def test_DumpConns(self): """Test dumping connections.""" ldict = { 'elements': 'iaf_psc_alpha', 'rows': 3, 'columns': 3, 'extent': [2., 2.], 'edge_wrap': True } cdict = { 'connection_type': 'divergent', 'mask': { 'circular': { 'radius': 1. } } } nest.ResetKernel() l = topo.CreateLayer(ldict) topo.ConnectLayers(l, l, cdict) topo.DumpLayerConnections( l, 'static_synapse', os.path.join(self.nest_tmpdir(), 'test_DumpConns.out.cnn')) self.assertTrue(True)
def plot_connections(layer_dict, conn_dict, file_name): conn_dict['synapse_model'] = 'static_synapse' layer = tp.CreateLayer(layer_dict) tp.ConnectLayers(layer, layer, conn_dict) fig = tp.PlotLayer(layer) tp.PlotTargets(tp.FindCenterElement(layer), layer, fig=fig, tgt_color='red') pylab.savefig(file_name) #pylab.show() tp.DumpLayerConnections(layer, conn_dict['synapse_model'], file_name + ".dump") positions = tp.GetTargetPositions(layer, layer)
'edge_wrap': True }) topo.ConnectLayers( l1, l2, { 'connection_type': direction, 'mask': { 'circular': { 'radius': 0.4 } }, 'weights': { 'linear': { 'c': 1., 'a': -5. } } }) topo.DumpLayerNodes(l1 + l2, 'topo_mpi_test.lyr_tmp') topo.DumpLayerConnections(l1, 'static_synapse', 'topo_mpi_test.cnn_tmp') # combine all layer and connection files into one sorted file, respectively nest.sli_run('SyncProcesses') # make sure all are done dumping if nest.Rank() == 0: for filetype in ['cnn', 'lyr']: os.system('cat *.{0}_tmp | sort > all_sorted.{0}'.format(filetype)) os.system('rm *.{0}_tmp'.format(filetype)) # directories for any number of MPI processes should now be diff-able
def create_spike_times(Sim, NModel): if Sim.overwrite_files == "no": if Sim.data_folder.is_dir()==True: print("You are not allowed to overwrite the files.") sys.exit("Error message") else: Sim.data_folder.mkdir(parents=True) elif Sim.overwrite_files == "yes": if Sim.data_folder.is_dir()==True: print("You have overwritten old files.") else: Sim.data_folder.mkdir(parents=True) else: print("You have two options for overwrite files") connections_path = Sim.data_folder / "connections.txt" spikes_path = Sim.data_folder / "spikes.mat" spikes_split_path = Sim.data_folder / "spikes_split.mat" multimeter_data_path = Sim.data_folder / "multimeter_data.mat" hyperparameters_path = Sim.data_folder / "hyperparameters.mat" position_path = Sim.data_folder / "position.mat" # Define important simulation parameters nest.ResetKernel() seed=1008.0 nest.SetKernelStatus({"resolution": Sim.resolution, "print_time": True, "overwrite_files":True, "grng_seed": int(seed), "rng_seeds": [int(seed)] }) # Construct the position grid of the neural network(NN) jit = 0.03 if NModel.nr_neurons==100: xs = np.arange(-0.45,.451,0.1) # defines the size of the network elif NModel.nr_neurons==16: xs = np.arange(-0.15,.151,0.1) else: print("Current network can constitute of 16 or 100 neurons.") np.random.seed(int(seed)) pos = [[x,y] for y in xs for x in xs] pos = [[p[0]+np.random.uniform(-jit,jit),p[1]+np.random.uniform(-jit,jit)] for p in pos] # Construct the neurons on the grid and establish connections between them. # The probabilty of connection varies with the distance between the neurons # Define synapse connections nest.SetDefaults("tsodyks_synapse",{"delay": NModel.t_delay, #1.5 in Stetter's code "tau_rec": NModel.tau_rec, "tau_fac":0.0, "U": NModel.U }) conn1 = { "connection_type":"divergent", "mask": {"circular":{"radius":0.75}}, "kernel": {"gaussian":{"p_center":1.,"sigma":0.15}}, #0.15 for 100 neurons "allow_autapses":False, "synapse_model":"tsodyks_synapse", "weights": NModel.alpha_int } # specify the neural model neuron_param= { #"I_e" : 0.0, "C_m" : 1.0, "tau_m" : NModel.tau_m, "t_ref" : NModel.tau_s, #refactory periods in ms 2.0 is default "E_L" : 0.0, "V_th" : NModel.V_thres, "V_m" : 0.0, "V_reset" : 0.0 } nest.SetDefaults("iaf_psc_alpha", neuron_param) layer_dict_ex = {"positions": pos, "extent" : [1.1,1.1], "elements" : "iaf_psc_alpha"} layer = topp.CreateLayer(layer_dict_ex) topp.ConnectLayers(layer,layer,conn1) # Plot layer topp.PlotLayer(layer) # change the seed for different Poisson spike trains nest.SetKernelStatus({ 'grng_seed': int(seed), 'rng_seeds': [int(seed)] }) # Creation of a poisson generator nest.CopyModel('poisson_generator', 'PG', params={'rate': NModel.poisson_spike_rate}) #1.6 in the paper, I don't know why they changed it in the programm pg = topp.CreateLayer({ 'rows' : 1, 'columns' : 1, 'elements' : 'PG'}) cdict_stim = {'connection_type' : 'divergent', 'weights': NModel.alpha_ext} topp.ConnectLayers(pg,layer,cdict_stim) # create multimeter nrns=nest.GetLeaves(layer,local_only=True)[0] multimeter = nest.Create("multimeter", NModel.nr_neurons) nest.SetStatus(multimeter, {"withtime":True, "record_from":["V_m","I_syn_ex"],"interval":Sim.interval}) #, "input_currents_ex","input_currents_in" nest.Connect(multimeter,nrns,"one_to_one") # Create spike detector sd1 = nest.Create('spike_detector') nest.SetStatus(sd1,{'precise_times':True}) nest.Connect(nrns,sd1) # Simulate nest.Simulate(Sim.sim_length + Sim.interval) # Retrieve the generated data [potential,currents_ex,spikes,time]=get_data(multimeter,sd1,NModel.nr_neurons,Sim.nr_samples) # Save the spikes to a file spikesdict={'N1':spikes} sio.savemat(str(spikes_path),spikesdict) if Sim.P>1: potential_fin = time_series_split(potential,Sim.P)[0] currents_ex_fin = time_series_split(currents_ex,Sim.P)[0] spikesdict_split = spike_times_split(spikes, Sim.sim_length, Sim.P) else: potential_fin=potential currents_ex_fin=currents_ex spikesdict_split = {'N1':spikes} # Pass important hyperparameters to create_fluorescent_data_from_spike_times.py hyperdict = { 'P' : Sim.P, 'length_ts' : Sim.length_ts, 'nr_samples' : Sim.nr_samples, 'nr_neurons' : NModel.nr_neurons, 'interval' : Sim.interval } sio.savemat(str(hyperparameters_path),hyperdict) # save the position sio.savemat(str(position_path), {'position' : pos}) # save the results sio.savemat(str(multimeter_data_path),mdict={ 'potential' : potential_fin, 'input_currents_ex': currents_ex_fin }) sio.savemat(str(spikes_split_path),spikesdict_split) topp.DumpLayerConnections(layer,'tsodyks_synapse',str(connections_path))
def simulation(Params): #! ================= #! Import network #! ================= # NEST Kernel and Network settings nest.ResetKernel() nest.ResetNetwork() nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']}) nest.SetStatus([0],{'print_time': True}) # initialize random seed import time msd = int(round(time.time() * 1000)) nest.SetKernelStatus({'grng_seed' : msd}) nest.SetKernelStatus({'rng_seeds' : range(msd+Params['threads']+1, msd+2*Params['threads']+1)}) import importlib network = importlib.import_module(Params['network']) reload(network) models, layers, conns = network.get_Network(Params) #import network_full_keiko #reload(network_full_keiko) # models, layers, conns = network_full_keiko.get_Network(Params) # Create models for m in models: nest.CopyModel(m[0], m[1], m[2]) # Create layers, store layer info in Python variable for l in layers: exec '%s = tp.CreateLayer(l[1])' % l[0] # Create connections, need to insert variable names for c in conns: eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1])) # Prepare for file IO import glob # --- Set folder information data_folder = Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) # --- To save spike data, set pairs of population id and its name population_name = [ {'population': Retina_layer, 'name': 'Retina'}, {'population': Vp_vertical, 'name': 'Vp_v'}, {'population': Vp_horizontal, 'name': 'Vp_h'}, {'population': Rp_layer, 'name': 'Rp'}, {'population': Tp_layer, 'name': 'Tp'}, {'population': Vs_vertical, 'name': 'Vs_v'}, {'population': Vs_horizontal, 'name': 'Vs_h'}] if Params.has_key('load_connections_from_file') and Params['load_connections_from_file']: # Preparation scramble_populations = [(Vp_vertical, 'Vp_vertical'), (Vp_horizontal, 'Vp_horizontal')] scramble_layers = ['L23_exc', 'L23_inh', 'L4_exc', 'L4_inh', 'L56_exc', 'L56_inh'] #scramble_layers = ['L4_exc'] # Get min &max index of each layer h_min_idx = {} h_max_idx = {} v_min_idx = {} v_max_idx = {} target_neurons = [] for tmp_model in scramble_layers: tmp_h = nest.GetLeaves(Vp_horizontal, properties={'model': tmp_model}, local_only=True)[0] tmp_v = nest.GetLeaves(Vp_vertical, properties={'model': tmp_model}, local_only=True)[0] h_min_idx[tmp_model] = min(tmp_h) h_max_idx[tmp_model] = max(tmp_h) v_min_idx[tmp_model] = min(tmp_v) v_max_idx[tmp_model] = max(tmp_v) target_neurons = target_neurons + range(h_min_idx[tmp_model], h_max_idx[tmp_model]+1) + range(v_min_idx[tmp_model], v_max_idx[tmp_model]+1) # Save intact network information for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '_intact.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '_intact.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '_intact.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '_intact.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) # Reset network nest.ResetNetwork() ''' # The following code works, but takes time longer # Get the list of connection_file file_list = glob.glob(data_folder+'connection_*_intact.dat') # Remove a file if the size is zero remove_idx = [] for file_idx in range(0,len(file_list)): intact_filename = file_list[file_idx] fsize=os.path.getsize(intact_filename) if fsize == 0: remove_idx = remove_idx + [file_idx] remove_idx.sort() remove_idx.reverse() for i in remove_idx: del file_list[i] ''' # TODO : put GABA_A, GABA_B and NMDA connection files file_list = [] file_list.append({'filename': data_folder + 'connection_Vp_h_AMPA_syn_intact.dat', 'synapse': 'AMPA'}) file_list.append({'filename': data_folder + 'connection_Vp_v_AMPA_syn_intact.dat', 'synapse': 'AMPA'}) # Do the following procedure for all connection files for file_idx in range(0,len(file_list)): # Set filenames intact_filename = file_list[file_idx]['filename'] receptors = nest.GetDefaults('ht_neuron')['receptor_types'] syn_model = receptors[ file_list[file_idx]['synapse'] ] scrambled_filename = intact_filename.replace('intact', 'scrambled') print(intact_filename) # Get original(intact) connectivity data src_network = np.loadtxt(open(intact_filename,'rb')) np_pre = src_network[:, 0].astype(int) np_post = src_network[:, 1].astype(int) np_w = src_network[:, 2] np_d = src_network[:, 3] if Params['scrambled']: # Preserve the original structure if # -- pre neruons are not in target populations (i.e. scramble_layers) # -- OR # -- post neurons are not in target populations(i.e. scramble_layers) preserved_rows = np.where( ~np.in1d(np_pre,target_neurons) | ~np.in1d(np_post,target_neurons) )[0] preserved_pre = np_pre[preserved_rows] preserved_post = np_post[preserved_rows] preserved_w = np_w[preserved_rows] preserved_d = np_d[preserved_rows] # If len(preserved_rows)==len(np_pre), that means all neurons do not belong to scramble target areas. # If len(preserved_rows) < len(np_pre), that means there are some neurons which need to be scrambled. if len(preserved_rows) > len(np_pre): print('ERROR: preserved_rows should not be larger than np_pre') elif len(preserved_rows) == len(np_pre): scrambled_pre = preserved_pre.tolist() scrambled_post = preserved_post.tolist() scrambled_w = preserved_w.tolist() scrambled_d = preserved_d.tolist() else: # --- len(preserved_rows) < len(np_pre) scrambled_pre = [] scrambled_post = [] scrambled_w = [] scrambled_d = [] for tmp_model_pre in scramble_layers: for tmp_model_post in scramble_layers: # Get row index such that # --- pre_neuron is in "tmp_model_pre" # --- AND # --- post_neuron is in "tmp_model_post" bool_pre_h = np.in1d(np_pre, range(h_min_idx[tmp_model_pre], h_max_idx[tmp_model_pre]+1)) bool_pre_v = np.in1d(np_pre, range(v_min_idx[tmp_model_pre], v_max_idx[tmp_model_pre]+1)) bool_post_h = np.in1d(np_post, range(h_min_idx[tmp_model_post], h_max_idx[tmp_model_post]+1)) bool_post_v = np.in1d(np_post, range(v_min_idx[tmp_model_post], v_max_idx[tmp_model_post]+1)) tmp_rows_pre_h = np.where(bool_pre_h & (bool_post_h|bool_post_v))[0] tmp_rows_pre_v = np.where(bool_pre_v & (bool_post_h|bool_post_v))[0] # Get connectivity data such that pre neuron is in "tmp_model_pre" # --- pre, w and d information should be kept. # --- post index should be scrambled. tmp_pre = np_pre[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist() tmp_w = np_w[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist() tmp_d = np_d[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist() tmp_post = [] num_pre_h = len(tmp_rows_pre_h) num_pre_v = len(tmp_rows_pre_v) # --- pre : population = horizontal, model = "tmp_model_pre" # --- post: population = horizontal(1/2)+vertical(1/2), model = "tmp_model_post" if num_pre_h > 0: # Assign the same number of connections for horizontal population and vertical population num_scrambled_h = int(round(num_pre_h / 2)) num_scrambled_v = num_pre_h - num_scrambled_h # Choose post neuron index randomly scrambled_h_idx = rd.randint(low =h_min_idx[tmp_model_post], high=h_max_idx[tmp_model_post], size=[num_scrambled_h, 1]) scrambled_v_idx = rd.randint(low =v_min_idx[tmp_model_post], high=v_max_idx[tmp_model_post], size=[num_scrambled_v, 1]) # append scrambled post index tmp_post = tmp_post + np.append(scrambled_h_idx, scrambled_v_idx).tolist() # --- pre : population = vertical, model = "tmp_model_pre" # --- post: population = horizontal(1/2)+vertical(1/2), model = "tmp_model_post" if num_pre_v > 0: # Assign the same number of connections for horizontal population and vertical population num_scrambled_h = int(round(num_pre_v / 2)) num_scrambled_v = num_pre_v - num_scrambled_h # Choose post neuron index randomly scrambled_h_idx = rd.randint(low =h_min_idx[tmp_model_post], high=h_max_idx[tmp_model_post], size=[num_scrambled_h, 1]) scrambled_v_idx = rd.randint(low =v_min_idx[tmp_model_post], high=v_max_idx[tmp_model_post], size=[num_scrambled_v, 1]) # append scrambled post index tmp_post = tmp_post + np.append(scrambled_h_idx, scrambled_v_idx).tolist() scrambled_pre = scrambled_pre + tmp_pre scrambled_post = scrambled_post + tmp_post scrambled_w = scrambled_w + tmp_w scrambled_d = scrambled_d +tmp_d # append preserved connection data scrambled_pre = scrambled_pre + preserved_pre.tolist() scrambled_post = scrambled_post + preserved_post.tolist() scrambled_w = scrambled_w + preserved_w.tolist() scrambled_d = scrambled_d + preserved_d.tolist() # Save scrambled_data scrambled_all_data = np.zeros([len(scrambled_pre), 4]) scrambled_all_data[:, 0] = scrambled_pre scrambled_all_data[:, 1] = scrambled_post scrambled_all_data[:, 2] = scrambled_w scrambled_all_data[:, 3] = scrambled_d np.savetxt(scrambled_filename, scrambled_all_data, fmt='%.6f') # Connect con_dict = {'rule': 'one_to_one'} syn_dict = {"model": "ht_synapse", 'receptor_type': syn_model, 'weight': scrambled_w, 'delay': scrambled_d, } nest.Connect(scrambled_pre, scrambled_post, con_dict, syn_dict) else: # just convert data type(ndarray->list) and connect based on the original data pre = np_pre.tolist() post = np_post.tolist() w = np_w.tolist() d = np_d.tolist() # Connect con_dict = {'rule': 'one_to_one'} syn_dict = {"model": "ht_synapse", 'receptor_type': 1, 'weight': w, 'delay': d, } nest.Connect(pre, post, con_dict, syn_dict) # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"}) #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"}) # Get target nodes for the vertical population # tp_nodes = nest.GetLeaves(Tp_layer, local_only=True)[0] if Params.has_key('show_V4_num_conn_figure') and Params['show_V4_num_conn_figure']: horizontal_nodes = nest.GetLeaves(Vp_horizontal, properties={'model': 'L4_exc'}, local_only=True)[0] vertical_nodes = nest.GetLeaves(Vp_vertical, properties={'model': 'L4_exc'}, local_only=True)[0] n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) plt.figure() plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30]))) plt.title('# of connections Vp(h) L4pyr -> Vp(h) L4Pyr') n_conns_hor = [] for (idx, horizontal_node) in enumerate(horizontal_nodes): tgt_map = [] this_conns = nest.GetConnections([horizontal_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_hor.append(len(tgt_map)) # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"}) #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"}) plt.figure() plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30]))) plt.title('# of connections Vp(h) L4pyr -> Vp(v) L4Pyr') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], vertical_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.figure() plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30]))) plt.title('# of connections Vp(v) L4pyr -> Vp(v) L4Pyr') n_conns_ver = [] for (idx, vertical_node) in enumerate(vertical_nodes): tgt_map = [] this_conns = nest.GetConnections([vertical_node], horizontal_nodes, synapse_model='AMPA_syn') tgt_map.extend([conn[1] for conn in this_conns]) n_conns_ver.append(len(tgt_map)) plt.figure() plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30]))) plt.title('# of connections Vp(v) L4pyr -> Vp(h) L4Pyr') plt.show() # Check connections # Connections from Retina to TpRelay # tp.PlotTargets(tp.FindCenterElement(Retina_layer), Tp_layer) if Params.has_key('show_V4_connectivity_figure') and Params['show_V4_connectivity_figure']: Vp_hor_gids = tp.GetElement(Vp_horizontal, [0,0]) n_Vp_hor = len(Vp_hor_gids) f = [] for idx in range(n_Vp_hor): f.append(plt.figure()) positions = range(0,41,10) positions[-1] -= 1 for xi in range(len(positions)): for yi in range(len(positions)): print("Position [%d,%d] : %d" %(xi,yi,yi*(len(positions))+xi+1)) x = positions[xi] y = positions[yi] Vp_hor_gids = tp.GetElement(Vp_horizontal, [x,y]) Vp_hor_status = nest.GetStatus(Vp_hor_gids) for (idx, n) in enumerate(Vp_hor_status): if n['Tau_theta'] == 2.0: print idx try: f[idx].add_subplot(len(positions), len(positions), yi*(len(positions))+xi+1) tp.PlotTargets([Vp_hor_gids[idx]], Vp_horizontal, 'L4_exc', 'AMPA_syn', f[idx]) except: print('%i bad' % Vp_hor_gids[idx]) plt.show() # Connections from TpRelay to L4pyr in Vp (horizontally tuned) #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_h, 'L4pyr', 'AMPA') #pylab.title('Connections TpRelay -> Vp(h) L4pyr') #pylab.show() # Connections from TpRelay to L4pyr in Vp (vertically tuned) #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_v, 'L4pyr', 'AMPA') #pylab.title('Connections TpRelay -> Vp(v) L4pyr') #pylab.show() ''' # pablo # Create vertical grating for n in nest.GetLeaves(Retina_layer)[0]: retina_0 = (nest.GetLeaves(Retina_layer)[0])[0] col = (n-retina_0)/Params['Np'] cells_per_degree = Params['Np']/Params['visSize'] cells_per_cycle = cells_per_degree/Params['spatial_frequency'] nest.SetStatus([n], { "phase": col * 360/(cells_per_cycle-1) }) ''' ### keiko if Params['lambda_dg'] >= 0: [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], Params["lambda_dg"], Params["phi_dg"])}) for n in nest.GetLeaves(Retina_layer)[0]] else: # Leonardo: Random retina input [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0], np.pi * np.random.rand(), np.pi * np.random.rand())}) for n in nest.GetLeaves(Retina_layer)[0]] # --------------------------------------------------------------------# # ---------- SET IB NEURONS ----------------------------------------- # # --------------------------------------------------------------------# # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron. # That is achieved by setting pacemaker current I_h. # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0. # (Other cortical neuron do not have I_h, thus h_g_peak=0.0) L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc'] num_neuron = len(L56_vertical_idx) num_ib = int(num_neuron*0.3) ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0] ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0] for i in range(1,num_ib,1): nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'h_g_peak': 1.0}) nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'h_g_peak': 1.0}) # initiate network activity #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']}) nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(500.0) #! ================= #! Recording devices #! ================= nest.CopyModel('multimeter', 'RecordingNode', params = {'interval' : Params['resolution'], #'record_from': ['V_m'], 'record_from': ['V_m', 'I_syn_AMPA', 'I_syn_NMDA', 'I_syn_GABA_A', 'I_syn_GABA_B', 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', 'I_NaP', 'I_KNa', 'I_T', 'I_h'], 'record_to' : ['memory'], 'withgid' : True, 'withtime' : True}) recorders = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L56_exc'), (Rp_layer, 'Rp')]: rec = nest.Create('RecordingNode') recorders.append([rec,population,model]) if (model=='Retina'): nest.SetStatus(rec,{'record_from': ['rate']}) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] nest.Connect(rec, tgts) #! ================= #! Spike detector #! ================= detectors = [] ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Rp_layer , 'Rp'), (Vp_vertical, 'L23_exc'), (Vp_horizontal, 'L23_exc'), (Vp_vertical, 'L23_inh'), (Vp_horizontal, 'L23_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc'), (Vp_vertical, 'L4_inh'), (Vp_horizontal, 'L4_inh'), (Vp_vertical, 'L56_exc'), (Vp_horizontal, 'L56_exc'), (Vp_vertical, 'L56_inh'), (Vp_horizontal, 'L56_inh'), (Vs_vertical, 'L23_exc'), (Vs_horizontal, 'L23_exc'), (Vs_vertical, 'L23_inh'), (Vs_horizontal, 'L23_inh'), (Vs_vertical, 'L4_exc'), (Vs_horizontal, 'L4_exc'), (Vs_vertical, 'L4_inh'), (Vs_horizontal, 'L4_inh'), (Vs_vertical, 'L56_exc'), (Vs_horizontal, 'L56_exc'), (Vs_vertical, 'L56_inh'), (Vs_horizontal, 'L56_inh')]: ''' for population, model in [(Retina_layer, 'Retina'), (Tp_layer , 'Tp_exc'), (Tp_layer , 'Tp_inh'), (Vp_vertical, 'L4_exc'), (Vp_horizontal, 'L4_exc')]: rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True}) #rec = nest.Create('spike_detector') detectors.append([rec,population,model]) tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model] if model == 'Retina': for t in tgts: try: nest.Connect([t], rec) print('connected %d' % t) except: print('%d did not work' % t) else: nest.Connect(tgts, rec) #! ==================== #! Simulation #! ==================== ''' # change gKL to 0.8 in all populations (necessary to get a little stronger evoked response) for l in layers: sim_elements = l[1]['elements'] for m in np.arange(0,np.size(sim_elements),1): if(np.size(sim_elements)==1): sim_model = sim_elements else: sim_model = sim_elements[m] exec("la = %s" % l[0]) pop = [nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0]==sim_model] if (l[0]!='Retina_layer'): for cell in pop: nest.SetStatus([cell], {'g_KL':0.8}) ''' # Simulate for t in Params['intervals']: #if (t == 250.0): # Stimulus ON # # if (t == 1500.0): # Stimulus ON # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 45.0}) #else: # Stimulus OFF # nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) if Params['input_flag']==True: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']}) else: nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0}) nest.Simulate(t) ''' data_folder = Params['data_folder'] if not os.path.isdir(data_folder): os.makedirs(data_folder) ''' #! ==================== #! Plot Results #! ==================== if Params.has_key('show_main_figure') and Params['show_main_figure']: print "plotting..." rows = 9 cols = 2 fig = plt.figure(num=None, figsize=(13, 24), dpi=100) fig.subplots_adjust(hspace=0.4) # Plot A: membrane potential rasters recorded_models = [(Retina_layer,'Retina'), (Vp_vertical,'L23_exc'), (Vp_vertical,'L4_exc'), (Vp_vertical,'L56_exc'), (Rp_layer,'Rp'), (Tp_layer,'Tp_exc')] #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) #starting_neuron = 800+1 #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0) plt.title('Evoked') # Plot B: individual intracellular traces recorded_models =[(Vp_vertical,'L4_exc'), (Vp_vertical,'L4_inh')] #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original # keiko total_time = 0.0 for t in Params['intervals']: total_time += t #draw_neuron = (Params['Np']*Params['Np']/2) #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time) plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time) #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time) # Plot C: topographical activity of the vertical and horizontal layers if Params.has_key('start_membrane_potential') and Params.has_key('end_membrane_potential'): start = Params['start_membrane_potential'] stop = Params['end_membrane_potential'] else: start = 130.0 stop = 140.0 recorded_models = [(Vp_vertical,'L23_exc')] labels = ["Vertical"] plotting.topographic_representation(fig, recorders, recorded_models, labels, Params['Np'], np.sum(Params['intervals']), Params['resolution'], rows, cols, start, stop, 8, 0) recorded_models = [(Vp_horizontal,'L23_exc')] labels = ["Horizontal"] plotting.topographic_representation(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,start,stop,8,1) fig.savefig(data_folder + 'figure3.png', dpi=100) plt.show() # Plot D: movie #labels = ["Evoked_Vp_L23_Vertical","Evoked_Vp_L23_Horizontal"] #recorded_models = [(Vp_vertical,'L23_exc'),(Vp_horizontal,'L23_exc')] #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution']) #! ==================== #! Save Results #! ==================== print('save recorders data') for rec, population, model in recorders: # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] data = nest.GetStatus(rec)[0]['events'] if model == 'Retina': scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'rate': data['rate']}) else: scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat', mdict={'senders': data['senders'], 'V_m': data['V_m'], 'I_syn_AMPA': data['I_syn_AMPA'], 'I_syn_NMDA': data['I_syn_NMDA'], 'I_syn_GABA_A': data['I_syn_GABA_A'], 'I_syn_GABA_B': data['I_syn_GABA_B'], 'g_AMPA': data['g_AMPA'], 'g_NMDA': data['g_NMDA'], 'g_GABAA': data['g_GABAA'], 'g_GABAB': data['g_GABAB']} ) print('save raster images') plt.close() for rec, population, model in detectors: spikes = nest.GetStatus(rec, 'events')[0] # Get name of population for p in range(0, len(population_name), 1): if population_name[p]['population'] == population: p_name = population_name[p]['name'] if len(nest.GetStatus(rec)[0]['events']['senders']) > 3: raster = raster_plot.from_device(rec, hist=True) pylab.title( p_name + '_' + model ) f = raster[0].figure f.set_size_inches(15, 9) f.savefig(data_folder + 'spikes_' + p_name + '_' + model + '.png', dpi=100) plt.close() # Set filename and save spike data filename = data_folder + 'spike_' + p_name + '_' + model + '.pickle' pickle.dump(spikes, open(filename, 'w')) scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']}) #filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' #tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) ''' filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat' filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat' filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat' filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat' tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA) tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA) tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA) tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB) ''' ''' for p in range(0, len(population_name), 1): population = population_name[p]['population'] p_name = population_name[p]['name'] filename_nodes = data_folder + '/gid_' + p_name + '.dat' tp.DumpLayerNodes(population, filename_nodes) ''' network_script = Params['network'] + '.py' shutil.copy2(network_script, Params['data_folder'] + network_script) print('end')