: 
            # For perturbation of fb_angle we just use the nominalData and
            # calculate forebody properties with a different angle
            high = 'case'+"{0:02}".format(k)+'1'
            fbHighData, dontNeed = calculate_forebody(nominalData, \
                                         DictOfCases[high][-1], gmodelFile)
            # Write out the data to summary file
            write_forebody_summary(fbHighData, fbVar, high)
            
            low = 'case'+"{0:02}".format(k)+'2'
            fbLowData, dontNeed = calculate_forebody(nominalData, \
                                         DictOfCases[low][-1], gmodelFile)
            # Write out the data to summary file
            write_forebody_summary(fbLowData, fbVar, low)
        
        # Values of the freestream properties at the perturbed conditions
        highValues = get_values(fbHighData,fbVar)
        lowValues = get_values(fbLowData,fbVar)
        # Values of the perturbed input values
        highX = DictOfCases[high][perturbedVariables.index(var)]
        lowX = DictOfCases[low][perturbedVariables.index(var)]
        nominalX = DictOfCases[nominal][perturbedVariables.index(var)]
   
        if opt.levels == 3: 
            # As the perturbations may not be centered on the nominal
            # condition we caculate the gradient by taking a weighted
            # average of the forward and backward derivatives. The 
            # weightings are such that the truncation error associated 
            # with this gradient estimate is O(3) or higher (i.e. the 
            # weightings are such that the second order terms in the Taylor 
            # series expansion cancel. Thanks to D.Petty for this theory.)
            highWeighting = (nominalX - lowX)/(highX - lowX)
            lowWeighting = (highX - nominalX)/(highX - lowX)
            
            sensitivity_abs[var] = ( highWeighting*(array(highValues)-\
                                                array(nominalValues))/\
                                               (highX - nominalX) + \
                                 lowWeighting*(array(nominalValues)-\
                                               array(lowValues))/\
                                              (nominalX - lowX)     )
            sensitivity[var] = sensitivity_abs[var]*nominalX/array(nominalValues)
            
        else:
            # For 5 levels per variable we have additional cases 
            # that need to be loaded. Again we do not assume that
            # the levels are equally spaced around the nominal. 
            # The weightings are such that the truncation error 
            # associated with this estimate is O(4) or higher.
            if var not in ['fbAngle']:
                tooHigh = 'case'+"{0:02}".format(k)+'3'
                tooHighData,dontNeed = \
                      read_nenzfr_outfile('./'+tooHigh+'/'+opt.exitStatsFileName)
                fbTooHighData,dontNeed = calculate_forebody(tooHighData, \
                                            DictOfCases[tooHigh][-1], gmodelFile)
                # Write out the data to summary file
                write_forebody_summary(fbTooHighData, fbVar, tooHigh)
                
                tooLow = 'case'+"{0:02}".format(k)+'4'
                tooLowData,dontNeed = \
                      read_nenzfr_outfile('./'+tooLow+'/'+opt.exitStatsFileName)
                fbTooLowData,dontNeed = calculate_forebody(tooLowData, \
                                            DictOfCases[tooLow][-1], gmodelFile)
                # Write out the data to summary file
                write_forebody_summary(fbTooLowData, fbVar, tooLow)
            else:
                # For perturbation of fb_angle we just use the nominalData and
                # calculate forebody properties with a different angle
                tooHigh = 'case'+"{0:02}".format(k)+'1'
                fbTooHighData, dontNeed = calculate_forebody(nominalData, \
                                           DictOfCases[tooHigh][-1], gmodelFile)
                # Write out the data to summary file
                write_forebody_summary(fbTooHighData, fbVar, tooHigh)

                tooLow = 'case'+"{0:02}".format(k)+'2'
                fbTooLowData, dontNeed = calculate_forebody(nominalData, \
                                           DictOfCases[tooLow][-1], gmodelFile)
                # Write out the data to summary file
                write_forebody_summary(fbTooLowData, fbVar, tooLow)
            
            # Values of the freestream properties at the perturbed conditions
            tooHighValues = get_values(fbTooHighData,fbVar)
            tooLowValues = get_values(fbTooLowData,fbVar)
            # Values of the perturbed input values
            tooHighX = DictOfCases[tooHigh][perturbedVariables.index(var)]
            tooLowX = DictOfCases[tooLow][perturbedVariables.index(var)]
            
            tooHighDeltaX = tooHighX - nominalX
            highDeltaX = highX - nominalX
            tooLowDeltaX = tooLowX - nominalX
            lowDeltaX = lowX - nominalX
            weighting = (tooHighX - tooLowX)/(highX - lowX)
            
            denom = 1/tooHighDeltaX - 1/tooLowDeltaX -\
                   (1/highDeltaX - 1/lowDeltaX)*weighting
            numer =  array(tooHighValues)/tooHighDeltaX**2 -\
                     array(tooLowValues)/tooLowDeltaX**2 -\
                    ( array(highValues)/highDeltaX**2 -\
                      array(lowValues)/lowDeltaX**2 )*weighting -\
                     array(nominalValues)*\
                       ( 1/tooHighDeltaX**2 - 1/tooLowDeltaX**2 - \
                         ( 1/highDeltaX**2 - 1/lowDeltaX**2 )*weighting )
            sensitivity[var] = numer/denom*nominalX/array(nominalValues) 
            sensitivity_abs[var] = numer/denom
        # Now calculate the uncertainty in each exit flow variable
        # due to the uncertainty in the current (perturbed)
        # input variable
        uncertainty[var] = sensitivity[var]*inputUncertainties[var]
   
    # Write out a file of the sensitivities
    write_sensitivity_summary(sensitivity, perturbedVariables, fbVar, '', 'relative')
    write_sensitivity_summary(sensitivity_abs, perturbedVariables, fbVar, '', 'absolute')
    
    # Write out a file of the uncertainties
    write_uncertainty_summary(uncertainty, perturbedVariables, fbVar,\
                              inputUncertainties)
    
    #--------------------------------------------------------------------------------
    # Each of the freestream properties has a total bias error associated with 
    # the convergence of the grid, the spatial variation of the exit flow over the 
    # core region and the use of a response surface. 
    #
    # In order to be able to propagate these bias errors through to the forebody 
    # properties we need to calculate the sensitivities of each forebody property to
    # each freestream property.
    #
    sensitivity_fb_to_fs = {}
    sensitivity_fb_to_fs_abs = {}
    varList = []
    #print exitVar
    #print nominalData
    exclude_list = ['rho','mu','k[0]','M_local','pitot_p','total_p','total_h','dt_chem',
                    'e[0]','a','omega','tke','k_t','mu_t']
    # Loop over each freestream variable
    for k in range(len(exitVar)):
        var = exitVar[k]
        
        if var not in exclude_list:
            varList.append(var)
            # Values of the perturbed freestream values
            highX = nominalData[var]*1.02
            lowX =  nominalData[var]*0.98
            nominalX = nominalData[var]
            
            # Create a copy of the nominal data and up-date the relevant variable with the
            # perturbed value
            highData = copy.copy(nominalData); highData[var] = highX
            lowData = copy.copy(nominalData);  lowData[var] = lowX
            #print "var=",var,";  highX=",highX,";  nominalX=",nominalX,";  lowX=",lowX
            
            # Now calculate the forebody conditions
            theta = DictOfCases[nominal][-1] # forebody angle
            fbHighData, dontNeed = calculate_forebody(highData, theta, gmodelFile)
            fbLowData, dontNeed = calculate_forebody(lowData, theta, gmodelFile)
            
            #print fbHighData 
            highValues = get_values(fbHighData, fbVar)
            lowValues = get_values(fbLowData, fbVar) 
            #print nominalValues
            #print fbVar
            
            #assert -1 > 0
            # Now calculate the sensitivity
            if nominalX != 0.0:
                highWeighting = (nominalX - lowX)/(highX - lowX)
                lowWeighting = (highX - nominalX)/(highX - lowX)

                sensitivity_fb_to_fs_abs[var] = ( highWeighting*(array(highValues)-\
                                                    array(nominalValues))/\
                                                   (highX - nominalX) + \
                                     lowWeighting*(array(nominalValues)-\
                                                   array(lowValues))/\
                                                  (nominalX - lowX)     )
                sensitivity_fb_to_fs[var] = sensitivity_fb_to_fs_abs[var]*nominalX/array(nominalValues)
            else:
                sensitivity_fb_to_fs_abs[var] = array(nominalValues)*float('nan')
                sensitivity_fb_to_fs[var] = array(nominalValues)*float('nan')
    #print "perturbed variables, varList=",varList
    #print 
    #print "forebody variables, fbVar=",fbVar
    #print
    #print sensitivity_fb_to_fs
    #print 
    # Write out a summary file
    write_sensitivity_summary(sensitivity_fb_to_fs, varList, fbVar,\
                              'fb_to_fs_','relative')
    write_sensitivity_summary(sensitivity_fb_to_fs_abs, varList, fbVar,\
                              'fb_to_fs_','absolute')
    
    #print sensitivity_fb_to_fs
        
    #print varList
        
    return 0