Esempio n. 1
0
 def setUp1(self, nproc=1, multiproc=True):
     self.ndim = 3
     self.harmonic = Harmonic(self.ndim)
     self.nreplicas = 10
     self.stepsize = 0.1
     self.nproc = nproc
     
     self.mc_runner = MonteCarloWalker(self.harmonic, mciter=40)
     
     if multiproc == False:
         hostname=socket.gethostname()
         host = Pyro4.socketutil.getIpAddress(hostname, workaround127=True)
         self.dispatcher_URI = "PYRO:"+"test@"+host+":9090"
     else:
         self.dispatcher_URI = None
     
     replicas = []
     for i in xrange(self.nreplicas):
         x = self.harmonic.get_random_configuration()
         replicas.append(Replica(x, self.harmonic.get_energy(x)))
     self.ns = NestedSampling(replicas, self.mc_runner, 
                              stepsize=0.1, nproc=nproc, verbose=False, dispatcher_URI=self.dispatcher_URI)
     
     self.Emax0 = self.ns.replicas[-1].energy
     
     self.niter = 100
     for i in xrange(self.niter):
         self.ns.one_iteration()
     self.Emax = self.ns.replicas[-1].energy
     self.Emin = self.ns.replicas[0].energy
Esempio n. 2
0
 def get_mc_walker(self, mciter):
     if _use_cython:
         return LJMonteCarloCompiled(self.radius, mciter=mciter)
     else:
         pot = self.get_potential()
         pot.get_energy = pot.getEnergy
         return MonteCarloWalker(pot,
                                 accept_test=self.get_config_tests()[0],
                                 mciter=mciter)
Esempio n. 3
0
    def prepare(self):
        self.ndim = 6
        self.harmonic = Harmonic(self.ndim)
        self.x0 = np.zeros(self.ndim)
        self.energy = self.harmonic.get_energy(self.x0)

        self.mciter = 100
        self.mcwalker = MonteCarloWalker(self.harmonic, mciter=self.mciter)
        self.stepsize = 0.1
        self.Emax = 10.
        self.seed = None
def main():
    parser = argparse.ArgumentParser(
        description="must pass the URI of the dispatcher")
    parser.add_argument("ndim", type=int, help="number of dimensions")
    parser.add_argument("dispatcher_URI", type=str, help="name for the worker")
    parser.add_argument("-n",
                        "--mciter",
                        type=int,
                        default=1000,
                        help="number of steps in the monte carlo walk")
    parser.add_argument("--radius",
                        type=float,
                        default=2.5,
                        help="maintain atoms in a sphere of this radius")
    parser.add_argument("--worker-name",
                        type=str,
                        help="name for the worker",
                        default=None)
    parser.add_argument(
        "--host",
        type=str,
        help="address of the host (node on which the worker is started)",
        default=None)
    parser.add_argument("--port",
                        type=int,
                        help="port number on which the worker is started)",
                        default=0)
    parser.add_argument("--server-type",
                        type=str,
                        help="multiplex or threaded",
                        default="multiplex")
    args = parser.parse_args()

    #===========================================================================
    # MUST SET THE SYSTEM THEN GET THE RUNNER TO PASS
    #===========================================================================
    system = Harmonic(args.ndim)
    mc_runner = MonteCarloWalker(system, mciter=args.mciter)

    dispatcher_URI = args.dispatcher_URI
    worker_name = args.worker_name
    host = args.host
    port = args.port
    server_type = args.server_type

    worker = pyro_worker(dispatcher_URI,
                         mc_runner,
                         worker_name=worker_name,
                         host=host,
                         port=port,
                         server_type=server_type)
    worker._start_worker()
Esempio n. 5
0
def do_nested_sampling(nreplicas=10, niter=200, mciter=1000, stepsize=.8, estop=-.9,
                       x0=[1,1], r0=2,
                       xlim=None, ylim=None, circle=False
                       ):
    path = []
    def mc_record_position_event(coords=None, **kwargs):
        if len(path) == 0 or not np.all(path[-1] == coords):
            path.append(coords)

    p = Pot()
    print p.get_energy(np.array([1,2.]))
    mc_walker = MonteCarloWalker(p, mciter=mciter, events=[mc_record_position_event])
    
    # initialize the replicas with random positions
    replicas = []
    for i in xrange(nreplicas):
        # choose points uniformly in a circle
        if circle: 
            coords = vector_random_uniform_hypersphere(2) * r0 + x0
        else:
            coords = np.zeros(2)
            coords[0] = np.random.uniform(xlim[0], xlim[1])
            coords[1] = np.random.uniform(ylim[0], ylim[1])
#         coords = np.random.uniform(-1,3,size=2)
        r = Replica(coords, p.get_energy(coords))
        replicas.append(r)
    
        
    ns = NestedSampling(replicas, mc_walker, stepsize=stepsize)
    results = [Result()]
    results[0].replicas = [r.copy() for r in replicas]
    for i in xrange(niter):
        ns.one_iteration()
        new_res = Result()
        new_res.replicas = [r.copy() for r in replicas]
        new_res.starting_replica = ns.starting_replicas[0].copy()
        new_res.new_replica = ns.new_replicas[0].copy()
        path.insert(0, new_res.starting_replica.x)
        new_res.mc_path = path
        results.append(new_res)
        path = []
        
        if ns.replicas[-1].energy < estop:
            break
        
        
        
#    plt.plot(ns.max_energies)
#    plt.show()
    
    return ns, results
Esempio n. 6
0
 def __init__(self,
              nsPotential,
              scale=1,
              takeStep=random_displace,
              acceptTest=None,
              nreplicas=10,
              mciter=10,
              nproc=1,
              verbose=False):
     self.mciter, self.nreplicas = mciter, nreplicas
     self.nproc, self.verbose = nproc, verbose
     self.pot = nsPotential
     mcrunner = MonteCarloWalker(self.pot,
                                 takestep=takeStep,
                                 accept_test=acceptTest,
                                 mciter=self.mciter)
     replicas = self.initialise_replicas()
     self.ns = nested_sampling.NestedSampling(replicas,
                                              mcrunner,
                                              nproc=self.nproc,
                                              verbose=self.verbose)
Esempio n. 7
0
    def setUp1(self, nproc=1):
        self.ndim = 3
        self.harmonic = Harmonic(self.ndim)
        self.nreplicas = 10
        self.stepsize = 0.1
        self.nproc = nproc
        
        self.mc_runner = MonteCarloWalker(self.harmonic, mciter=40)

        replicas = []
        for i in range(self.nreplicas):
            x = self.harmonic.get_random_configuration()
            replicas.append(Replica(x, self.harmonic.get_energy(x)))
        self.ns = NestedSampling(replicas, self.mc_runner, 
                                 stepsize=0.1, nproc=nproc, verbose=False)


        self.etol = 0.01
        run_nested_sampling(self.ns, label="test", etol=self.etol)
        self.Emax = self.ns.replicas[-1].energy
        self.Emin = self.ns.replicas[0].energy
Esempio n. 8
0
def main():
    parser = argparse.ArgumentParser(description="do nested sampling on a p[article in a n-dimensional Harmonic well")
    parser.add_argument("-K", "--nreplicas", type=float, help="number of replicas", default=1e1)
    parser.add_argument("-A", "--ndof", type=int, help="number of degrees of freedom", default=3)
    parser.add_argument("-P", "--nproc", type=int, help="number of processors", default=1)
    parser.add_argument("-N", "--nsteps", type=int, help="number of MC steps per NS iteration", default=int(1e3))
    parser.add_argument("--stepsize", type=float, help="stepsize, adapted between NS iterations", default=20)
    parser.add_argument("--etol", type=float, help="energy tolerance: the calculation terminates when the energy difference \
                                                    between Emax and Emin is less than etol", default=0.1)
    parser.add_argument("-q", action="store_true", help="turn off verbose printing of information at every step")
    args = parser.parse_args()
    ndof = args.ndof
    nproc = args.nproc
    nsteps = int(args.nsteps)-8
    nreplicas = int(args.nreplicas)
    stepsize = args.stepsize
    etol = args.etol
    
    #construct potential (cost function)
    potential = Harmonic(ndof)
    
    #construct Monte Carlo walker
    mc_runner = MonteCarloWalker(potential, mciter=nsteps)

    #initialise replicas (initial uniformly samples set of configurations)
    replicas = []
    for _ in range(nreplicas):
        x = potential.get_random_configuration()
        print(x)
        print(potential.get_energy(x))
        replicas.append(Replica(x, potential.get_energy(x)))
    
    #construct Nested Sampling object
    ns = NestedSampling(replicas, mc_runner, stepsize=stepsize, nproc=nproc, max_stepsize=10, verbose=not args.q)
    
    #run Nested Sampling (NS), output:
    ## label.energies (one for each iteration) 
    ## label.replicas_final (live replica energies when NS terminates)
    run_nested_sampling(ns, label="run_hparticle", etol=etol)
def main():
    parser = argparse.ArgumentParser(
        description=
        "do nested sampling on a p[article in a n-dimensional Harmonic well")
    parser.add_argument("-K",
                        "--nreplicas",
                        type=int,
                        help="number of replicas",
                        default=300)
    parser.add_argument("-A",
                        "--ndof",
                        type=int,
                        help="number of degrees of freedom",
                        default=4)
    parser.add_argument("-P",
                        "--nproc",
                        type=int,
                        help="number of processors",
                        default=1)
    parser.add_argument("-N",
                        "--nsteps",
                        type=int,
                        help="number of MC steps per NS iteration",
                        default=100)
    parser.add_argument("--stepsize",
                        type=float,
                        help="stepsize, adapted between NS iterations",
                        default=0.1)
    parser.add_argument(
        "--etol",
        type=float,
        help=
        "energy tolerance: the calculation terminates when the energy difference \
                                                    between Emax and Emin is less than etol",
        default=0.01)
    parser.add_argument(
        "-q",
        action="store_true",
        help="turn off verbose printing of information at every step")
    parser.add_argument(
        "--dispatcherURI",
        action="store_true",
        help="use URI of the dispatcher server in default location",
        default=False)
    parser.add_argument(
        "--dispatcherURI-file",
        type=str,
        help="use URI of the dispatcher server if different from default",
        default=None)

    #set basic parameters
    args = parser.parse_args()
    ndof = args.ndof
    nproc = args.nproc
    nsteps = args.nsteps
    nreplicas = args.nreplicas
    stepsize = args.stepsize
    etol = args.etol

    #try to read dispatecher URI from default file location
    if args.dispatcherURI is True:
        with open("dispatcher_uri.dat", "r") as rfile:
            dispatcherURI = rfile.read().replace('\n', '')
    elif args.dispatcherURI_file != None:
        with open(args.dispatcherURI_file, "r") as rfile:
            dispatcherURI = rfile.read().replace('\n', '')
    else:
        dispatcherURI = None

    #construct potential (cost function)
    potential = Harmonic(ndof)

    #construct Monte Carlo walker
    mc_runner = MonteCarloWalker(potential, mciter=nsteps)

    #initialise replicas (initial uniformly samples set of configurations)
    replicas = []
    for _ in xrange(nreplicas):
        x = potential.get_random_configuration()
        replicas.append(Replica(x, potential.get_energy(x)))

    #construct Nested Sampling object and pass dispatcher address
    ns = NestedSampling(replicas,
                        mc_runner,
                        stepsize=stepsize,
                        nproc=nproc,
                        dispatcher_URI=dispatcherURI,
                        max_stepsize=10,
                        verbose=not args.q)

    #run Nested Sampling (NS), output:
    ## label.energies (one for each iteration)
    ## label.replicas_final (live replica energies when NS terminates)
    run_nested_sampling(ns, label="run_hparticle", etol=etol)