Esempio n. 1
0
def expand_onehot(x):
    """
    Simply converts an integer to a one-hot vector of the same size as out_axis
    """
    return ng.one_hot(x, axis=out_axis)
Esempio n. 2
0
])

lr_schedule = {
    'name': 'schedule',
    'base_lr': 0.01,
    'gamma': (1 / 250.)**(1 / 3.),
    'schedule': [22, 44, 65]
}

optimizer = GradientDescentMomentum(lr_schedule,
                                    0.0,
                                    wdecay=0.0005,
                                    iteration=inputs['iteration'])
train_prob = seq1(inputs['image'])
train_loss = ng.cross_entropy_multi(train_prob,
                                    ng.one_hot(inputs['label'], axis=ax.Y))
batch_cost = ng.sequential(
    [optimizer(train_loss),
     ng.mean(train_loss, out_axes=())])
train_outputs = dict(batch_cost=batch_cost)

with closing(ngt.make_transformer()) as transformer:
    train_computation = make_bound_computation(transformer, train_outputs,
                                               inputs)

    cbs = make_default_callbacks(transformer=transformer,
                                 output_file=args.output_file,
                                 frequency=args.iter_interval,
                                 train_computation=train_computation,
                                 total_iterations=args.num_iterations,
                                 use_progress_bar=args.progress_bar)
Esempio n. 3
0
# Optimizer
# Provided learning policy takes learning rate as input to graph using a placeholder.
# This allows you to control learning rate based on various factors of network
learning_rate_policy = {'name': 'provided', 'lr_placeholder': lr_ph}

optimizer = GradientDescentMomentum(learning_rate=learning_rate_policy,
                                    momentum_coef=momentum_coef,
                                    wdecay=wdecay,
                                    nesterov=False,
                                    iteration=input_ph['iteration'])
label_indices = input_ph['label']
# Make a prediction
prediction = resnet(input_ph['image'])
# Calculate loss
train_loss = ng.cross_entropy_multi(prediction,
                                    ng.one_hot(label_indices, axis=ax.Y))
# Average loss over the batch
batch_cost = ng.sequential(
    [optimizer(train_loss),
     ng.mean(train_loss, out_axes=())])
train_outputs = dict(batch_cost=batch_cost)

# Instantiate the Saver object to save weights
weight_saver = Saver()

with Layer.inference_mode_on():
    # Doing inference
    inference_prob = resnet(input_ph['image'])
    eval_loss = ng.cross_entropy_multi(inference_prob,
                                       ng.one_hot(label_indices, axis=ax.Y))
    # Computation for inference
Esempio n. 4
0
# At iteration (num_iterations * 2 // 75), it is reduced by gamma again
# So on..
no_steps = 75
step = num_iterations // no_steps
schedule = list(np.arange(step, num_iterations, step))
learning_rate_policy = {'name': 'schedule',
                        'schedule': schedule,
                        'gamma': 0.95,
                        'base_lr': 0.01}
optimizer = GradientDescentMomentum(learning_rate=learning_rate_policy,
                                    iteration=inputs['iteration'])
# Define the loss function (Cross entropy loss)
# Note that we convert the integer values of input['y'] to one hot here
fwd_prop = seq1(inputs['X'])
train_loss = ng.cross_entropy_multi(fwd_prop,
                                    ng.one_hot(inputs['y'], axis=out_axis),
                                    usebits=True)

# Train cost computation
batch_cost = ng.sequential([optimizer(train_loss), ng.mean(train_loss, out_axes=())])
train_computation = ng.computation([batch_cost, fwd_prop], "all")
train_outputs = dict(batch_cost=batch_cost)

# Forward prop of evaluation set
# Required for correct functioning of batch norm and dropout layers during inference mode
with Layer.inference_mode_on():
    inference_prop = seq1(inputs['X'])
eval_loss = ng.cross_entropy_multi(inference_prop,
                                   ng.one_hot(inputs['y'], axis=out_axis),
                                   usebits=True)
eval_computation = ng.computation([ng.mean(eval_loss, out_axes=()), inference_prop], "all")
Esempio n. 5
0

def cifar_mean_subtract(x):
    bgr_mean = ng.persistent_tensor(
        axes=x.axes.find_by_name('C'),
        initial_value=np.array([104., 119., 127.]))
    return (x - bgr_mean) / 255.


seq1 = Sequential([Preprocess(functor=cifar_mean_subtract),
                   Affine(nout=200, weight_init=UniformInit(-0.1, 0.1), activation=Rectlin()),
                   Affine(axes=ax.Y, weight_init=UniformInit(-0.1, 0.1), activation=Softmax())])

optimizer = GradientDescentMomentum(0.1, 0.9)
train_prob = seq1(inputs['image'])
train_loss = ng.cross_entropy_multi(train_prob, ng.one_hot(inputs['label'], axis=ax.Y))
batch_cost = ng.sequential([optimizer(train_loss), ng.mean(train_loss, out_axes=())])
train_outputs = dict(batch_cost=batch_cost)

with Layer.inference_mode_on():
    inference_prob = seq1(inputs['image'])
eval_loss = ng.cross_entropy_multi(inference_prob, ng.one_hot(inputs['label'], axis=ax.Y))
eval_outputs = dict(results=inference_prob, cross_ent_loss=eval_loss)

# Now bind the computations we are interested in
with closing(ngt.make_transformer()) as transformer:
    train_computation = make_bound_computation(transformer, train_outputs, inputs)
    loss_computation = make_bound_computation(transformer, eval_outputs, inputs)

    cbs = make_default_callbacks(transformer=transformer,
                                 output_file=args.output_file,
Esempio n. 6
0
def expand_onehot(x):
    return ng.one_hot(x, axis=ax.Y)
Esempio n. 7
0
inputs = train_set.make_placeholders()
ax.Y.length = len(tree_bank_data.vocab)


def expand_onehot(x):
    return ng.one_hot(x, axis=ax.Y)


# weight initialization
init = UniformInit(low=-0.08, high=0.08)

if args.use_lut:
    layer_0 = LookupTable(50, 100, init, update=True, pad_idx=0)
else:
    layer_0 = Preprocess(functor=lambda x: ng.one_hot(x, axis=ax.Y))

if args.layer_type == "rnn":
    rlayer = Recurrent(hidden_size, init, activation=Tanh())
elif args.layer_type == "birnn":
    rlayer = BiRNN(hidden_size,
                   init,
                   activation=Tanh(),
                   return_sequence=True,
                   sum_out=True)

# model initialization
seq1 = Sequential([
    layer_0, rlayer,
    Affine(init, activation=Softmax(), bias_init=init, axes=(ax.Y, ))
])
Esempio n. 8
0
linear = Affine(init, activation=Softmax(), bias_init=init, axes=(ax.Y))

optimizer = RMSProp(decay_rate=0.95,
                    learning_rate=2e-3,
                    epsilon=1e-6,
                    gradient_clip_value=gradient_clip_value)

# build network graph
one_hot_enc_out = one_hot_enc(inputs['inp_txt'])
one_hot_dec_out = one_hot_dec(inputs['prev_tgt'])
enc_out = enc(one_hot_enc_out)
dec_out = dec(one_hot_dec_out, init_state=enc_out)
output_prob = linear(dec_out)

loss = ng.cross_entropy_multi(output_prob,
                              ng.one_hot(inputs['tgt_txt'], axis=ax.Y),
                              usebits=True)
mean_cost = ng.mean(loss, out_axes=[])
updates = optimizer(loss)

train_outputs = dict(batch_cost=mean_cost, updates=updates)
loss_outputs = dict(cross_ent_loss=loss)

# inference graph
with Layer.inference_mode_on():
    enc_out_inference = enc(one_hot_enc_out)

    # Create decoder placeholders
    axes = one_hot_dec_out.axes
    axes = axes - axes.recurrent_axis() + ng.make_axis(length=1, name="REC")
    decoder_input_inference = ng.placeholder(axes, name="input")
Esempio n. 9
0
# Optimizer
# Provided learning policy takes learning rate as input to graph using a placeholder.
# This allows you to control learning rate based on various factors of network
learning_rate_policy = {'name': 'provided',
                        'lr_placeholder': lr_ph}

optimizer = GradientDescentMomentum(learning_rate=learning_rate_policy,
                                    momentum_coef=momentum_coef,
                                    wdecay=wdecay,
                                    nesterov=False,
                                    iteration=input_ph['iteration'])
label_indices = input_ph['label']
# Make a prediction
prediction = resnet(input_ph['image'])
# Calculate loss
train_loss = ng.cross_entropy_multi(prediction, ng.one_hot(label_indices, axis=ax.Y))
# Average loss over the batch
batch_cost = ng.sequential([optimizer(train_loss), ng.mean(train_loss, out_axes=())])
train_outputs = dict(batch_cost=batch_cost)

# Instantiate the Saver object to save weights
weight_saver = Saver()

with Layer.inference_mode_on():
    # Doing inference
    inference_prob = resnet(input_ph['image'])
    eval_loss = ng.cross_entropy_multi(inference_prob, ng.one_hot(label_indices, axis=ax.Y))
    # Computation for inference
    eval_outputs = dict(results=inference_prob, cross_ent_loss=eval_loss)

# setup wrapper for additional feed for learning rate (train only)