Esempio n. 1
0
 def test_parameter_arithmetic(self):
     """Test parameter arithmetic"""
     p1 = nest.CreateParameter('constant', {'value': 3.0})
     p2 = nest.CreateParameter('constant', {'value': 2.0})
     self.assertEqual((p1 + p2).GetValue(), 5.0)
     self.assertEqual((p1 - p2).GetValue(), 1.0)
     self.assertEqual((p1 / p2).GetValue(), 1.5)
     self.assertEqual((p1 * p2).GetValue(), 6.0)
Esempio n. 2
0
    def test_power_parameter(self):
        """Test parameter raised to the power of an exponent"""
        # Negative values
        for value in np.linspace(-5.0, 0.0, 15):
            p = nest.CreateParameter('constant', {'value': value})
            # Exponents must be integers
            for exponent in range(-15, 15):
                self.assertEqual((p**exponent).GetValue(), value**exponent)

        # Positive values
        for value in np.linspace(0.0, 5.0, 15):
            p = nest.CreateParameter('constant', {'value': value})
            for exponent in np.linspace(-5.0, 5.0, 15):
                self.assertEqual((p**exponent).GetValue(), value**exponent)
Esempio n. 3
0
 def test_max_parameter(self):
     """Test max of parameter"""
     reference_value = 2.0
     for value in np.linspace(-5.0, 5.0, 21):
         p = nest.CreateParameter('constant', {'value': value})
         self.assertEqual(
             nest.math.max(p, reference_value).GetValue(),
             np.maximum(value, reference_value))
Esempio n. 4
0
    def test_parameter_comparison(self):
        """Test comparison of parameters"""
        p1 = nest.CreateParameter('constant', {'value': 1.0})
        p2 = nest.CreateParameter('constant', {'value': 2.0})

        self.assertTrue((p1 < p2).GetValue())
        self.assertTrue((p1 <= p2).GetValue())
        self.assertTrue((p1 == p2 - p1).GetValue())
        self.assertTrue((p1 != p2).GetValue())
        self.assertTrue((p2 >= p1).GetValue())
        self.assertTrue((p2 > p1).GetValue())

        self.assertFalse((p2 < p1).GetValue())
        self.assertFalse((p2 <= p1).GetValue())
        self.assertFalse((p1 == p2).GetValue())
        self.assertFalse((p1 != p2 - p1).GetValue())
        self.assertFalse((p1 >= p2).GetValue())
        self.assertFalse((p1 > p2).GetValue())
Esempio n. 5
0
 def test_syn_spec_parameter(self):
     """Test parameter in syn_spec"""
     n = nest.Create('iaf_psc_alpha', 2)
     p = nest.CreateParameter('constant', {'value': 2.0})
     nest.Connect(n, n, syn_spec={'weight': p})
     conns = nest.GetConnections()
     weights = conns.get('weight')
     for w in weights:
         self.assertEqual(w, 2.0)
Esempio n. 6
0
 def test_conn_spec_parameter(self):
     """Test parameter in conn_spec"""
     p = nest.CreateParameter('constant', {'value': 1.0})
     p2 = nest.CreateParameter('constant', {'value': 2.0})
     rule_specs = {
         'pairwise_bernoulli': [
             ['p', p],
         ],
         'fixed_outdegree': [
             ['outdegree', p2],
         ],
         'fixed_indegree': [
             ['indegree', p2],
         ]
     }
     for rule, specs_list in rule_specs.items():
         for specs in specs_list:
             nest.ResetKernel()
             n = nest.Create('iaf_psc_alpha', 2)
             param, p = specs
             nest.Connect(n, n, conn_spec={'rule': rule, param: p})
             self.assertEqual(nest.num_connections, 4, f'Error with {rule}')
Esempio n. 7
0
    def test_parameter_is_spatial(self):
        """Test parameter is_spatial function"""
        constant_parameter = nest.CreateParameter('constant', {'value': 1.0})
        spatial_parameters = [
            nest.spatial.pos.x, nest.spatial.distance, nest.spatial.distance.x
        ]
        non_spatial_parameters = [
            constant_parameter,
            nest.random.uniform(),
            nest.random.normal(),
            nest.random.lognormal(),
            nest.random.exponential()
        ]

        def apply_assert(assert_func, p):
            assert_func(p.is_spatial())
            assert_func(nest.math.cos(p).is_spatial())
            assert_func(nest.math.sin(p).is_spatial())
            assert_func(nest.math.exp(p).is_spatial())
            assert_func(nest.math.max(p, 1.0).is_spatial())
            assert_func(nest.math.min(p, 1.0).is_spatial())
            assert_func(nest.math.redraw(p, 0.0, 1.0).is_spatial())
            assert_func((p + constant_parameter).is_spatial())
            assert_func((constant_parameter + p).is_spatial())
            assert_func(
                nest.logic.conditional(p, constant_parameter,
                                       constant_parameter).is_spatial())
            assert_func(
                nest.logic.conditional(constant_parameter, p,
                                       constant_parameter).is_spatial())
            assert_func(
                nest.logic.conditional(constant_parameter, constant_parameter,
                                       p).is_spatial())

        for p in spatial_parameters:
            apply_assert(self.assertTrue, p)
        for p in non_spatial_parameters:
            apply_assert(self.assertFalse, p)
Esempio n. 8
0
    def __init__(self,
                 seed,
                 dim,
                 L,
                 N,
                 spatial_distribution,
                 distribution_params=None,
                 open_bc=False,
                 x0=0.,
                 y0=0.):
        """
        Construct a test object.

        Parameters
        ----------
            seed                  : Random seed for test
            dim                   : Dimensions (2 or 3)
            L                     : Side length of area / volume.
            N                     : Number of nodes.
            spatial_distribution  : Name of spatial distribution to use.
            distribution_params   : Dict with params to update.
            open_bc               : Network with open boundary conditions
            x0, y0                : Location of source neuron; open_bc only

        Note
        ----
        For each new distribution to be added, the following needs to be
        defined:

        self._<distribution>        : function implementing distribution function
        spatial_distributions entry : mapping distribution name to distribution function
        default_params              : default set of parameters for distribution
        """

        if dim != 2 and open_bc:
            raise ValueError("open_bc only supported for 2D")

        self._seed = seed
        self._dimensions = dim
        self._L = float(L)
        self._N = N
        self._open_bc = open_bc
        self._x_d, self._y_d = x0, y0

        if (self._dimensions == 2):
            if (self._open_bc):
                self._max_dist = self._L * math.sqrt(2)
                self._pdf = self._pdf_2d_obc
            else:
                self._max_dist = self._L / math.sqrt(2)
                self._pdf = self._pdf_2d
        elif (self._dimensions == 3):
            self._max_dist = self._L * math.sqrt(3) / 2
            self._pdf = self._pdf_3d

        self._target_dists = None
        self._all_dists = None

        spatial_distributions = {
            'constant': self._constant,
            'linear': self._linear,
            'exponential': self._exponential,
            'gaussian': self._gauss,
            'gamma': self._gamma
        }
        self._distribution = spatial_distributions[spatial_distribution]

        default_params = {
            'constant': 1.,
            'linear': {
                'a': -math.sqrt(2) / self._L,
                'c': 1.0
            },
            'exponential': {
                'a': 1.0,
                'c': 0.0,
                'tau': -self._L / (math.sqrt(2) * math.log((.1 - 0) / 1))
            },
            'gaussian': {
                'p_center': 1.,
                'sigma': self._L / 4.,
                'mean': 0.,
                'c': 0.
            },
            'gamma': {
                'kappa': 3.,
                'theta': self._L / 4.
            }
        }
        self._params = default_params[spatial_distribution]
        if distribution_params is not None:
            if spatial_distribution == 'constant':
                self._params = distribution_params
            else:
                self._params.update(distribution_params)

        # Pre-calculate constant variables for efficiency
        self._calculate_constants(spatial_distribution)

        if self._dimensions == 3:
            maskdict = {
                'box': {
                    'lower_left': [-self._L / 2.] * 3,
                    'upper_right': [self._L / 2.] * 3
                }
            }
        elif self._dimensions == 2 and not self._open_bc:
            maskdict = {
                'rectangular': {
                    'lower_left': [-self._L / 2.] * 2,
                    'upper_right': [self._L / 2.] * 2
                }
            }
        elif self._dimensions == 2 and self._open_bc:
            maskdict = {
                'rectangular': {
                    'lower_left': [-self._L] * 2,
                    'upper_right': [self._L] * 2
                }
            }

        if spatial_distribution == 'constant':
            distribution = nest.CreateParameter('constant',
                                                {'value': self._params})
        elif spatial_distribution == 'linear':
            distribution = self._params[
                'c'] + self._params['a'] * nest.spatial.distance
        elif spatial_distribution == 'exponential':
            distribution = self._params[
                'c'] + nest.spatial_distributions.exponential(
                    nest.spatial.distance, beta=self._params['tau'])
        elif spatial_distribution == 'gaussian':
            distribution = self._params[
                'c'] + nest.spatial_distributions.gaussian(
                    nest.spatial.distance,
                    mean=self._params['mean'],
                    std=self._params['sigma'])
        elif spatial_distribution == 'gamma':
            distribution = nest.spatial_distributions.gamma(
                nest.spatial.distance,
                kappa=self._params['kappa'],
                theta=self._params['theta'])

        self._conndict = {
            'rule': 'pairwise_bernoulli',
            'p': distribution,
            'mask': maskdict
        }
    def __init__(self,
                 seed,
                 dim,
                 L,
                 N,
                 kernel_name,
                 kernel_params=None,
                 open_bc=False,
                 x0=0.,
                 y0=0.):
        '''
        Construct a test object.

        Parameters
        ----------
            seed         : Random seed for test
            dim          : Dimensions (2 or 3)
            L            : Side length of area / volume.
            N            : Number of nodes.
            kernel_name  : Name of kernel to use.
            kernel_params: Dict with params to update.
            open_bc      : Network with open boundary conditions
            x0, y0       : Location of source neuron; open_bc only

        Note
        ----
        For each new kernel to be added, the following needs to be
        defined:

        self._<kernel>  : lambda-function implementing kernel function
        kernels entry   : mapping kernel name to kernel function
        default_params  : default set of parameters for kernel
        '''

        if dim != 2 and open_bc:
            raise ValueError("open_bc only supported for 2D")

        self._seed = seed
        self._dimensions = dim
        self._L = float(L)
        self._N = N
        self._open_bc = open_bc
        self._x_d, self._y_d = x0, y0

        if (self._dimensions == 2):
            if (self._open_bc):
                self._max_dist = self._L * math.sqrt(2)
            else:
                self._max_dist = self._L / math.sqrt(2)
        elif (self._dimensions == 3):
            self._max_dist = self._L * math.sqrt(3) / 2

        self._target_dists = None
        self._all_dists = None

        # kernel functions
        self._constant = lambda D: self._params
        self._linear = lambda D: self._params['c'] + self._params['a'] * D
        self._exponential = lambda D: (self._params['c'] + self._params['a'] *
                                       math.exp(-D / self._params['tau']))
        self._gauss = lambda D: (self._params['c'] + self._params['p_center'] *
                                 math.exp(-(D - self._params['mean'])**2 /
                                          (2. * self._params['sigma']**2)))
        self._gamma = lambda D: (D**(self._params['kappa'] - 1) / (
            self._params['theta']**self._params['kappa'] * scipy.special.gamma(
                self._params['kappa'])) * math.exp(-D / self._params['theta']))

        kernels = {
            'constant': self._constant,
            'linear': self._linear,
            'exponential': self._exponential,
            'gaussian': self._gauss,
            'gamma': self._gamma
        }
        self._kernel = kernels[kernel_name]

        default_params = {
            'constant': 1.,
            'linear': {
                'a': -math.sqrt(2) / self._L,
                'c': 1.0
            },
            'exponential': {
                'a': 1.0,
                'c': 0.0,
                'tau': -self._L / (math.sqrt(2) * math.log((.1 - 0) / 1))
            },
            'gaussian': {
                'p_center': 1.,
                'sigma': self._L / 4.,
                'mean': 0.,
                'c': 0.
            },
            'gamma': {
                'kappa': 3.,
                'theta': self._L / 4.
            }
        }
        self._params = default_params[kernel_name]
        if kernel_params is not None:
            if kernel_name == 'constant':
                self._params = kernel_params
            else:
                self._params.update(kernel_params)

        if self._dimensions == 3:
            maskdict = {
                'box': {
                    'lower_left': [-self._L / 2.] * 3,
                    'upper_right': [self._L / 2.] * 3
                }
            }
        elif self._dimensions == 2 and not self._open_bc:
            maskdict = {
                'rectangular': {
                    'lower_left': [-self._L / 2.] * 2,
                    'upper_right': [self._L / 2.] * 2
                }
            }
        elif self._dimensions == 2 and self._open_bc:
            maskdict = {
                'rectangular': {
                    'lower_left': [-self._L] * 2,
                    'upper_right': [self._L] * 2
                }
            }

        if kernel_name == 'constant':
            kernel = nest.CreateParameter('constant', {'value': self._params})
        elif kernel_name == 'linear':
            kernel = (self._params['c'] +
                      self._params['a'] * nest.spatial.distance)
        elif kernel_name == 'exponential':
            kernel = self._params['c'] + nest.spatial_distributions.exponential(
                nest.spatial.distance, beta=self._params['tau'])
        elif kernel_name == 'gaussian':
            kernel = self._params['c'] + nest.spatial_distributions.gaussian(
                nest.spatial.distance,
                mean=self._params['mean'],
                std=self._params['sigma'])
        elif kernel_name == 'gamma':
            kernel = nest.spatial_distributions.gamma(
                nest.spatial.distance,
                kappa=self._params['kappa'],
                theta=self._params['theta'])

        self._conndict = {
            'rule': 'pairwise_bernoulli',
            'p': kernel,
            'mask': maskdict
        }
Esempio n. 10
0
 def test_sin_parameter(self):
     """Test sine of a parameter"""
     for value in np.linspace(-5.0, 5.0, 15):
         p = nest.CreateParameter('constant', {'value': value})
         self.assertAlmostEqual(nest.math.sin(p).GetValue(), np.sin(value))
Esempio n. 11
0
 def test_exp_parameter(self):
     """Test exponential of a parameter"""
     for value in np.linspace(-5.0, 5.0, 15):
         p = nest.CreateParameter('constant', {'value': value})
         self.assertEqual(nest.math.exp(p).GetValue(), np.exp(value))