Esempio n. 1
0
    def test_DumpConns(self):
        """Test dumping connections."""
        ldict = {
            'elements': 'iaf_psc_alpha',
            'rows': 3,
            'columns': 3,
            'extent': [2., 2.],
            'edge_wrap': True
        }
        cdict = {
            'connection_type': 'divergent',
            'mask': {
                'circular': {
                    'radius': 1.
                }
            }
        }
        nest.ResetKernel()
        l = topo.CreateLayer(ldict)
        topo.ConnectLayers(l, l, cdict)

        topo.DumpLayerConnections(
            l, 'static_synapse',
            os.path.join(self.nest_tmpdir(), 'test_DumpConns.out.cnn'))
        self.assertTrue(True)
Esempio n. 2
0
def plot_connections(layer_dict, conn_dict, file_name):
    conn_dict['synapse_model'] = 'static_synapse'
    layer = tp.CreateLayer(layer_dict)

    tp.ConnectLayers(layer, layer, conn_dict)

    fig = tp.PlotLayer(layer)
    tp.PlotTargets(tp.FindCenterElement(layer),
                   layer,
                   fig=fig,
                   tgt_color='red')
    pylab.savefig(file_name)
    #pylab.show()

    tp.DumpLayerConnections(layer, conn_dict['synapse_model'],
                            file_name + ".dump")

    positions = tp.GetTargetPositions(layer, layer)
Esempio n. 3
0
    'edge_wrap': True
})

topo.ConnectLayers(
    l1, l2, {
        'connection_type': direction,
        'mask': {
            'circular': {
                'radius': 0.4
            }
        },
        'weights': {
            'linear': {
                'c': 1.,
                'a': -5.
            }
        }
    })

topo.DumpLayerNodes(l1 + l2, 'topo_mpi_test.lyr_tmp')
topo.DumpLayerConnections(l1, 'static_synapse', 'topo_mpi_test.cnn_tmp')

# combine all layer and connection files into one sorted file, respectively
nest.sli_run('SyncProcesses')  # make sure all are done dumping
if nest.Rank() == 0:
    for filetype in ['cnn', 'lyr']:
        os.system('cat *.{0}_tmp | sort > all_sorted.{0}'.format(filetype))
        os.system('rm *.{0}_tmp'.format(filetype))

# directories for any number of MPI processes should now be diff-able
Esempio n. 4
0
def create_spike_times(Sim, NModel):
    
    if Sim.overwrite_files == "no":
        if Sim.data_folder.is_dir()==True:
            print("You are not allowed to overwrite the files.")
            sys.exit("Error message")
        else:
            Sim.data_folder.mkdir(parents=True)
    elif Sim.overwrite_files == "yes":
        if Sim.data_folder.is_dir()==True:
            print("You have overwritten old files.")
        else:
            Sim.data_folder.mkdir(parents=True)
    else:
        print("You have two options for overwrite files")
        
    connections_path        = Sim.data_folder / "connections.txt"
    spikes_path             = Sim.data_folder / "spikes.mat"
    spikes_split_path       = Sim.data_folder / "spikes_split.mat"
    multimeter_data_path    = Sim.data_folder / "multimeter_data.mat"
    hyperparameters_path    = Sim.data_folder / "hyperparameters.mat"
    position_path           = Sim.data_folder / "position.mat"
    
    # Define important simulation parameters
    nest.ResetKernel()
    seed=1008.0
    nest.SetKernelStatus({"resolution": Sim.resolution,
                          "print_time": True,
                          "overwrite_files":True,
                          "grng_seed": int(seed),
                          "rng_seeds": [int(seed)]
                          })
    
    # Construct the position grid of the neural network(NN)
    jit = 0.03
    if NModel.nr_neurons==100:
        xs = np.arange(-0.45,.451,0.1) # defines the size of the network
    elif NModel.nr_neurons==16:
        xs = np.arange(-0.15,.151,0.1)
    else:
        print("Current network can constitute of 16 or 100 neurons.")
    np.random.seed(int(seed))
    pos = [[x,y] for y in xs for x in xs]
    pos = [[p[0]+np.random.uniform(-jit,jit),p[1]+np.random.uniform(-jit,jit)] for p in pos]
    
    # Construct the neurons on the grid and establish connections between them.
    # The probabilty of connection varies with the distance between the neurons
    # Define synapse connections
    nest.SetDefaults("tsodyks_synapse",{"delay": NModel.t_delay, #1.5 in Stetter's code
                                        "tau_rec": NModel.tau_rec,
                                        "tau_fac":0.0,
                                        "U": NModel.U
                                        })
    conn1 = {  "connection_type":"divergent",
                "mask": {"circular":{"radius":0.75}},
                "kernel": {"gaussian":{"p_center":1.,"sigma":0.15}}, #0.15 for 100 neurons
                "allow_autapses":False,
                "synapse_model":"tsodyks_synapse",
                "weights": NModel.alpha_int
                }
    
    # specify the neural model
    neuron_param=  {
                    #"I_e"       : 0.0,
                    "C_m"       : 1.0,
                    "tau_m"     : NModel.tau_m,
                    "t_ref"     : NModel.tau_s, #refactory periods in ms 2.0 is default
                    "E_L"       : 0.0,
                    "V_th"      : NModel.V_thres,
                    "V_m"       : 0.0,
                    "V_reset"   : 0.0
                    }
    nest.SetDefaults("iaf_psc_alpha", neuron_param)
    
    layer_dict_ex = {"positions": pos,
            "extent" : [1.1,1.1],
            "elements" : "iaf_psc_alpha"}
    layer = topp.CreateLayer(layer_dict_ex)
    
    topp.ConnectLayers(layer,layer,conn1)
    
    # Plot layer
    topp.PlotLayer(layer)
    
    # change the seed for different Poisson spike trains
    nest.SetKernelStatus({
            'grng_seed': int(seed),
            'rng_seeds': [int(seed)]
            })
    
    # Creation of a poisson generator
    nest.CopyModel('poisson_generator', 'PG',
                   params={'rate': NModel.poisson_spike_rate}) #1.6 in the paper, I don't know why they changed it in the programm
    pg = topp.CreateLayer({ 'rows' : 1,
                           'columns' : 1,
                          'elements' : 'PG'})
    cdict_stim = {'connection_type' : 'divergent',
                  'weights': NModel.alpha_ext}
    topp.ConnectLayers(pg,layer,cdict_stim)
    
    # create multimeter
    nrns=nest.GetLeaves(layer,local_only=True)[0]
    multimeter = nest.Create("multimeter", NModel.nr_neurons)
    nest.SetStatus(multimeter, {"withtime":True, "record_from":["V_m","I_syn_ex"],"interval":Sim.interval}) #, "input_currents_ex","input_currents_in"
    nest.Connect(multimeter,nrns,"one_to_one")
    
    # Create spike detector
    sd1 = nest.Create('spike_detector')
    nest.SetStatus(sd1,{'precise_times':True})
    nest.Connect(nrns,sd1)
    
    # Simulate
    nest.Simulate(Sim.sim_length + Sim.interval)
    
    # Retrieve the generated data
    [potential,currents_ex,spikes,time]=get_data(multimeter,sd1,NModel.nr_neurons,Sim.nr_samples)
    
    # Save the spikes to a file
    spikesdict={'N1':spikes}
    sio.savemat(str(spikes_path),spikesdict)
    
    if Sim.P>1:
        potential_fin = time_series_split(potential,Sim.P)[0]
        currents_ex_fin = time_series_split(currents_ex,Sim.P)[0]
        spikesdict_split = spike_times_split(spikes, Sim.sim_length, Sim.P)
    else:
        potential_fin=potential
        currents_ex_fin=currents_ex
        spikesdict_split = {'N1':spikes}
        
    # Pass important hyperparameters to create_fluorescent_data_from_spike_times.py
    hyperdict = {
            'P' : Sim.P,
            'length_ts' : Sim.length_ts,
            'nr_samples' : Sim.nr_samples,
            'nr_neurons' : NModel.nr_neurons,
            'interval' : Sim.interval
            
            }
    sio.savemat(str(hyperparameters_path),hyperdict)
    # save the position
    sio.savemat(str(position_path), {'position' : pos})

    # save the results
    sio.savemat(str(multimeter_data_path),mdict={ 'potential' : potential_fin,
                               'input_currents_ex': currents_ex_fin
                               })
    sio.savemat(str(spikes_split_path),spikesdict_split)
    
    topp.DumpLayerConnections(layer,'tsodyks_synapse',str(connections_path))
Esempio n. 5
0
def simulation(Params):


    #! =================
    #! Import network
    #! =================

    # NEST Kernel and Network settings
    nest.ResetKernel()
    nest.ResetNetwork()
    nest.SetKernelStatus({"local_num_threads": Params['threads'],'resolution': Params['resolution']})
    nest.SetStatus([0],{'print_time': True})

    # initialize random seed
    import time
    msd = int(round(time.time() * 1000))
    nest.SetKernelStatus({'grng_seed' : msd})
    nest.SetKernelStatus({'rng_seeds' : range(msd+Params['threads']+1, msd+2*Params['threads']+1)})


    import importlib
    network = importlib.import_module(Params['network'])
    reload(network)
    models, layers, conns  = network.get_Network(Params)
    #import network_full_keiko
    #reload(network_full_keiko)
    # models, layers, conns  = network_full_keiko.get_Network(Params)

    # Create models
    for m in models:
            nest.CopyModel(m[0], m[1], m[2])

    # Create layers, store layer info in Python variable
    for l in layers:
            exec '%s = tp.CreateLayer(l[1])' % l[0]

    # Create connections, need to insert variable names
    for c in conns:
            eval('tp.ConnectLayers(%s,%s,c[2])' % (c[0], c[1]))


    # Prepare for file IO
    import glob
    # --- Set folder information
    data_folder = Params['data_folder']
    if not os.path.isdir(data_folder):
        os.makedirs(data_folder)

    # --- To save spike data, set pairs of population id and its name
    population_name = [ {'population': Retina_layer, 'name': 'Retina'},
                        {'population': Vp_vertical, 'name': 'Vp_v'},
                        {'population': Vp_horizontal, 'name': 'Vp_h'},
                        {'population': Rp_layer, 'name': 'Rp'},
                        {'population': Tp_layer, 'name': 'Tp'},
                        {'population': Vs_vertical, 'name': 'Vs_v'},
                        {'population': Vs_horizontal, 'name': 'Vs_h'}]


    if Params.has_key('load_connections_from_file') and Params['load_connections_from_file']:

        # Preparation
        scramble_populations = [(Vp_vertical, 'Vp_vertical'),
                                (Vp_horizontal, 'Vp_horizontal')]
        scramble_layers = ['L23_exc',
                           'L23_inh',
                           'L4_exc',
                           'L4_inh',
                           'L56_exc',
                           'L56_inh']
        #scramble_layers = ['L4_exc']

        # Get min &max index of each layer
        h_min_idx = {}
        h_max_idx = {}
        v_min_idx = {}
        v_max_idx = {}
        target_neurons = []
        for tmp_model in scramble_layers:
            tmp_h = nest.GetLeaves(Vp_horizontal, properties={'model': tmp_model}, local_only=True)[0]
            tmp_v = nest.GetLeaves(Vp_vertical, properties={'model': tmp_model}, local_only=True)[0]
            h_min_idx[tmp_model] = min(tmp_h)
            h_max_idx[tmp_model] = max(tmp_h)
            v_min_idx[tmp_model] = min(tmp_v)
            v_max_idx[tmp_model] = max(tmp_v)
            target_neurons = target_neurons + range(h_min_idx[tmp_model], h_max_idx[tmp_model]+1) + range(v_min_idx[tmp_model], v_max_idx[tmp_model]+1)

        # Save intact network information
        for p in range(0, len(population_name), 1):

            population = population_name[p]['population']
            p_name = population_name[p]['name']
            filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '_intact.dat'
            filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '_intact.dat'
            filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '_intact.dat'
            filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '_intact.dat'
            tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA)
            tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA)
            tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA)
            tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB)

        # Reset network
        nest.ResetNetwork()

        '''
        # The following code works, but takes time longer

        # Get the list of connection_file
        file_list = glob.glob(data_folder+'connection_*_intact.dat')

        # Remove a file if the size is zero
        remove_idx = []
        for file_idx in range(0,len(file_list)):
            intact_filename = file_list[file_idx]
            fsize=os.path.getsize(intact_filename)
            if fsize == 0:
                remove_idx = remove_idx + [file_idx]

        remove_idx.sort()
        remove_idx.reverse()
        for i in remove_idx:
            del file_list[i]
        '''

        # TODO : put GABA_A, GABA_B and NMDA connection files
        file_list = []
        file_list.append({'filename': data_folder + 'connection_Vp_h_AMPA_syn_intact.dat',
                           'synapse': 'AMPA'})
        file_list.append({'filename': data_folder + 'connection_Vp_v_AMPA_syn_intact.dat',
                           'synapse': 'AMPA'})


        # Do the following procedure for all connection files
        for file_idx in range(0,len(file_list)):

            # Set filenames
            intact_filename = file_list[file_idx]['filename']
            receptors = nest.GetDefaults('ht_neuron')['receptor_types']
            syn_model = receptors[ file_list[file_idx]['synapse'] ]

            scrambled_filename = intact_filename.replace('intact', 'scrambled')
            print(intact_filename)

            # Get original(intact) connectivity data
            src_network = np.loadtxt(open(intact_filename,'rb'))
            np_pre = src_network[:, 0].astype(int)
            np_post = src_network[:, 1].astype(int)
            np_w = src_network[:, 2]
            np_d = src_network[:, 3]

            if Params['scrambled']:

                # Preserve the original structure if
                # -- pre neruons are not in target populations (i.e. scramble_layers)
                # -- OR
                # -- post neurons are not in target populations(i.e. scramble_layers)
                preserved_rows = np.where( ~np.in1d(np_pre,target_neurons) | ~np.in1d(np_post,target_neurons) )[0]
                preserved_pre = np_pre[preserved_rows]
                preserved_post = np_post[preserved_rows]
                preserved_w = np_w[preserved_rows]
                preserved_d = np_d[preserved_rows]

                # If len(preserved_rows)==len(np_pre), that means all neurons do not belong to scramble target areas.
                # If len(preserved_rows) < len(np_pre), that means there are some neurons which need to be scrambled.
                if len(preserved_rows) > len(np_pre):
                    print('ERROR: preserved_rows should not be larger than np_pre')

                elif len(preserved_rows) == len(np_pre):
                    scrambled_pre = preserved_pre.tolist()
                    scrambled_post = preserved_post.tolist()
                    scrambled_w = preserved_w.tolist()
                    scrambled_d = preserved_d.tolist()

                else:  # --- len(preserved_rows) < len(np_pre)

                    scrambled_pre = []
                    scrambled_post = []
                    scrambled_w = []
                    scrambled_d = []

                    for tmp_model_pre in scramble_layers:

                        for tmp_model_post in scramble_layers:

                            # Get row index such that
                            # --- pre_neuron is in "tmp_model_pre"
                            # --- AND
                            # --- post_neuron is in "tmp_model_post"
                            bool_pre_h = np.in1d(np_pre, range(h_min_idx[tmp_model_pre], h_max_idx[tmp_model_pre]+1))
                            bool_pre_v = np.in1d(np_pre, range(v_min_idx[tmp_model_pre], v_max_idx[tmp_model_pre]+1))
                            bool_post_h = np.in1d(np_post, range(h_min_idx[tmp_model_post], h_max_idx[tmp_model_post]+1))
                            bool_post_v = np.in1d(np_post, range(v_min_idx[tmp_model_post], v_max_idx[tmp_model_post]+1))

                            tmp_rows_pre_h = np.where(bool_pre_h & (bool_post_h|bool_post_v))[0]
                            tmp_rows_pre_v = np.where(bool_pre_v & (bool_post_h|bool_post_v))[0]

                            # Get connectivity data such that pre neuron is in "tmp_model_pre"
                            # --- pre, w and d information should be kept.
                            # --- post index should be scrambled.
                            tmp_pre = np_pre[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist()
                            tmp_w = np_w[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist()
                            tmp_d = np_d[np.append(tmp_rows_pre_h, tmp_rows_pre_v)].tolist()
                            tmp_post = []

                            num_pre_h = len(tmp_rows_pre_h)
                            num_pre_v = len(tmp_rows_pre_v)

                            # --- pre : population = horizontal, model = "tmp_model_pre"
                            # --- post: population = horizontal(1/2)+vertical(1/2), model = "tmp_model_post"
                            if num_pre_h > 0:
                                # Assign the same number of connections for horizontal population and vertical population
                                num_scrambled_h = int(round(num_pre_h / 2))
                                num_scrambled_v = num_pre_h - num_scrambled_h

                                # Choose post neuron index randomly
                                scrambled_h_idx = rd.randint(low =h_min_idx[tmp_model_post],
                                                             high=h_max_idx[tmp_model_post],
                                                             size=[num_scrambled_h, 1])
                                scrambled_v_idx = rd.randint(low =v_min_idx[tmp_model_post],
                                                             high=v_max_idx[tmp_model_post],
                                                             size=[num_scrambled_v, 1])

                                # append scrambled post index
                                tmp_post = tmp_post + np.append(scrambled_h_idx, scrambled_v_idx).tolist()

                            # --- pre : population = vertical, model = "tmp_model_pre"
                            # --- post: population = horizontal(1/2)+vertical(1/2), model = "tmp_model_post"
                            if num_pre_v > 0:
                                # Assign the same number of connections for horizontal population and vertical population
                                num_scrambled_h = int(round(num_pre_v / 2))
                                num_scrambled_v = num_pre_v - num_scrambled_h

                                # Choose post neuron index randomly
                                scrambled_h_idx = rd.randint(low =h_min_idx[tmp_model_post],
                                                             high=h_max_idx[tmp_model_post],
                                                             size=[num_scrambled_h, 1])
                                scrambled_v_idx = rd.randint(low =v_min_idx[tmp_model_post],
                                                             high=v_max_idx[tmp_model_post],
                                                             size=[num_scrambled_v, 1])

                                # append scrambled post index
                                tmp_post = tmp_post + np.append(scrambled_h_idx, scrambled_v_idx).tolist()

                            scrambled_pre = scrambled_pre + tmp_pre
                            scrambled_post = scrambled_post + tmp_post
                            scrambled_w = scrambled_w + tmp_w
                            scrambled_d = scrambled_d +tmp_d

                    # append preserved connection data
                    scrambled_pre = scrambled_pre + preserved_pre.tolist()
                    scrambled_post = scrambled_post + preserved_post.tolist()
                    scrambled_w = scrambled_w + preserved_w.tolist()
                    scrambled_d = scrambled_d + preserved_d.tolist()

                    # Save scrambled_data
                    scrambled_all_data = np.zeros([len(scrambled_pre), 4])
                    scrambled_all_data[:, 0] = scrambled_pre
                    scrambled_all_data[:, 1] = scrambled_post
                    scrambled_all_data[:, 2] = scrambled_w
                    scrambled_all_data[:, 3] = scrambled_d
                    np.savetxt(scrambled_filename, scrambled_all_data, fmt='%.6f')

                # Connect
                con_dict = {'rule': 'one_to_one'}
                syn_dict = {"model": "ht_synapse",
                            'receptor_type': syn_model,
                            'weight': scrambled_w,
                            'delay': scrambled_d,
                            }
                nest.Connect(scrambled_pre, scrambled_post, con_dict, syn_dict)


            else:
                # just convert data type(ndarray->list) and connect based on the original data
                pre = np_pre.tolist()
                post = np_post.tolist()
                w = np_w.tolist()
                d = np_d.tolist()

                # Connect
                con_dict = {'rule': 'one_to_one'}
                syn_dict = {"model": "ht_synapse",
                            'receptor_type': 1,
                            'weight': w,
                            'delay': d,
                            }
                nest.Connect(pre, post, con_dict, syn_dict)

    # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"})
    #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"})

    # Get target nodes for the vertical population
    # tp_nodes = nest.GetLeaves(Tp_layer, local_only=True)[0]

    if Params.has_key('show_V4_num_conn_figure') and Params['show_V4_num_conn_figure']:

        horizontal_nodes = nest.GetLeaves(Vp_horizontal, properties={'model': 'L4_exc'}, local_only=True)[0]
        vertical_nodes = nest.GetLeaves(Vp_vertical, properties={'model': 'L4_exc'}, local_only=True)[0]

        n_conns_hor = []
        for (idx, horizontal_node) in enumerate(horizontal_nodes):
            tgt_map = []
            this_conns = nest.GetConnections([horizontal_node], horizontal_nodes, synapse_model='AMPA_syn')
            tgt_map.extend([conn[1] for conn in this_conns])
            n_conns_hor.append(len(tgt_map))

        plt.figure()
        plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30])))
        plt.title('# of connections Vp(h) L4pyr -> Vp(h) L4Pyr')

        n_conns_hor = []
        for (idx, horizontal_node) in enumerate(horizontal_nodes):
            tgt_map = []
            this_conns = nest.GetConnections([horizontal_node], vertical_nodes, synapse_model='AMPA_syn')
            tgt_map.extend([conn[1] for conn in this_conns])
            n_conns_hor.append(len(tgt_map))

            # nest.DisconnectOneToOne(tp_node, tgt_map[0], {"synapse_model": "AMPA_syn"})
            #nest.Disconnect([tp_node], tgt_map, 'one_to_one', {"synapse_model": "AMPA_syn"})

        plt.figure()
        plt.hist(n_conns_hor, range(0, max(n_conns_hor + [30])))
        plt.title('# of connections Vp(h) L4pyr -> Vp(v) L4Pyr')

        n_conns_ver = []
        for (idx, vertical_node) in enumerate(vertical_nodes):
            tgt_map = []
            this_conns = nest.GetConnections([vertical_node], vertical_nodes, synapse_model='AMPA_syn')
            tgt_map.extend([conn[1] for conn in this_conns])
            n_conns_ver.append(len(tgt_map))

        plt.figure()
        plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30])))
        plt.title('# of connections Vp(v) L4pyr -> Vp(v) L4Pyr')

        n_conns_ver = []
        for (idx, vertical_node) in enumerate(vertical_nodes):
            tgt_map = []
            this_conns = nest.GetConnections([vertical_node], horizontal_nodes, synapse_model='AMPA_syn')
            tgt_map.extend([conn[1] for conn in this_conns])
            n_conns_ver.append(len(tgt_map))

        plt.figure()
        plt.hist(n_conns_ver, range(0, max(n_conns_ver + [30])))
        plt.title('# of connections Vp(v) L4pyr -> Vp(h) L4Pyr')

        plt.show()

    # Check connections

    # Connections from Retina to TpRelay
    # tp.PlotTargets(tp.FindCenterElement(Retina_layer), Tp_layer)

    if Params.has_key('show_V4_connectivity_figure') and Params['show_V4_connectivity_figure']:

        Vp_hor_gids = tp.GetElement(Vp_horizontal, [0,0])
        n_Vp_hor = len(Vp_hor_gids)

        f = []
        for idx in range(n_Vp_hor):
            f.append(plt.figure())

        positions = range(0,41,10)
        positions[-1] -= 1
        for xi in range(len(positions)):
            for yi in range(len(positions)):
                print("Position [%d,%d] : %d" %(xi,yi,yi*(len(positions))+xi+1))
                x = positions[xi]
                y = positions[yi]
                Vp_hor_gids = tp.GetElement(Vp_horizontal, [x,y])
                Vp_hor_status = nest.GetStatus(Vp_hor_gids)
                for (idx, n) in enumerate(Vp_hor_status):
                    if n['Tau_theta'] == 2.0:
                        print idx
                        try:
                            f[idx].add_subplot(len(positions), len(positions), yi*(len(positions))+xi+1)
                            tp.PlotTargets([Vp_hor_gids[idx]], Vp_horizontal, 'L4_exc', 'AMPA_syn', f[idx])
                        except:
                            print('%i bad' % Vp_hor_gids[idx])
        plt.show()

    # Connections from TpRelay to L4pyr in Vp (horizontally tuned)
    #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_h, 'L4pyr', 'AMPA')
    #pylab.title('Connections TpRelay -> Vp(h) L4pyr')
    #pylab.show()

    # Connections from TpRelay to L4pyr in Vp (vertically tuned)
    #topo.PlotTargets(topo.FindCenterElement(Tp), Vp_v, 'L4pyr', 'AMPA')
    #pylab.title('Connections TpRelay -> Vp(v) L4pyr')
    #pylab.show()

    '''
    # pablo
    # Create vertical grating
    for n in nest.GetLeaves(Retina_layer)[0]:
            retina_0 = (nest.GetLeaves(Retina_layer)[0])[0]
            col = (n-retina_0)/Params['Np']

            cells_per_degree = Params['Np']/Params['visSize']
            cells_per_cycle = cells_per_degree/Params['spatial_frequency']

            nest.SetStatus([n], { "phase": col * 360/(cells_per_cycle-1) })
    '''
    ### keiko
    if Params['lambda_dg'] >= 0:
        [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0],
                                                 Params["lambda_dg"],
                                                 Params["phi_dg"])})
        for n in nest.GetLeaves(Retina_layer)[0]]
    else:
        # Leonardo: Random retina input
        [nest.SetStatus([n], {"phase": phaseInit(tp.GetPosition([n])[0],
                                                 np.pi * np.random.rand(),
                                                 np.pi * np.random.rand())})
         for n in nest.GetLeaves(Retina_layer)[0]]


    # --------------------------------------------------------------------#
    # ---------- SET IB NEURONS ----------------------------------------- #
    # --------------------------------------------------------------------#

    # 30% of Cortex L56 excitatory neurons are intrinsically bursting(IB) neuron.
    # That is achieved by setting pacemaker current I_h.
    # So select 30% of L56_exc neuron, and change h_g_peak from 0.0 to 1.0.
    # (Other cortical neuron do not have I_h, thus h_g_peak=0.0)

    L56_vertical_idx = [nd for nd in nest.GetLeaves(Vp_vertical)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc']
    L56_horizontal_idx = [nd for nd in nest.GetLeaves(Vp_horizontal)[0] if nest.GetStatus([nd], 'model')[0]=='L56_exc']

    num_neuron = len(L56_vertical_idx)
    num_ib = int(num_neuron*0.3)

    ridx_vertical = np.random.randint(num_neuron, size=(1,num_ib))[0]
    ridx_horizontal = np.random.randint(num_neuron, size=(1,num_ib))[0]

    for i in range(1,num_ib,1):
        nest.SetStatus([L56_vertical_idx[ridx_vertical[i]]], {'h_g_peak': 1.0})
        nest.SetStatus([L56_horizontal_idx[ridx_horizontal[i]]], {'h_g_peak': 1.0})



    # initiate network activity
    #nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']})
    nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'rate': Params['ret_rate']})
    nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0})
    nest.Simulate(500.0)


    #! =================
    #! Recording devices
    #! =================

    nest.CopyModel('multimeter', 'RecordingNode',
            params = {'interval'   : Params['resolution'],
            #'record_from': ['V_m'],
            'record_from': ['V_m',
                            'I_syn_AMPA',
                            'I_syn_NMDA',
                            'I_syn_GABA_A',
                            'I_syn_GABA_B',
                            'g_AMPA',
                            'g_NMDA',
                            'g_GABAA',
                            'g_GABAB',
                            'I_NaP',
                            'I_KNa',
                            'I_T',
                            'I_h'],
            'record_to'  : ['memory'],
            'withgid'    : True,
            'withtime'   : True})

    recorders = []
    '''
    for population, model in [(Retina_layer, 'Retina'),
                              (Tp_layer  , 'Tp_exc'),
                              (Tp_layer  , 'Tp_inh'),
                              (Rp_layer  , 'Rp'),
                              (Vp_vertical, 'L23_exc'),
                              (Vp_horizontal, 'L23_exc'),
                              (Vp_vertical, 'L23_inh'),
                              (Vp_horizontal, 'L23_inh'),
                              (Vp_vertical, 'L4_exc'),
                              (Vp_horizontal, 'L4_exc'),
                              (Vp_vertical, 'L4_inh'),
                              (Vp_horizontal, 'L4_inh'),
                              (Vp_vertical, 'L56_exc'),
                              (Vp_horizontal, 'L56_exc'),
                              (Vp_vertical, 'L56_inh'),
                              (Vp_horizontal, 'L56_inh'),
                              (Vs_vertical, 'L23_exc'),
                              (Vs_horizontal, 'L23_exc'),
                              (Vs_vertical, 'L23_inh'),
                              (Vs_horizontal, 'L23_inh'),
                              (Vs_vertical, 'L4_exc'),
                              (Vs_horizontal, 'L4_exc'),
                              (Vs_vertical, 'L4_inh'),
                              (Vs_horizontal, 'L4_inh'),
                              (Vs_vertical, 'L56_exc'),
                              (Vs_horizontal, 'L56_exc'),
                              (Vs_vertical, 'L56_inh'),
                              (Vs_horizontal, 'L56_inh')]:
    '''
    for population, model in [(Retina_layer, 'Retina'),
                              (Tp_layer  , 'Tp_exc'),
                              (Tp_layer  , 'Tp_inh'),
                              (Vp_vertical, 'L4_exc'),
                              (Vp_vertical, 'L4_inh'),
                              (Vp_horizontal, 'L4_exc'),
                              (Vp_vertical, 'L23_exc'),
                              (Vp_horizontal, 'L23_exc'),
                              (Vp_vertical, 'L56_exc'),
                              (Rp_layer, 'Rp')]:
        rec = nest.Create('RecordingNode')
        recorders.append([rec,population,model])
        if (model=='Retina'):
            nest.SetStatus(rec,{'record_from': ['rate']})
        tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model]
        nest.Connect(rec, tgts)

    #! =================
    #! Spike detector
    #! =================
    detectors = []
    '''
    for population, model in [(Retina_layer, 'Retina'),
                              (Tp_layer  , 'Tp_exc'),
                              (Tp_layer  , 'Tp_inh'),
                              (Rp_layer  , 'Rp'),
                              (Vp_vertical, 'L23_exc'),
                              (Vp_horizontal, 'L23_exc'),
                              (Vp_vertical, 'L23_inh'),
                              (Vp_horizontal, 'L23_inh'),
                              (Vp_vertical, 'L4_exc'),
                              (Vp_horizontal, 'L4_exc'),
                              (Vp_vertical, 'L4_inh'),
                              (Vp_horizontal, 'L4_inh'),
                              (Vp_vertical, 'L56_exc'),
                              (Vp_horizontal, 'L56_exc'),
                              (Vp_vertical, 'L56_inh'),
                              (Vp_horizontal, 'L56_inh'),
                              (Vs_vertical, 'L23_exc'),
                              (Vs_horizontal, 'L23_exc'),
                              (Vs_vertical, 'L23_inh'),
                              (Vs_horizontal, 'L23_inh'),
                              (Vs_vertical, 'L4_exc'),
                              (Vs_horizontal, 'L4_exc'),
                              (Vs_vertical, 'L4_inh'),
                              (Vs_horizontal, 'L4_inh'),
                              (Vs_vertical, 'L56_exc'),
                              (Vs_horizontal, 'L56_exc'),
                              (Vs_vertical, 'L56_inh'),
                              (Vs_horizontal, 'L56_inh')]:
        '''

    for population, model in [(Retina_layer, 'Retina'),
                              (Tp_layer  , 'Tp_exc'),
                              (Tp_layer  , 'Tp_inh'),
                              (Vp_vertical, 'L4_exc'),
                              (Vp_horizontal, 'L4_exc')]:
        rec = nest.Create('spike_detector', params={"withgid": True, "withtime": True})
        #rec = nest.Create('spike_detector')
        detectors.append([rec,population,model])
        tgts = [nd for nd in nest.GetLeaves(population)[0] if nest.GetStatus([nd], 'model')[0]==model]
        if model == 'Retina':
            for t in tgts:
                try:
                    nest.Connect([t], rec)
                    print('connected %d' % t)
                except:
                    print('%d did not work' % t)
        else:
            nest.Connect(tgts, rec)


    #! ====================
    #! Simulation
    #! ====================
    '''
    # change gKL to 0.8 in all populations (necessary to get a little stronger evoked response)
    for l in layers:
            sim_elements = l[1]['elements']
            for m in np.arange(0,np.size(sim_elements),1):

                    if(np.size(sim_elements)==1):
                        sim_model = sim_elements
                    else:
                        sim_model = sim_elements[m]

                    exec("la = %s" % l[0])
                    pop = [nd for nd in nest.GetLeaves(la)[0] if nest.GetStatus([nd], 'model')[0]==sim_model]
                    if (l[0]!='Retina_layer'):
                            for cell in pop:
                                    nest.SetStatus([cell], {'g_KL':0.8})
    '''
    # Simulate
    for t in Params['intervals']:

        #if (t == 250.0):  # Stimulus ON
        #    # if (t == 1500.0):  # Stimulus ON
        #    nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 45.0})
        #else:  # Stimulus OFF
        #    nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0})

        if Params['input_flag']==True:
            nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': Params['ret_rate']})
        else:
            nest.SetStatus(nest.GetLeaves(Retina_layer)[0], {'amplitude': 0.0})

        nest.Simulate(t)

    '''
    data_folder = Params['data_folder']
    if not os.path.isdir(data_folder):
        os.makedirs(data_folder)
    '''

    #! ====================
    #! Plot Results
    #! ====================

    if Params.has_key('show_main_figure') and Params['show_main_figure']:
        print "plotting..."

        rows = 9
        cols = 2

        fig = plt.figure(num=None, figsize=(13, 24), dpi=100)
        fig.subplots_adjust(hspace=0.4)

        # Plot A: membrane potential rasters

        recorded_models = [(Retina_layer,'Retina'),
                            (Vp_vertical,'L23_exc'),
                            (Vp_vertical,'L4_exc'),
                            (Vp_vertical,'L56_exc'),
                            (Rp_layer,'Rp'),
                            (Tp_layer,'Tp_exc')]

        #plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0)
        plotting.potential_raster(fig,recorders,recorded_models,0,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0)
        #starting_neuron = 800+1
        #plotting.potential_raster(fig,recorders,recorded_models,starting_neuron,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,0)

        plt.title('Evoked')

        # Plot B: individual intracellular traces

        recorded_models =[(Vp_vertical,'L4_exc'),
                          (Vp_vertical,'L4_inh')]

        #plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6) #original
        # keiko
        total_time = 0.0
        for t in Params['intervals']:
            total_time += t

        #draw_neuron = (Params['Np']*Params['Np']/2)
        #plotting.intracellular_potentials(fig, recorders, recorded_models, draw_neuron, rows, cols, 6, total_time)
        plotting.intracellular_potentials(fig, recorders, recorded_models, 21, rows, cols, 6, total_time)
        #plotting.intracellular_potentials(fig, recorders, recorded_models, 820, rows, cols, 6, total_time)

        # Plot C: topographical activity of the vertical and horizontal layers


        if Params.has_key('start_membrane_potential') and  Params.has_key('end_membrane_potential'):
            start = Params['start_membrane_potential']
            stop = Params['end_membrane_potential']
        else:
            start = 130.0
            stop = 140.0

        recorded_models = [(Vp_vertical,'L23_exc')]
        labels = ["Vertical"]
        plotting.topographic_representation(fig,
                                            recorders,
                                            recorded_models,
                                            labels,
                                            Params['Np'],
                                            np.sum(Params['intervals']),
                                            Params['resolution'],
                                            rows,
                                            cols,
                                            start,
                                            stop,
                                            8,
                                            0)

        recorded_models = [(Vp_horizontal,'L23_exc')]

        labels = ["Horizontal"]

        plotting.topographic_representation(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'],rows,cols,start,stop,8,1)

        fig.savefig(data_folder + 'figure3.png', dpi=100)
        plt.show()


    # Plot D: movie

    #labels = ["Evoked_Vp_L23_Vertical","Evoked_Vp_L23_Horizontal"]
    #recorded_models = [(Vp_vertical,'L23_exc'),(Vp_horizontal,'L23_exc')]
    #plotting.makeMovie(fig,recorders,recorded_models,labels,Params['Np'],np.sum(Params['intervals']),Params['resolution'])


    #! ====================
    #! Save Results
    #! ====================

    print('save recorders data')

    for rec, population, model in recorders:

        # Get name of population
        for p in range(0, len(population_name), 1):
            if population_name[p]['population'] == population:
                p_name = population_name[p]['name']

        data = nest.GetStatus(rec)[0]['events']

        if model == 'Retina':
            scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat',
                             mdict={'senders': data['senders'],
                                    'rate': data['rate']})
        else:
            scipy.io.savemat(data_folder + '/recorder_' + p_name + '_' + model + '.mat',
                             mdict={'senders': data['senders'],
                                    'V_m': data['V_m'],
                                    'I_syn_AMPA': data['I_syn_AMPA'],
                                    'I_syn_NMDA': data['I_syn_NMDA'],
                                    'I_syn_GABA_A': data['I_syn_GABA_A'],
                                    'I_syn_GABA_B': data['I_syn_GABA_B'],
                                    'g_AMPA': data['g_AMPA'],
                                    'g_NMDA': data['g_NMDA'],
                                    'g_GABAA': data['g_GABAA'],
                                    'g_GABAB': data['g_GABAB']} )



    print('save raster images')
    plt.close()
    for rec, population, model in detectors:
        spikes = nest.GetStatus(rec, 'events')[0]

        # Get name of population
        for p in range(0, len(population_name), 1):
            if population_name[p]['population'] == population:
                p_name = population_name[p]['name']

        if len(nest.GetStatus(rec)[0]['events']['senders']) > 3:
            raster = raster_plot.from_device(rec, hist=True)
            pylab.title( p_name + '_' + model )
            f = raster[0].figure
            f.set_size_inches(15, 9)
            f.savefig(data_folder + 'spikes_' + p_name + '_' + model + '.png', dpi=100)
            plt.close()

            # Set filename and save spike data
            filename = data_folder + 'spike_' + p_name + '_' + model + '.pickle'
            pickle.dump(spikes, open(filename, 'w'))
            scipy.io.savemat(data_folder + '/spike_' + p_name + '_' + model + '.mat', mdict={'senders': spikes['senders'], 'times': spikes['times']})

            #filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat'
            #tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA)

            '''
            filename_AMPA = data_folder + 'connection_' + p_name + '_AMPA_syn' + '.dat'
            filename_NMDA = data_folder + 'connection_' + p_name + '_NMDA_syn' + '.dat'
            filename_GABAA = data_folder + 'connection_' + p_name + '_GABA_A_syn' + '.dat'
            filename_GABAB = data_folder + 'connection_' + p_name + '_GABA_B_syn' + '.dat'
            tp.DumpLayerConnections(population, 'AMPA_syn', filename_AMPA)
            tp.DumpLayerConnections(population, 'NMDA_syn', filename_NMDA)
            tp.DumpLayerConnections(population, 'GABA_A_syn', filename_GABAA)
            tp.DumpLayerConnections(population, 'GABA_B_syn', filename_GABAB)
            '''
    '''
    for p in range(0, len(population_name), 1):

        population = population_name[p]['population']
        p_name = population_name[p]['name']
        filename_nodes = data_folder + '/gid_' + p_name + '.dat'

        tp.DumpLayerNodes(population, filename_nodes)
    '''

    network_script = Params['network'] + '.py'
    shutil.copy2(network_script, Params['data_folder'] + network_script)

    print('end')