Esempio n. 1
0
def test_conv_layer():

    dtype = np.float32

    ng = NervanaGPU(stochastic_round=False, bench=True)
    nc = NervanaCPU()

    N, C, K = 64, 64, 64
    D, H, W = 1, 5, 5
    T, R, S = 1, 3, 3
    padding_d, padding_h, padding_w = 0, 1, 1
    strides_d, strides_h, strides_w = 1, 1, 1

    conv_ng = ng.conv_layer(dtype, N, C, K, D, H, W, T, R, S, padding_d,
                            padding_h, padding_w, strides_d, strides_h,
                            strides_w)

    conv_nc = nc.conv_layer(dtype, N, C, K, D, H, W, T, R, S, padding_d,
                            padding_h, padding_w, strides_d, strides_h,
                            strides_w)

    assert conv_nc.dimI == conv_ng.dimI
    assert conv_nc.dimF == conv_ng.dimF
    assert conv_nc.dimO == conv_ng.dimO
    assert conv_nc.M == conv_ng.M

    dimI = conv_ng.dimI
    dimF = conv_ng.dimF
    dimO = conv_ng.dimO

    # cpu input arrays
    cpuI = np.random.uniform(-0.8, 0.8, slicable(dimI, 1)).astype(np.float32)
    cpuF = np.random.uniform(0.0, 0.3, slicable(dimF)).astype(np.float32)
    cpuE = np.random.uniform(-0.2, 0.2, dimO).astype(np.float32)

    # zero pad the last row of cpu input for the sake of numpy
    cpuI[-1, :] = 0.0

    # =======GPU and CPU==========
    beI = cpuI[:-1, :].reshape(dimI)
    beF = cpuF.reshape(dimF)
    beE = cpuE

    start_gpu = default_timer()
    ngO, ngB, ngU = run_backend_conv(ng, conv_ng, beI, beF, beE, dtype)
    end_gpu = default_timer()

    start_cpu = default_timer()
    ncO, ncB, ncU = run_backend_conv(nc, conv_nc, beI, beF, beE, dtype)
    end_cpu = default_timer()

    print("gputime: %s, cputime %s" %
          (end_gpu - start_gpu, end_cpu - start_cpu))

    # ======numpy===========
    # cpu output arrays
    cpuO = np.zeros(dimO, dtype=dtype)
    cpuB = np.zeros(slicable(dimI, 1), dtype=dtype)
    cpuU = np.zeros(slicable(dimF), dtype=dtype)

    D, H, W = conv_nc.DHW
    T, R, S = conv_nc.TRS
    M, P, Q = conv_nc.MPQ

    pad_d, pad_h, pad_w = conv_nc.padding
    str_d, str_h, str_w = conv_nc.strides

    for m in range(M):
        mt = m * str_d - pad_d

        for p in range(P):
            pr = p * str_h - pad_h

            for q in range(Q):
                qs = q * str_w - pad_w

                idx = pixel_indices(conv_nc, mt, pr, qs)

                cpuO[:, m, p, q, :] = np.dot(cpuF.T, cpuI[idx, :])

                cpuB[idx, :] += np.dot(cpuF, cpuE[:, m, p, q, :])

                cpuU += np.dot(cpuI[idx, :], cpuE[:, m, p, q, :].T)

    for op, ngA, ncA, cpuA, w in (("fprop", ngO, ncO, cpuO,
                                   Q), ("bprop", ngB, ncB.reshape(dimI),
                                        cpuB[:-1, :].reshape(dimI), W),
                                  ("update", ngU, ncU.reshape(dimF),
                                   cpuU.reshape(dimF), S)):

        print op
        assert np.allclose(ngA.get(), cpuA, rtol=0, atol=1e-4)
        assert np.allclose(ncA.get(), cpuA, rtol=0, atol=1e-5)

    ng.ctx.detach()
    del ng
Esempio n. 2
0
    dict(alpha=2.0, beta=3.0),
    dict(),
]

for config in configs:

    kernelClass, N, C, K, determ, compound, override, convs = config

    for conv in convs:

        D, H, W, T, R, S, pad_d, pad_h, pad_w, str_d, str_h, str_w = conv

        ng.deterministic = determ

        layer = nc.conv_layer(np.float64,
            N, C, K, D, H, W, T, R, S,
            pad_d, pad_h, pad_w,
            str_d, str_h, str_w)

        (M, P, Q) = layer.MPQ

        if kernelClass in (FpropCuda, BpropCuda, UpdateCuda):
            dtypes = (np.float32,)
        else:
            dtypes = (np.float32, np.float16)

        for dtype in (dtypes):

            ng.scratch_buffer_reset()

            if override is None:
                kernel = kernelClass(ng, np.dtype(dtype),
Esempio n. 3
0
    dict(alpha=2.0, beta=3.0),
    dict(),
]

for config in configs:

    kernelClass, N, C, K, determ, compound, override, convs = config

    for conv in convs:

        D, H, W, T, R, S, pad_d, pad_h, pad_w, str_d, str_h, str_w = conv

        ng.deterministic = determ

        layer = nc.conv_layer(np.float64,
            N, C, K, D, H, W, T, R, S,
            pad_d, pad_h, pad_w,
            str_d, str_h, str_w)

        (M, P, Q) = layer.MPQ

        if kernelClass in (FpropCuda, BpropCuda, UpdateCuda):
            dtypes = (np.float32,)
        else:
            dtypes = (np.float32, np.float16)

        for dtype in (dtypes):

            ng.scratch_buffer_reset()

            if override is None:
                kernel = kernelClass(ng, np.dtype(dtype),
def test_conv_layer(fargs_tests):

    dtype = np.float32

    ng = NervanaGPU(stochastic_round=False, bench=True)

    N, C, K = fargs_tests[0]
    D, H, W = fargs_tests[1]
    T, R, S = fargs_tests[2]

    padding_d, padding_h, padding_w = 0, 1, 1
    strides_d, strides_h, strides_w = 1, 1, 1

    conv_ng = ng.conv_layer(
        dtype,
        N, C, K,
        D, H, W,
        T, R, S,
        padding_d, padding_h, padding_w,
        strides_d, strides_h, strides_w)

    nc = NervanaCPU()
    conv_nc = nc.conv_layer(
        dtype,
        N, C, K,
        D, H, W,
        T, R, S,
        padding_d, padding_h, padding_w,
        strides_d, strides_h, strides_w)

    assert conv_nc.dimI == conv_ng.dimI
    assert conv_nc.dimF == conv_ng.dimF
    assert conv_nc.dimO == conv_ng.dimO
    assert conv_nc.M == conv_ng.M

    dimI = conv_ng.dimI
    dimF = conv_ng.dimF
    dimO = conv_ng.dimO

    # cpu input arrays
    cpuI = np.random.uniform(-0.8, 0.8, slicable(dimI, 1)).astype(np.float32)
    cpuF = np.random.uniform(0.0, 0.3, slicable(dimF)).astype(np.float32)
    cpuE = np.random.uniform(-0.2, 0.2, dimO).astype(np.float32)

    # zero pad the last row of cpu input for the sake of numpy
    cpuI[-1, :] = 0.0

    # =======GPU and CPU==========
    beI = cpuI[:-1, :].reshape(dimI)
    beF = cpuF.reshape(dimF)
    beE = cpuE

    start_gpu = default_timer()
    ngO, ngB, ngU = run_backend_conv(ng, conv_ng, beI, beF, beE, dtype)
    end_gpu = default_timer()

    start_cpu = default_timer()
    ncO, ncB, ncU = run_backend_conv(nc, conv_nc, beI, beF, beE, dtype)
    end_cpu = default_timer()

    print("gputime: %s, cputime %s" %
          (end_gpu - start_gpu, end_cpu - start_cpu))

    # ======numpy===========
    # cpu output arrays
    cpuO = np.zeros(dimO, dtype=dtype)
    cpuB = np.zeros(slicable(dimI, 1), dtype=dtype)
    cpuU = np.zeros(slicable(dimF), dtype=dtype)

    D, H, W = conv_nc.DHW
    T, R, S = conv_nc.TRS
    M, P, Q = conv_nc.MPQ

    pad_d, pad_h, pad_w = conv_nc.padding
    str_d, str_h, str_w = conv_nc.strides

    for m in range(M):
        mt = m * str_d - pad_d

        for p in range(P):
            pr = p * str_h - pad_h

            for q in range(Q):
                qs = q * str_w - pad_w

                idx = pixel_indices(conv_nc, mt, pr, qs)

                cpuO[:, m, p, q, :] = np.dot(cpuF.T, cpuI[idx, :])

                cpuB[idx, :] += np.dot(cpuF, cpuE[:, m, p, q, :])

                cpuU += np.dot(cpuI[idx, :], cpuE[:, m, p, q, :].T)

    for op, ngA, ncA, cpuA, w in (
            ("fprop", ngO, ncO, cpuO, Q),
            ("bprop", ngB, ncB.reshape(dimI), cpuB[:-1, :].reshape(dimI), W),
            ("update", ngU, ncU.reshape(dimF), cpuU.reshape(dimF), S)):

        print(op)
        assert np.allclose(ngA.get(), cpuA, rtol=0, atol=1e-4)
        assert np.allclose(ncA.get(), cpuA, rtol=0, atol=1e-4)

    del ng
    del nc
def test_conv_layer(fargs_tests, device_id):

    dtype = np.float32

    ng = NervanaGPU(stochastic_round=False, bench=True, device_id=device_id)

    N, C, K = fargs_tests[0]
    D, H, W = fargs_tests[1]
    T, R, S = fargs_tests[2]
    padding_d, padding_h, padding_w = fargs_tests[3]
    strides_d, strides_h, strides_w = fargs_tests[4]

    conv_ng = ng.conv_layer(dtype, N, C, K, D, H, W, T, R, S, padding_d,
                            padding_h, padding_w, strides_d, strides_h,
                            strides_w)

    nc = NervanaCPU()
    conv_nc = nc.conv_layer(dtype, N, C, K, D, H, W, T, R, S, padding_d,
                            padding_h, padding_w, strides_d, strides_h,
                            strides_w)

    assert conv_nc.dimI == conv_ng.dimI
    assert conv_nc.dimF == conv_ng.dimF
    assert conv_nc.dimO == conv_ng.dimO
    assert conv_nc.M == conv_ng.M

    dimI = conv_ng.dimI
    dimF = conv_ng.dimF
    dimO = conv_ng.dimO

    # cpu input arrays
    cpuI = np.random.uniform(-0.8, 0.8, slicable(dimI, 1)).astype(np.float32)
    cpuF = np.random.uniform(0.0, 0.3, slicable(dimF)).astype(np.float32)
    cpuE = np.random.uniform(-0.2, 0.2, dimO).astype(np.float32)

    # zero pad the last row of cpu input for the sake of numpy
    cpuI[-1, :] = 0.0

    # =======GPU and CPU==========
    beI = cpuI[:-1, :].reshape(dimI)
    beF = cpuF.reshape(dimF)
    beE = cpuE

    start_gpu = default_timer()
    ngO, ngB, ngU = run_backend_conv(ng, conv_ng, beI, beF, beE, dtype)
    end_gpu = default_timer()

    start_cpu = default_timer()
    ncO, ncB, ncU = run_backend_conv(nc, conv_nc, beI, beF, beE, dtype)
    end_cpu = default_timer()

    print("gputime: %s, cputime %s" %
          (end_gpu - start_gpu, end_cpu - start_cpu))

    # ======numpy===========
    # cpu output arrays
    cpuO = np.zeros(dimO, dtype=dtype)
    cpuB = np.zeros(slicable(dimI, 1), dtype=dtype)
    cpuU = np.zeros(slicable(dimF), dtype=dtype)

    D, H, W = conv_nc.DHW
    T, R, S = conv_nc.TRS
    M, P, Q = conv_nc.MPQ

    pad_d, pad_h, pad_w = conv_nc.padding
    str_d, str_h, str_w = conv_nc.strides

    for m in range(M):
        mt = m * str_d - pad_d

        for p in range(P):
            pr = p * str_h - pad_h

            for q in range(Q):
                qs = q * str_w - pad_w

                idx = pixel_indices(conv_nc, mt, pr, qs)

                cpuO[:, m, p, q, :] = np.dot(cpuF.T, cpuI[idx, :])

                cpuB[idx, :] += np.dot(cpuF, cpuE[:, m, p, q, :])

                cpuU += np.dot(cpuI[idx, :], cpuE[:, m, p, q, :].T)

    for op, ngA, ncA, cpuA, w in (("fprop", ngO, ncO, cpuO,
                                   Q), ("bprop", ngB, ncB.reshape(dimI),
                                        cpuB[:-1, :].reshape(dimI), W),
                                  ("update", ngU, ncU.reshape(dimF),
                                   cpuU.reshape(dimF), S)):

        print(op)
        ncAnp = ncA.get().astype(np.float32)
        ngAnp = ngA.get().astype(np.float32)
        ncdif = cpuA - ncAnp
        ngdif = cpuA - ngAnp
        maxval = abs(cpuA).max()
        ncmaxdif = abs(ncdif).max()
        ngmaxdif = abs(ngdif).max()
        ncRatio = ncmaxdif / maxval
        ngRatio = ngmaxdif / maxval

        assert ncRatio < 1e-5
        assert ngRatio < 1e-5
        assert allclose_with_out(ncA.get(), cpuA, rtol=0, atol=1e-4)
        assert allclose_with_out(ngA.get(), cpuA, rtol=0, atol=1e-3)

    del ng
    del nc